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This paper presents a comparative study of three high-accuracy frequency estimation
methods for application in vibration analysis of rotating machinery. The "rst two techniques
are non-parametric methods based on the fast Fourier transform (FFT) : the interpolated
fast Fourier transform (IFFT) and the iterative weighted phase averager (IWPA). The third
method is a parametric high-resolution technique known as ESPRIT. The FFT-based
methods combine techniques to reduce the e!ects of windowing with an iterative procedure
which, at each iteration, detects the strongest peak and subtracts its e!ect (to reduce the
interference resulting from spectral leakage). The paper compares their variance, resolution
and computational requirements by means of simulation examples and also using end
winding vibration data taken from a hydroelectric turbogenerator. It is found that, in
situations with a moderate or high level of spectral interference, the IWPA method out-
performs the IFFT and is even competitive with ESPRIT. Moreover, the IWPA has the
ability to separate sinusoids more closely spaced than the periodogram's resolution limit.
The IFFT method, on the other hand, has the lowest computational cost.
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1. INTRODUCTION

A typical problem in vibration analysis of rotating machinery consists of estimating the
frequencies of a collection of sampled sinusoidal signals contaminated by additive noise.
Usually, the detection of a new spectral peak or a change in the root-mean-square (rms)
value of the vibration at an integer multiple of the rotation frequency can indicate the
development of a fault.

In vibration analysis, long data records are typically acquired and therefore a simple fast
Fourier transform (FFT) algorithm provides enough resolution for frequency estimation.
Moreover, the requirement of real-time analysis is another reason that explains why
classical frequency estimation methods such as the periodogram (probably windowed and
averaged) still remain the most used tools in vibration analysis and monitoring of rotating
machinery.

However, as it is shown in this paper, if we can a!ord a slight increase in the com-
putational cost, it is possible to obtain high-accuracy frequency estimates working with
a relatively short data set. Speci"cally, in this paper we compare the performance of three of
these high-accuracy methods: two of them are based on the FFT and the third is a high-
resolution method.

Most of the frequency estimation methods [1, 2] can be grouped into two classes:
parametric or high-resolution methods and non-parametric or periodogram-based
methods. The high-resolution methods are able to resolve spectral peaks separated in
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frequency less than 1/¹ (¹ being the observation time of the signal), which is the resolution
limit for the methods based on the periodogram. To this class pertain methods such as
Pisarenko's method, the MUSIC and the Root-MUSIC, the Min-Norm method and more
recently, the ESPRIT method [3]. All the high-resolution methods provide very accurate
frequency estimates, with only small di!erences in their statistical properties. For our
comparative study, we have selected the ESPRIT method for two reasons: "rst, it provides
slightly more accurate estimates than the other methods [1], and second, ESPRIT is not
widely known to the vibration analysis community.

On the other hand, the main advantage of classical periodogram-based methods, which
employ FFT algorithms, is that they have a low computational cost and, therefore, can be
e$ciently implemented. However, in general, periodogram- or FFT-based methods cannot
resolve closely spaced frequencies.

To obtain high-accuracy estimates with FFT-based approaches we have to deal with two
di!erent kinds of problems: "rst, it is the problem of spectral leakage due to interference
among the sinusoidal components, which occurs even when tapered windows are used. This
kind of leakage is sometimes denoted as long-range leakage. Second, since the FFT is
evaluated in a grid of discrete frequencies, it introduces a bias in the frequency estimates.
The classical method of zero padding to mitigate this e!ect (also referred to as short-range
leakage) may be computationally expensive if high accuracy is required.

Several techniques have been proposed to overcome the short-range leakage problem.
The simplest group of methods comprises those based on interpolating the FFT samples
surrounding the true frequency [4}7]. Interpolated FFT (IFFT) methods have the ad-
vantage that they are easy to implement and very fast. However, when the sinusoids are not
well separated in frequency, their results are not very accurate. As a second example for our
comparative study, we have selected the original Rife's IFFT method [4, 5].

Finally, another family of high-accuracy frequency estimation methods based on the
FFT, comprises those relying on some type of weighted linear regression on the phase data
[8, 9]. They are denoted as weighted phase averager (WPA) methods. The WPA methods
are not widely known, eventhough they achieve, in general, better results than the IFFT
methods. One of the goals of this paper is to describe these high-accuracy methods and also
to propose a modi"cation denoted as the iterative weighted phase averager (IWPA), which
is able to provide accurate frequency estimates when the sinusoids are not well separated in
frequency.

The rest of the paper is organised as follows. In Section 2, we describe in some detail the
proposed IWPA algorithm. The IFFT method and the ESPRIT algorithm are summarised
in Sections 3 and 4, respectively. In Section 5, the performances of these three methods in
di!erent scenarios are compared using simulation examples. In Section 6, we apply these
methods to a real vibration analysis problem using end winding vibration data taken from
a hydroelectric turbogenerator. Finally, the main conclusions are summarised in Section 7.

2. THE IWPA METHOD

2.1. SHORT-RANGE LEAKAGE CORRECTION

In order to explain the basis of the frequency estimation procedure, let us consider, "rst,
the case of a single sinusoidal signal

x[n]"A
0
cos(2n f

0
n#h

0
), n"0,2,N!1 (1)

where ( f
0
, A

0
, h

0
) are unknown parameters. Throughout this paper we will use discrete

frequencies f and discrete-time (sampled) sequences. The corresponding analog frequency F
0
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Figure 1. Fourier transform of a windowed sinusoid of frequency f
0
"32.3/N. The spectral lines obtained from

a DFT as well as the frequency deviation error due to discretization d are indicated.

can be obtained from F
0
"F

s
f
0
, where F

s
is the sampling frequency. The observation time

of the signal is ¹"N/F
s
seconds.

The discrete frequency f
0

can be written as

f
0
"(¸#d)/N"j

0
/N (2)

where ¸ and !1/2)d(1/2 are the integer part and the fractional part of j
0
, respectively,

and j
0
denotes the number of signal cycles contained in the observation window. Let us give

an example to clarify this notation (see Fig. 1): suppose that we acquire a sinusoidal signal of
frequency 32.3 Hz sampled at 128 Hz during 1 s (N"128 samples); then, f

0
"32.3/128. In

this case j
0
"32.3 (the frequency cycles), ¸"32, and d"0.3.

With this notation, the discrete Fourier transform (DFT) of x[n] at spectral line k is
given by

X[k]"
A

0
2

ejh0=((k!j
0
)/N)

#

A
0

2
e~jh0=((k#j

0
)/N) (3)

where =( f ) is the Fourier transform of the selected time-domain window. For instance,
considering a rectangular window of length N, we have

=( f )"
sin(Nnf )

sin(n f )
e~jnf (N~1). (4)

We assume from now on that the frequency of the sinusoid is far enough from the origin
( f"0) so that the leakage coming from the negative part of the spectrum can be neglected.
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In this situation equation (3) reduces to

X[k]"
A

0
2

e jh0=((k!j
0
)/N). (5)

As it is well-known, equation (3) can be e$ciently calculated using an FFT algorithm and
the frequency can be estimated from its largest peak

f K
0
"

argmax( DX[k]D )
N

"¸/N. (6)

If j
0

is not an integer (i.e. if the signal does not contain an integer number of periods
within the observation interval), the results provided by equation (6) can have low accuracy
because of the spacing between two adjacent samples of the DFT: this e!ect is denoted as
short-range spectral leakage. For instance, in the example given above we would estimate
the frequency as the largest spectral line at ¸"32.

Obviously, the short-range leakage problem can be alleviated by applying zero padding
to the signal before computing the DFT. However, a more e$cient approach was recently
proposed by Umesh and Nelson [10]. The method, which belongs to the WPA family, is
based on averaging the weighted phase estimates obtained using di!erent non-overlapping
segments of x[n]. In particular, it proceeds as follows: "rst, the whole original sampled
signal, x[n], is used to obtain a coarse estimate of the frequency, f K

0
, by applying equation (6).

Second, the signal is divided into M non-overlapping segments of length P:

x
s
[n]"x[n#sP], 0)n)P!1 (7)

and then the spectrum of each segment is evaluated at the previously estimated f K
0
,

X
s
( f K

0
)"

P~1
+
n/0

x
s
[n]e~j2nf)0 (n`sP). (8)

Now, substituting equation (1) into equation (8) and taking into account that f K
0
"

( f
0
!d)/N, it is straightforward to show that the spectrum of the signal can be written as

X
s
( f K

0
)"

A
0

2 A
sin(ndP/N)

sin(nd/N) B ejh0e~j(2ndP@N)(s`1) (9)

that is the amplitude of the peak is attenuated by a factor which depends on the particular
window applied as well as on the frequency error d, while its phase is shifted by a quantity
which is linearly related to the frequency error

arg(X
s
( f K

0
))"h

0
!

2ndP

N
(s#1). (10)

From equation (10), it is clear that d can be estimated from the phase di!erences between
consecutive segments. From a di!erent point of view, a similar idea has been recently
explored in [11].

From our experience, for most of the examples, splitting the original register into two
segments (P"N/2) is enough to achieve accurate estimates. In this case, the frequency error
can be estimated as

d)"
N

2n¸
(arg(X

1
( f K

0
))!arg(X

2
( f K

0
))). (11)

As shown in [10], when the input data consist of a single sinusoid the estimator described
in this section almost attains the Cramer}Rao (CR) bound at high SNRs, which is the
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lowest variance that can be attained by any unbiased estimator [12]. However, it does not
perform adequately for multiple sinusoids when they are not well separated in frequency. In
the following section, we describe a method to reduce the long-range spectral leakage in
these situations and to extend the applicability of the WPA estimator.

2.2. LONG-RANGE LEAKAGE REDUCTION

Now, let us consider a signal consisting of p real sinusoids,

x[n]"
p
+
i/1

A
i
cos(2nf

i
n#h

i
) (12)

in this situation, besides the short-range spectral leakage due to the granularity of the FFT,
long-range leakage appears, which is concerned with the interference among the harmonics.
Although the use of a proper window can reduce this interference, it does not solve the
problem.

Recently, a simple iterative algorithm has been proposed in [13] to reduce the long-range
spectral leakage. At each iteration the frequency, amplitude and phase of the strongest
sinusoid are estimated. Then, this peak is subtracted from the original data and a new peak
is estimated. A key point of the method is that each time a new frequency is estimated, all
previously computed frequencies, amplitudes and phases are reestimated.

The main di$culty with this method is that it requires very accurate initial frequency
estimates. Otherwise, even a small error in the frequency estimate could cause large errors in
both the amplitude and phase estimates [see equation (8)]; therefore the interference caused
by that sinusoid could not be e!ectively eliminated. In [13] this disadvantage is alleviated
by applying zero padding. From a computational point of view, however, a simpler solution
could be to apply the WPA method given by (11).

2.3. THE OVERALL IWPA METHOD

Finally, the proposed method is a straightforward combination of the procedures
discussed in Sections 2.1 and 2.2, which is able to reduce both the short- and long-range
spectral leakage. Speci"cally, on the "rst iteration of the procedure, which we denote as the
IWPA, the strongest spectral line in X ( f ) is detected and its frequency f K

1
, amplitude AK

1
and

phase h)
1
, are estimated as follows. The frequency error deviation is corrected using two

non-overlapped windows of length P"N/2 and applying equation (11). Once f K
1

has been
obtained, the corresponding amplitude and phase are estimated as

(AK
1
, h)

1
)"min

N~1
+
n/0

(x[n]!A
1
cos(2nf K

1
n#h

1
))2. (13)

Denoting X
1
"A

1
cos(h

1
) and>

1
"A

1
sin(h

1
), the minimum of equation (13) is obtained

by solving

A
!+

n
cos(2nf K

1
n)2

1
2
+

n
sin(4nf K

1
n)

1
2

+
n
sin(4n f K

1
n)

!+
n
sin(2n f K

1
n)2B A

X
1
>

1
B"A

+
n
x[n]cos(2nf K

1
n)

+
n
x[n]sin(2nf K

1
n)B (14)

and then we estimate AK
1
"JX2

1
#>2

1
and h)

1
"arctan(>

1
/X

1
).

Having obtained the parameters of the "rst sinusoid, a residual signal is calculated by
subtracting the previously obtained components

r[n]"x[n]!AK
1
cos(2nf K

1
n#h)

1
) (15)

and now the algorithm obtains the parameters of the strongest sinusoid remaining in r[n],
( f K

2
, AK

2
, h)

2
). We can use these parameters to re"ne the estimates of the "rst sinusoid by
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applying the same procedure to a new residual

r[n]"x[n]!AK
2
cos(2nf K

2
n#h)

2
). (16)

To summarize, at each iteration we obtain a new component as the strongest peak of the
remaining residual and then we reestimate the parameters of all the previously obtained
components.

As we will show later, unlike other FFT-based procedures, the technique can even
distinguish sinusoids with a frequency separation smaller than the periodogram's resolution
limit (1/N).

3. THE INTERPOLATED FFT

Let us consider again the case of single sinusoid of frequency f
0
. As we have seen

previously, the frequency can be written as f
0
"(¸#d)/N"j

0
/N [see equation (2)]. The

position of the largest peak of the FFT, ¸, provides a coarse estimate of the frequency.
Therefore, the problem of obtaining an improved frequency estimate reduces to estimate the
frequency deviation d) .

In [4]. Rife proposed to estimate the frequency deviation by interpolating the magnitudes
of the FFT outputs. Looking again at Fig. 1 and taking into account equation (4), we can
see that the amplitude of the largest spectral line is given by

DX[¸] D"
A

0
2

sin(nd)

sin(nd/N)
(17)

while the amplitude of the second largest spectral line (in the situation depicted in Fig. 1 this
line is located at k"¸#1) is given by

DX D[¸#1] D"
A

0
2

sin(n (1!d))

sin(n (1!d)/N)
. (18)

In general, using a window with Fourier transform=( f ), the ratio of the two magnitudes
can be expressed as

DX[¸#a] D
X[¸]

"

D= (1!d) D
D=(d)D

(19)

where a is de"ned by

DX[¸#a]D"max( DX[¸#1]D, DX[¸!1]D) (20)

i.e. a is equal to 1 if the true frequency lies to the right of the largest FFT peak and is !1
otherwise.

In the literature, approximate solutions for the inversion of equation (19) have been
proposed for di!erent windows [4, 5, 14}16]. In particular, for the rectangular window we
have the following approximate solution [5]:

d)"a
DX[¸#a]D

DX[¸#a]D#DX[¸]D
(21)

and for the Hanning window [7, 14]

d)"a
2DX[¸#a]D!DX[¸]D
DX[¸#a]D#DX[¸]D

. (22)
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Similar expressions can be found in the literature for the class of Rife}Vincent windows
[4, 15, 16]. Recently, some interpolation techniques have been proposed which consider
three or even "ve FFT samples centred on the largest peak [17]. From our experience,
however, in practical situations where the noise is the main cause of disturbance, the use of
interpolators using three or "ve samples does not result in any noticeable improvement.
Therefore, we limit out study to the simplest and more e$cient IFFT techniques given by
equations (21) and (22).

Obviously, in situations with closely spaced sinusoids in which long-range leakage is the
main source of error, the IFFT method described above should be combined with the
iterative procedure of Section 2.2. In fact, the complete IFFT algorithm considered in this
paper is the same as that described in Section 2.3, but substituting the expression to correct
the frequency (11) by equation (21) or (22) depending on the used window.

4. THE ESPRIT ALGORITHM

The ESPRIT algorithm was proposed to estimate the frequencies of a set of complex
exponentials in noise and it was further developed in the context of array signal processing
[3, 18]. In this section we brie#y summarise its main characteristics.

Without loss of generality, let us consider a signal composed of p sinusoids corrupted by
noise,

x[n]"
p
+
i/1

A
i
cos(2nf

i
n#h

i
)#r[n], n"0,2, N!1 (23)

where r[n] is a white Gaussian noise of power p2. Assuming that the phases are random
with uniform distribution, the autocorrelation of x[n] is given by

R
x
[m]"E[x[n]x[n#m]]#

p
+
i/1

A2
i

2
cos(2nf

i
m)#p2d[m] (24)

where d[m]"1 if m"0, and 0 otherwise. Using this model, the (M]M) (we assume that
2p(M(N) data covariance matrix is given by

R"A
R

x
[0] R

x
[1] 2 R

x
[M!1]

R
x
[1] R

x
[0] 2 R

x
[M!2]

F } } F

R
x
[M!1] R

x
[M!2] 2 R

x
[0] B (25)

which can be rewritten as

R"APAH#p2I (26)

where H denotes conjugate and transpose, I is the (M]M) identify matrix and P is the
following (2p]2p) diagonal matrix:

P"diag(A2
1
/2,2, A2

p
/2, A2

p
/2,2, A2

1
/2). (27)

Finally, de"ning

a ( f )"[1e~i2nf2e~i(M~1)2nf]T (M]1) (28)
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the matrix A is given by

A"[a( f
1
)2a ( f

p
)a (!f

p
)2a( f

1
)](M]2p). (29)

Analogous to other high-resolution algorithms, ESPRIT relies on properties of the data
covariance matrix (25). Speci"cally, performing the singular-value decomposition of R, we
can write

R"U"UH (30)

where " is a diagonal matrix with real eigenvalues ordered such that
j
1
*j

2
*2*j

M
'0. Note that the matrix APAH in equation (25) is rank-de"cient:

rank(APAH)"2p(M. This property allows to partition the eigenvalues/eigenvectors
pairs into noise eigenvectors, corresponding to eigenvalues j

2p`1
"2"j

M
"p2; and

signal eigenvectors corresponding to eigenvalues j
1
*2*j

2p
'p2. Hence, we can de-

compose R as

R"U
s
"

s
UH

s
#U

n
"

n
UH

n
. (31)

It can be shown that the matrix U
s
, which contains the signal eigenvectors, can be written

as [3]

U
s
"AT (32)

where T is a full-rank matrix. This means that A and U
s
span the same subspace.

Unlike other subspace-based approaches, ESPRIT exploits the special structure of
matrices A and U

s
. In particular, A can be partitioned into sub-matrices A

1
and A

2
as

follows:

A"C
A

1
last rowD"C

first row

A
2

D. (33)

By the structure of A (denoted as shift-structure), A
1

and A
2

are related by the formula

A
2
"A

1
U (34)

where U is a diagonal matrix with elements e~j2nfi, i"1,2, p; on the diagonal. In this way,
the frequency estimation problem reduces to that of estimating U. Note that the shift-
structure of A is also exploited in the IWPA method through equation (10).

Similarly to A, the matrix U
s

can be partitioned into sub-matrices U
1

and U
2
. Now,

combining equations (34) and (32) we arrive at

U
2
"U

1
W (35)

where W is related to U by

W"T~1UT (36)

since equation (36) is a similarity transformation, both W and U have the same eigenvalues,
from which we can obtain the estimated frequencies. Since in practice U

1
and U

2
are noisy

estimates, the matrix W is estimated in equation (35) by applying a total-least-squares (TLS)
algorithm [19].

Similar to the other frequency estimation methods considered in this paper, here we
assume that the number of sinusoids is known; thus, the only parameter to be selected is the
order M of the matrix R. If we want to estimate p real sinusoids the lowest value for M is 2p,
higher values for M will increase signi"cantly the performance of the method. However,
M cannot be increased too much since the computational burden grows as M3.
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Finally, the ESPRIT algorithm, as applied in this paper, can be summarised as follows:

1. Compute the eigendecomposition of the data covariance matrix of order MR.
2. Form U

s
by selecting the 2p eigenvectors corresponding to the largest eigenvalues.

3. Partition U
s
into U

1
and U

2
by deleting the last row and the "rst row as in equation

(33).
4. Estimate W) by solving U

2
"U

1
W in a TLS sense.

5. Estimate the frequencies f K
i
as !arg(l

i
)/2n, where l

i
, i"2, 4,2, 2p, are the eigen-

values of W) .

5. SIMULATION RESULTS

In this section, we present some simulation results to compare the performance of the three
frequency estimation methods considered in the paper. We generated sinusoidal signals of
length N"256 samples composed of two tones and added white Gaussian noise. Compari-
sons are made based on 1000 independent trials for each SNR, which is de"ned as

SNR"10 log
10

+p
i/1

A2
i
/2

p2
. (37)

The most important parameter that limits the performance of the three methods is the
lowest distance between sinusoids min D f

i
!f

j
D"*j/N. In order to evaluate the e!ect of

long-range leakage, we have considered three di!erent values of *j:

f low leakage: *j"10.7,
f high leakage: *j"2.6,
f very high leakage: *j"0.7.

Speci"cally, for the "rst example we generate the following signal, f
1
"60.2/N, f

2
"70.9/N

(*j"10.7):

x[n]"cosA2n
60.2

N
n#n/10B#cosA2n

70.9

N
nB#r[n].

We compare the performance of the following methods:

f Raw N-points FFT.
f IFFT: we apply the Rife's interpolation FFT procedure with a rectangular window [4, 5]

and a Hanning window [14].
f IWPA: rectangular window; segments of length P"N/2.
f ESPRIT: data covariance matrix of order M"32.

As a "gure of merit we take the mean-squared error (MSE): for each trial we obtain two
estimates f K

1
and f K

2
; then, if we perform a total of N

s
trials for each experiment, the MSE is

de"ned as

MSE ( f
i
)"

1

N
s

Ns
+
j/1

( f K
ij
!f

i
)2 (38)

this "gure of merit takes into account both the variance and the bias of the estimator.
Figure 2 shows the MSE vs the SNR for the frequency estimate of f K

1
. We see that, in

a low-leakage situation (typical of vibration analysis)

f The IWPA method obtains better results than the IFFT at low and moderate SNRs.
However, it gets biased at high SNRs.
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Figure 2. Mean-square error of f K
1

vs SNR in a situation with a low level of spectral interference (Example 1:
f
1
"60.2/256, f

2
"70.9/256): s*s*s IWPA; #]*#]*#] ESPRIT; ]*]*] IFFT (rect.); h*h*h

IFFT (Hanning).

f The use of a suitable window (Hanning, for instance) extends the threshold SNR of IFFT
signi"cantly.

f The best results are provided by ESPRIT.

For the second experiment, we change f
2
from 70.9/N to 62.8/N; in this way, the frequency

separation is reduced to *f"2.6/N. In this situation, with a high level of interference
between harmonics, the IWPA clearly outperforms the IFFT methods; moreover, the
IWPA is competitive with ESPRIT. At high SNRs, both IWPA and IFFT tend to become
biased (see Fig. 3).

Finally, for the last example we move f
2

to 60.9/N. In this scenario, the frequency
separation is *j"0.7, which is below the periodogram's resolution limit. Therefore,
conventional methods based on the FFT, would fail to resolve the two sinusoids. However,
in Fig. 4 we see that the IWPA method still obtains accurate estimates. We can understand
this fact, by describing how the algorithm proceeds in a typical example: the IWPA method
locates the "rst peak at f K"60/N. Then, although we are in a situation with a very high level
of spectral interference, the IWPA method is able to correct the frequency giving an
estimate closer to 60.2/N. The iterative procedure of Section 2.2 subtracts the e!ect of that
component and a new spectral line is now detected at f K"61/N and corrected towards
60.9/N. From Fig. 4 we see that, at low SNRs, the IWPA method clearly outperforms
ESPRIT, but again it becomes biased at high SNRs. Unlike the IWPA, the IFFT method is
not able to correct the frequency estimates in a situation with such a high level of leakage
and thus the frequencies cannot be resolved.

In vibration analysis, where real-time measurements are often necessary, the computa-
tional cost is a critical factor. Table 1 gives an idea of the computational requirements
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Figure 3. Mean-square error of f K
1

vs SNR in a situation with a high level of spectral interference (Example 2:
f
1
"60.2/256, f

2
"62.8/256): s*s*s IWPA; #]*#]*#] ESPRIT; ]*]*] IFFT (rect.); h*h*h

IFFT (Hanning).

Figure 4. Mean-square error of f K
1

vs SNR in a situation with a very high level of spectral interference (Example
3: f

1
"60.2/256, f

2
"60.9/256). The "gure only shows the performance of the IWPA method and ESPRIT, since

the IFFT method fails to resolve the two sinusoids: *** Cramer}Rao; s*s*s IWPA; #]*#]*#]
ESPRIT.
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TABLE 1

Computational cost of each method in -oating point opera-
tions (Flops)

N FFT IFFT IWPA (P"N/2) ESPRIT (M"N/4)

128 3.4e3 3.8e3 1.2e4 5.1e6
256 7.3e3 8.1e3 1.7e4 4.0e7

associated with each method for di!erent register lengths. The three methods were pro-
grammed using Matlab [20] and the computational cost was measured as the number of
#oating point operations (Flops). The computational cost of IWPA is three times that of
IFFT. Finally, the high computational requirements of high-resolution methods such as
ESPRIT explain why these methods are not widely used in vibration analysis.

6. A REAL EXAMPLE: VIBRATION ANALYSIS OF HYDROELECTRIC TG-SETS

The reliability of rotating machines such as a hydroelectric turbogenerator is critical to
the overall reliability and operation of an electrical power plant. It is becoming more and
more important to receive an early warning of any problem before failure and long outage
occurs. The analysis of vibration signals is the most popular monitoring tool for its
capability to detect most of the mechanical-related and hydraulic malfunctions.

In this section, we apply the frequency estimation methods to real end winding vibration
data acquired from a hydroelectric generator set located in Villarino (Spain). The set is
a reversible Francis turbine with 135 MW of nominal power. The overall monitoring
system measures the shaft's displacement at three guide-bearing levels using a couple of
orthogonal sensors at each level (six channels), the vibration of the bearing support
(six channels) and the end winding vibration (three channels). Here, we only consider the
end winding vibration channels.

The winding vibration signals are acquired using optoelectronic accelerometers, a
sensor is set in each electric phase in the cups that have the highest tension and are most
distant among them, in order to pick up the tangential vibration induced in the cups
when the rotor is turning. The optical vibration signal are preprocessed and conditioned
using an optoelectronic unit, which includes the optical source (laser diode), the detection
unit (photodetectors and preampli"ers), analog "lters with selectable gains and the power
supply. Then, the electrical signals are sampled (analog-to-digital conversion) and stored in
a personal computer for further processing. A complete description of the system can be
found in [21, 22].

The stator of the monitored turbine has three phase bornes and three neutral and its
windings are connected in star. On the other hand, the rotor has 10 poles and it turns at
600 rpm; the excitation is made by means of collector rings and brushes. Typically,
a winding signal is composed of a number of harmonics of the electric network frequency. In
particular, for the turbine monitored in this example the electric network frequency is
f
n
"50 Hz and the winding vibration signal has a main harmonic at 2f

n
, and subharmonics

at f
s
, 3f

n
, 4f

s
, etc. (see Fig. 6).

An increase in the overall vibration level of these signals may anticipate malfunctions
such as a loosening of the stator wedges, the axial core bolts or crore's radial junctions.
Besides the overall vibration level, of the most valuable spectral information is the location
of the largest peaks as well as their amplitudes and phases. This information can be used for
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Figure 5. End winding vibration.

data trend analysis, i.e. the evolution of these spectral parameters can indicate the develop-
ment of a failure. Therefore, it is a key step to have accurate frequency estimates.

The "rst goal of this section is to show that by applying any of the procedures described
in this paper it is possible to obtain accurate frequency estimates using temporal sequences
shorter than those required when just an FFT (probably with zero padding) is used. The
second goal is to perform a comparison among the presented methods.

As an example, Fig. 5 shows a winding vibration register of N"256 samples and Fig. 6
shows its spectrum obtained using a 512-FFT (we applied zero padding); the sampling
frequency is F

s
"1200 Hz. Considering that the register is composed of p"6 sinusoids, we

compare the performance of the following methods:

f Using the whole temporal sequence (N"256), we apply zero padding to perform
a 512-FFT and then we select the six largest peaks.

f Using a shorter temporal sequence (N"64), we apply the IWPA method with P"32.
f Using a shorter temporal sequence (N"64), we apply the IFFT with a Hanning window.
f Using a shorter temporal sequence (N"64), we apply the ESPRIT method with

M"32.

From the results of Table 2, we can conclude that if we use any of the proposed high-
accuracy methods it is possible to acquire a shorter sequence. Obviously, this may render
some computational and memory savings. In vibration analysis, for what concerns fre-
quency estimation, in general the temporal length of the acquired sequences is overes-
timated. The frequency estimates provided by the three method are even better than those of
a 512-FFT. For instance, unlike the 512-FFT, they are able to detect the small subharmonic
located near 400 Hz.

Among the three proposed methods the best compromise between performance and
computational cost is provided by the IWPA: it is the method selected for this application.
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Figure 6. Spectrum of the end winding vibration.

TABLE 2

Frequencies estimated from the end winding vibration data

FFT IFFT IWPA ESPRIT
N"256#zero padding N"64 N"64, P"32 N"64, M"32

f
1

98.4 100.1 100.4 99.9
f
2

300.0 199.4 299.8 197.0
f
3

201.6 302.4 150.3 297.8
f
4

150.0 156.3 200.0 150.1
f
5

178.2 67.0 178.7 384.8
f
6

107.8 383.7 399.5 0

7. CONCLUSIONS

In this paper, three di!erent high-accuracy frequency estimation methods: IWPA, IFFT
and ESPRIT are compared. Only the IFFT is widely known and applied in vibration
analysis problems. Using simulation examples as well as real data from a hydroelectric
turbogenerator, we have found that when the harmonics are well separated in frequency
and there is a low level of spectral interference, all the methods have similar performance. In
this situation, the IFFT technique should be applied since it has the lowest computational
cost. On the other hand, when the level of spectral interference is moderate or high, the
IWPA outperforms the IFFT (with a moderate increase in computational cost). Moreover,
the IWPA has the ability to separate sinusoids more closely spaced than the periodogram's
resolution limit. At low SNRs it provides better results than a high-resolution method such
as ESPRIT. However, it tends to get biased at high SNRs. Finally, despite its good
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statistical properties and high-resolution capability, the high computational cost of
ESPRIT advises against its use in real-time vibration analysis applications.
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APPENDIX: NOMENCLATURE

x[n] sampled sequence
F
s

sampling frequency
f
0

discrete frequency
F
0

analog frequency
N number of samples of x[n]
P length of the segments in which the signal is split in the IWPA method
X( f )=( f ) Fourier transform of the signal and the window, respectively
X[k] discrete Fourier transform (DFT), kth spectral line
¸ location of the largest spectral line
d
0

frequency error deviation
j
0

frequency in cycles (number of periods within the observation interval)
R

x
[m] autocorrelation of x[n]

R autocorrelation matrix
M dimension of R (M]M)
p2 noise variance
I identity matrix of dimension (M]M)
j
i

eigenvalues of R
p number of sinusoids (harmonics)
A matrix whose columns are the steering vectors for each frequency (2p]M)
U

s
, U

n
matrices with the signal and noise eigenvectors, respectively

U
1
, U

2
submatrices formed by deleting the "rst and last rows of U

s
, respectively

A
1
, A

2
submatrices formed by deleting the "rst and last rows of A, respectively
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