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Abstract. There are many problems in science and engineering where the signals of interest depend simultaneously
on continuous and q-ary parameters, i.e. parameters which can take only one out of q possible values. This problem
is generally known as multiple composite hypothesis testing. The probability function of the observed data for a
given hypothesis is uncertain, as it depends on the parameters of the system. When there is no statistical model
for the unknown continuous parameters, the GLRT is the usual criterion for the binary case. Although the GLRT
philosophy can be extended to accommodate multiple composite hypotheses, unfortunately the solution is not
satisfactory in the general case. In this paper, we restrict the general scenario and consider problems with q-ary
input vectors and linear dependence on a unique set of continuous parameters; i.e. all the hypotheses depend on the
same set of parameters. Direct application of the GLRT is feasible in this case, but it suffers from an exponential
increase in complexity with data length. In this paper, we derive a low-complexity stochastic gradient procedure for
this problem. The resulting algorithm, which resembles the LMS, updates the unknown parameters only along the
direction of the winning hypothesis. This approach also presents similarities with competitive learning techniques,
in the sense that at each iteration the different hypotheses compete to train the parameters. The validity of the
proposed approach is shown by applying it to blind system identification/equalization, and chaotic AR(1) model
estimation.
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1. Introduction

Statistical inference problems in science and engineer-
ing can be grouped into one of two categories: detection
and estimation. In the detection problem the objective is
to select one out of a finite set of hypotheses according
to some statistical criterion; i.e. select the possibility
among a finite number of choices that is correct most
of the times under some probabilistic measure. This
problem is also known as hypothesis testing, and, when

there are more than two hypotheses, as classification or
multiple hypothesis testing. In the estimation problem
the objective is to determine the optimum value of a
set of parameters of a signal; i.e. infer the values of
the parameters trying to minimize some cost function
based on a statistical model of the signal.

However, in many applications there are problems
which require the simultaneous detection and estima-
tion of several parameters. This problem is generally
known as joint detection and estimation, or as multiple
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composite hypothesis testing. Multiple composite hy-
pothesis testing problems deal with the selection of
one out of M hypotheses when the PDF under some
or all the hypotheses is not completely specified. They
appear in many different areas such as pattern recog-
nition, time series analysis, or digital communications
[1]. Typical problems in pattern recognition include
optical character recognition [2], speech recognition
[3], or machine vision and remote sensing [4]. Within
the area of time series analysis, seismic deconvolution
[5], detection and estimation of point processes [6],
analysis of quasistationary and cyclostationary signals
[7], or estimation of chaotic AR(1) signals [8] are prob-
lems that require both detection and estimation. Finally,
problems in digital communications include estimation
of signal parameters under uncertain signal presence
[9], joint estimation of DOA and delay of a signal in
a multipath environment [10], blind system identifi-
cation/equalization [11], blind separation of multiple
co-channel signals [12], or universal decoding in the
presence of channel uncertainty [13].

Despite its importance and large family of applica-
tions, the problem of multiple composite hypothesis
testing still lacks a satisfactory solution [14]. Never-
theless, a large variety of suboptimal algorithms have
been developed, which can be divided in two categories
[15]: statistical and non-statistical methods. On the one
hand, statistical methods require a certain degree of
knowledge of the statistical properties (PDF) of the
observation process. On the other hand, non-statistical
methods exploit particular features of the observation
process [16]. Non-statistical methods are usually tuned
to the specific class of signals for which they are de-
vised, and are difficult to generalize.

In this paper we concentrate on statistical methods,
where the unknown parameters can be modeled as ran-
dom variables, or deterministic but unknown. In the first
case the Bayesian approximation may be applied, inte-
grating out the parameters to eliminate their influence
in the detector [17]. This requires the a priori PDF of the
parameters, which may not be known in many cases.
In the second case the parameters are replaced by their
ML estimates, leading to the GLRT [17]. Although the
GLRT philosophy can be extended to accommodate
multiple composite hypotheses, unfortunately the solu-
tion is not satisfactory in the general case; for instance,
it is not able to discriminate hypotheses with nested
parameter spaces [14]. However, in the problem con-
sidered, where all the hypotheses share the same set of
parameters, this limitation of the GLRT does not apply.

In this paper, we consider problems with q-ary input
vectors and linear dependence on a unique set of con-
tinuous parameters. Direct application of the GLRT
is feasible in this case, but it suffers from an expo-
nential increase in complexity with data length. To
circumvent this problem, we derive a low-complexity
stochastic gradient procedure. The resulting algorithm,
which resembles the LMS, updates the unknown pa-
rameters only along the direction of the winning hy-
pothesis. This approach also presents similarities with
competitive learning techniques, in the sense that at
each iteration the different hypotheses compete to train
the parameters. The paper is organized as follows. In
Section 2 the problem is described, and the mathemat-
ical notation is introduced. In Section 3, a stochastic
gradient procedure for this problem is derived, rele-
gating to the Appendix the cumbersome mathemati-
cal details. Finally, Section 4 shows the application of
the proposed method in two scenarios: Blind Channel
Identification/Equalization, and Chaotic AR(1) Model
Estimation.

2. Problem Statement

The problem can be stated as follows: we have a se-
quence of samples of a signal of interest x[n] observed
in noise; i.e. our observations are

y[n] = x[n] + w[n], n = 0, 1, . . . , N ; (1)

where w[n] is a stationary, zero-mean AWGN process
with variance σ 2. The signal of interest is obtained as
a linear transformation of a vector v[n], using a vector
of unknown parameters θ:

x[n] = θT v[n], n = 0, 1, . . . , N . (2)

The vectors v[n] are themselves generated from a q-ary
vector s[n] (i.e. each of its components can only take
one out of q possible values) according to a nonlinear
mapping

v[n] = T (s[n]), n = 0, 1, . . . , N ; (3)

where s[n] is an Ls ×1 vector with components si [n] ∈
{l1, . . . , lq}.

Our objective is to detect the vectors s[n] and esti-
mate the parameters θ simultaneously. Since for each
x[n] there are M = q Ls possible s[n], and we have
N + 1 samples, there are M N+1 different possible
combinations of s[n] values. Hence, we can formulate
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M N+1 possible hypotheses Hi , i = 0, . . . , M N+1 − 1.
Since we cannot specify a prior PDF for the unknown
parameters of the sytem in many cases, we will model
them as deterministic but unknown, and use the GLRT.

For two hypotheses, H0 and H1, the GLRT decides
H1 if [17]

LG = p(y; θ̂1,H1)

p(y; θ̂0,H0)
> γ, (4)

where LG is the likelihood ratio, y = {y[0] . . . y[N ]}T

is the observation vector, γ is a certain threshold, and
θ̂i is the ML estimator of θ for the hypothesis Hi ; i.e.
the one that maximizes p(y;θ,Hi ).

Unfortunately, the GLRT philosophy cannot be ex-
tended, in general, to the case of multiple composite
hypothesis testing [14]. This is due to the fact that
p(y; θ̂i ,Hi ) increases as the complexity of the model
(number of parameters) increases, thus biasing the de-
tection rule towards the most complex hypotheses. Be-
sides, when the parameter spaces of several hypothe-
ses are nested, p(y; θ̂i ,Hi ) is always maximum for the
most general hypothesis, which is always chosen [14].
However, for the subset of problems that we are con-
sidering, there is a unique set of parameters θ. This im-
plies that all the models share the same complexity, and
hence the extended GLRT can be applied. In this case,
the extended GLRT chooses the k-th hypothesis, where

k = arg max
i

{p(y; θ̂i ,Hi )}, i = 0, . . . , M N+1 − 1.

(5)

According to our data model, (1), the PDF of the
observation process is

p(y;θ,Hi ) = 1

(2πσ 2)(N+1)/2

× exp

(
− 1

2σ 2

N∑
n=0

(y[n] − θT vi [n])2

)
;

(6)

where vi [n] is the v[n] vector for the hypothesis Hi ,
and sample time n. Hence, the ML estimate of θ for
the hypothesis Hi is the value that maximizes (6), or,
equivalently, the one which minimizes

J (θ;Hi ) =
N∑

n=0

(y[n] − θT vi [n])2; (7)

which can be solved using the pseudoinverse.

3. Competitive Estimator

The block estimator presented in the previous section
requires obtaining M N+1 estimates of θ, and selecting
the one with the minimum value of J (θ;Hi ). This al-
gorithm has an exponential computational cost, which
prevents its application for large data records. Besides,
for on-line problems the model has to be adapted in
a sample by sample basis, which requires low-cost,
fast estimation procedures. In these cases we propose
a low-complexity stochastic gradient algorithm. The
cost function that we wish to minimize is:

J1(θ) =
N∑

n=0

(y[n] − θT vc[n])2, (8)

where the subindex

c = arg min
i

{
e2

i [n]
}
, i = 0, . . . , M − 1; (9)

labels the best hypothesis for a given sample, and

ei [n] = y[n] − θT vi [n], i = 0, . . . , M − 1;

(10)

is the approximation error of each hypothesis. In this
case, we can consider only the M possible hypothe-
ses for each sample, instead of the M N+1 hypotheses
of the GLRT. The best hypothesis Hc for each sample
is a discontinuous function of all the possible vectors
{v0[n], . . . , vM−1[n]}, and the parameters θ. There-
fore, a standard minimization of (8) is not possible.
However, following a similar reasoning to [18], we can
resort to the traditional procedure called stochastic ap-
proximation [19] to solve this problem. The basic idea
is to use a sample function e2

c [n] of (8), and solve the
problem using a local gradient-descent algorithm. Note
that e2

c [n] is well defined and unique everywhere, ex-
cept when the distance to two or more input vectors
is exactly the same. Following this approach the algo-
rithm becomes:

θ[n + 1] = θ[n] − 1

2
µ[n]∇θe2

c [n]

= θ[n] + µ[n](y[n] − θT [n]vc[n])vc[n].

(11)

The deterministic cost function in (8) can be consid-
ered a sample mean approximation of the more general
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stochastic cost function

J2(θ) = E{(y[n] − θT vc[n])2}. (12)

Since (12) is a discontinuous function of the vectors
v[n], a standard minimization scheme is not possible,
and we have to rely on iterative approaches. It may be
shown (see the Appendix) that the exact gradient of
(12) is

∇θ J2 = −2E{(y[n] − θT [n]vc[n])vc[n]}. (13)

This means that the steepest descent direction of (12)
occurs in the direction of the best hypothesis (i.e. the
winner), and leads to the CLMS algorithm:

θ[n + 1] = θ[n] + µ[n](y[n] − θT [n]vc[n])vc[n];

(14)

being Hc the hypothesis that produces the minimum
instantaneous output error ec[n]. Note that (14) is iden-
tical to the stochastic gradient descent algorithm (11).
The CLMS algorithm can be summarized as:

1. Initialize the parameter vector θ with a random
value.

2. Choose randomly an observation y[n] and construct
the M possible vectors v0[n], . . . , vM−1[n] using
the M possible q-ary vectors s0[n], . . . , sM−1[n].

3. Test all the vectors v[n], select the one that provides
the best match to the desired response y[n] (i.e. least
squared error) and use it to update the parameter
vector θ using (14).

4. Go to step 2 until stability is achieved.

This algorithm has been designed to solve a block
estimation problem, but it can be easily adapted for on-
line problems. In this case, with each new observation
available, we construct a new set of M input vectors,
which are applied to the system, using the best one to
adapt the parameter vector θ.

The proposed procedure is related to the winner-
takes-all competitive learning technique, which has
been widely applied in the neural network literature
[20, 21]. Clustering is probably the most important ap-
plication of competitive learning. Given a collection of
observations y[n], the objective of clustering is to find
regions in the input space with high sample density, and
then represent the input space by the centers of these
regions (clusters). In clustering, we iteratively choose

one of the y[n] and compare it with all the reference
vectors using some metric. The winner of this competi-
tion reduces its distance (in the reference metric) to the
training vector. When stability is achieved, each refer-
ence vector represents a group (cluster) of the training
data [20]. Competitive learning causes each of the ref-
erence vectors to concentrate on a particular group of
patterns. This idea has been extended to models in [22],
where several linear models compete for training pat-
terns, concentrating each one in some group of them
which share some kind of similarity. In our problem,
the idea is slightly different: since we have a limited
set of inputs we perform the competition in the input
vectors using a unique model, and the winner (i.e. the
input that produces the minimum error) is used to train
the model.

4. Applications

4.1. Blind System Identification/Equalization

4.1.1. Problem Description and Previous Work.
Channel equalization is needed in bandlimited digital
communications systems to compensate for the dis-
tortion caused by ISI. When a training sequence is
not available (blind equalization/identification), and as-
suming without loss of generality an FIR model for the
channel, this problem can be cast within the framework
of multiple composite hypothesis testing. We consider
a baud-rate sampled baseband representation of the dig-
ital communications system. A sequence of i.i.d. sym-
bols v[n] belonging to a finite alphabet is sent through
an LTI channel with p coefficients θ [n]. The resulting
channel output is

y[n] =
p−1∑
k=0

θ [k]v[n − k] + w[n], (15)

where w[n] is a zero-mean AWGN, and the signals
and systems can be either real or complex. To sim-
plify the discussion we concentrate on the real case,
where we have a PAM input signal with q = 2Q levels
{±1, ±3, . . . ,±(Q − 1)}.

Assume we collect N+1 consecutive measurements,
then N − p + 2 equations according to (15) can be
written in matrix form as

y = Vθ + w, (16)

where the matrix V contains the N + 1 unknown in-
put symbols. To find a joint solution for the best input
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sequence and filter in (16), we should try all the M N+1

possible V matrices (hypotheses), obtain for each one
the minimum error norm solution forθ in (16) (which is
the ML estimate for a given hypothesis), and select the
filter and the corresponding matrix V of input symbols
which provide the best result. Obviously, the previous
procedure corresponds to the extended GLRT stated
in Section 2. However, due to its exponential compu-
tational cost, this approach is not practical. Note that,
with this joint detection/estimation procedure, we ob-
tain simultaneously an estimate for the channel and
the input symbols; i.e. the channel is equalized. In this
application, the nonlinear mapping T (·) becomes an
identity, and thus v[n] = s[n]. On the other hand, the
length of the q-ary discrete input sequence coincides
with the length of the filter θ; i.e. Ls = p.

In the context of blind equalization there are several
solutions proposed to this problem. When the channel
is known the best sequence can be obtained by apply-
ing the Viterbi algorithm [23]. When the channel is
unknown several blind techniques involving also the
Viterbi algorithm have been considered. In these tech-
niques the channel is estimated in a decision-directed
mode [24], or a set of “quantized” channel candidates
are used to explore several trellises [25]. Other ap-
proach that does not rely on channel identification has
been proposed by Tong in [26]: the source correlation is
estimated from the observations and then a Viterbi algo-
rithm is applied to estimate the input sequence. Several
techniques that do not use the Viterbi algorithm have
also been proposed. In particular, Yellin and Porat use
an algebraic approach to identify an FIR system excited
by a discrete-alphabet input [27]: they establish some
conditions on the measurements from which the chan-
nel can be identified up to a sign ambiguity. Finally, in
[28] only a fixed number of possible channels (those
corresponding to the most likely sequence estimates)
are evaluated.

4.1.2. Algorithms for Competitive Blind Equalization.
In this section the competitive approach previously
described in a general framework is particularized
for blind identification of FIR systems. A sample-by-
sample strategy is considered, since it is more inter-
esting in an equalization context. Two algorithms are
proposed. First, for each new incoming sample, the M
possible input sequences compete to model the new ob-
servation with the current filter estimate. The best input
sequence is used to update the filter using the CLMS
algorithm with a fixed adaption parameter. However,

the CLMS does not take into account that, at each time
instant, only a new symbol has entered the filter and,
therefore, the vectors of incoming symbols are corre-
lated. This means that for each new incoming sample
only q input sequences must compete for the new obser-
vation. These sequences are composed of the last Ls −1
symbols of the previous winner and a new symbol be-
longing to the q-ary alphabet. This second algorithm
is denoted as FCLMS. The algorithm is initialized by
competing among the M possible hypotheses to fit the
first observation, but, once a winner vector has been
selected, only q hypotheses are considered for the rest
of the observations. Therefore, the computational cost
of the FCLMS is q Ls−1 times lower than that of the
CLMS.

4.2. Simulation Results and Discussion

In this study we consider a binary ±1 signal and
two simple 2-tap channels: a minimum-phase channel
H1(z) = 1 + 0.5z−1 and a nonminimum-phase chan-
nel H2(z) = 0.5 + z−1. In the first example we test
the CLMS algorithm with channel H1(z). Figure 1
shows the evolution of the channel coefficients for
100 independent runs starting at random initial val-
ues in the interval [−1.5, 1.5]. The adaption parame-
ter is fixed to µ = 0.002, and the SNR is 10 dB. For
this example, the mean value after convergence for
both coefficients is one of the following four values
±1, or ±0.5. Therefore, we have eight possible fil-
ters ±1 ± 0.5z−1 and ±0.5 ± z−1, which are indistin-
guishable for the algorithm. The explanation for this
identifiability problem is that, considering a noiseless
situation, for each of the 8 possible filters and a given
channel output, we can always find an input vector from
the set {(−1, −1), (−1, +1), (+1, −1), (+1, +1)}
which produces that observation.

Applying the FCLMS algorithm to the same exam-
ple, we obtain the results shown in Fig. 2. Now, forcing
the correlation between consecutive winners, the filter
converges to one of the two possibilities ±(1 + 0.5z−1).
Hence, there is only a sign ambiguity, inherent to any
blind equalization technique, which can be removed us-
ing differential coding. Repeating the simulation for the
nonminimum-phase channel H2(z) = 0.5 + z−1, the
CLMS algorithm provides similar results: depending
on the initial condition, the algorithm converges to one
of the eight possible filters ±1 ± 0.5z−1 or ±0.5 ± z−1,
which are indistinguishable. On the other hand, for
the FCLMS algorithm, in addition to the two global
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(a) Coefficient θ [0]

(b) Coefficient θ [1]

Figure 1. Convergence of 100 independent runs for the CLMS al-
gorithm and channel H1(z) = 1 + 0.5z−1.

minima at H (z) = ±(0.5 + z−1), two strong local
minima appear at H (z) = ±1, as is shown in Fig. 3.

In summary, for the CLMS algorithm and a filter of
length Ls there are Ls!2Ls indistinguishable solutions,
which are global minima of the cost function. In addi-
tion to these global minima some local minima can also
appear. On the other hand, for the FCLMS algorithm
we only have a sign ambiguity in the global minimum,
but the population of local minima tends to increase.
Therefore, the convergence of both algorithms to the
desired global minimum strongly depends on an ad-
equate filter initialization. This initial filter could be
obtained, for instance, using the algebraic approach
proposed in [27], or using a very short initial training
sequence as occurs in packet data transmission or in
semi-blind approaches [29]. Using this type of initial-

(a) Coefficient θ [0]

(b) Coefficient θ [1]

Figure 2. Convergence of 100 independent runs for the FCLMS
algorithm and channel H1(z) = 1 + 0.5z−1.

ization, the proposed competitive approach is a very
simple and effective approach to track a time-varying
channel.

4.3. Estimation of AR(1) Chaotic Models

4.3.1. Problem Description and Previous Work.
Chaotic signals (i.e. signals generated by a nonlinear
dynamical system in chaotic state) may be useful in
modeling natural phenomena due to their special char-
acteristics. For example, their extreme sensitivity to
initial conditions makes signal generation a delicate
task, but may be considered an advantage in represent-
ing anomalous behaviour of signals over short periods
of time [30]. Chaotic models have been proposed for
speech waveforms [30], biomedical signals [31], the
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(a) Coefficient θ [0]

(b) Coefficient θ [1]

Figure 3. Convergence of 100 independent runs for the FCLMS
algorithm and channel H2(z) = 0.5 + z−1.

sea clutter [32], packet traffic [33], as well as signals
arising from many processes in experimental physics
[34].

The application of chaotic modeling is conditioned
by the lack of a family of chaotic models that com-
bine a certain generality with easily computable esti-
mation algorithms. Ideally, we would search for the
chaotic equivalent of ARMA models. Chaotic signals
generated by eventually expanding PWL Markov maps
could be considered the chaotic equivalent of ARMA
models, since they have rational spectra [35]. Never-
theless, it is unclear whether it is possible to construct
chaotic PWL Markov maps with any desired spectra.
Restricting the models to PWL maps also allows the
analysis of ML signal estimators for a given map. The
ML estimator is inconsistent, so the asymptotic distri-

bution for large data records is invalid. However, for a
high SNR the ML estimator is asymptotically unbiased
and attains the CRLB [36]. A closed-form expression
for the ML estimator of chaotic signals generated by
iterating known PWL maps has been derived in [37].
Parameter estimation has received much less attention,
relying mostly on linear approaches, although ML es-
timators have also been considered in [38]. No closed-
form solution is known for the ML estimator of the
joint problem (parameter and signal estimator).

The chaotic signals that we are going to consider in
this paper are generated according to

x[n] = F(x[n − 1]), (17)

where F(·) may be any nonlinear function. However, in
this paper we concentrate on PWL maps, whose general
expression is [39]

F(x) =
K∑

i=1

(ai + bi x)χi (x), (18)

where K is the number of disjoint convex intervals Ei

in which the phase space of x may be divided, and χi (x)
is an indicator function that denotes whether x belongs
to the i-th interval or not

χi (x) =
{

1, x ∈ Ei ;

0, x /∈ Ei .
(19)

In this paper we are going to use a particular family of
PWL maps known as centered skew-tent maps, whose
expression is

F(x) =




2(1 + x)

1 + a
− 1, x ≤ a;

2(1 − x)

1 − a
− 1, x > a;

(20)

for some parameter −1 < a < 1. This family of maps
can also be expressed using (18) with two intervals:
E1 = [−1, a) with parameters a1 = 2/(1 + a) and
b1 = (1−a)/(1 + a); and E2 = [a, 1] with parameters
a2 = −2/(1 − a) and b2 = (1 + a)/(1 − a).

This map produces sequences which are chaotic with
invariant density p(x) uniform in the range [−1, 1]
[40]. If a symbol from a known alphabet is assigned
to each of the regions, the dynamics of the map
may be characterized by following the different re-
gions that the map visits during its dynamical evolu-
tion. This evolution is described by the sign sequence
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s = s[0], . . . , s[N − 1], also called itinerary, where

s[n] = i ⇔ x[n] ∈ Ei (21)

Forward iteration of chaotic signals suffers from
sensitive dependence on initial conditions. Therefore,
we generate the map through backward iteration, i.e.
x[n] = F−1(x[n + 1]). The centered skew-tent map is
noninvertible, but, since it is unimodal, it has only two
preimages, which can be found as

x[n] = 0.5[(1 − x[n + 1])s[n] + a(1 + x[n + 1])],

(22)

considering now a sign sequence given by

s[n] = sign(x[n] − a). (23)

Note that it is necessary to know in advance the region
to which the n-th sample belongs in order to generate
it. The wide use of the family of skew-tent maps is due
to the fact that their autocorrelation is [40]

Rxx [m] = r0am, (24)

with r0 = 1/3 in this case [8]. Therefore, the parameter
a has the same relation with the autocorrelation as in
the case of AR(1) processes, and skew-tent maps can
be considered their chaotic equivalent.

4.3.2. Competitive Chaotic AR(1) Model Estimation.
In this section the general competitive framework is
particularized for chaotic signals. In this case, the es-
timation of the model demands obtaining an estimate
of the parameter a, the initial condition x[0], and the
itinerary s. ML model estimation produces the initial
condition and the parameter that minimize

J (x[0], a) =
N∑

n=0

(y[n] − F (n)(x[0], a))2. (25)

This problem as it is stated has not been solved yet.
However, the ML estimator is feasible, although of
high computational cost. Minimizing (25) requires the
computation of 2N estimates, one for each possible
itinerary, followed by the application of a gradient de-
scent algorithm on a highly complex cost function.
Therefore, an alternative algorithm based on the ini-
tial estimation of the parameter a using only pairs of
samples, followed by an ML signal estimator has been
considered [8].

To obtain an estimate of the parameter a we can
exploit the deterministic relation that exists between

two consecutive samples, which leads to the following
cost function using backward iteration:

J (a) =
N∑

n=1

(y[n − 1] − F (−1)
s[n−1](y[n], a))2. (26)

Using (26) the problem may be decomposed into a set
of linear ones as a function of the itinerary [8]. Ob-
taining the LS solution of (26) requires considering the
2N possible itineraries and minimizing (26) for each
one. However, in a moderate/high SNR situation (above
10 dB), it seems reasonable to consider only the N + 2
possible itineraries produced by sorting the data sam-
ples and dividing them in two continuous sets. Thus,
we obtain an HCLS estimate of the itinerary [8]. Once
the parameter estimate has been obtained, we can apply
the ML estimator in [37] to obtain the signal estimate.

Although the HCLS algorithm reduces the computa-
tional cost in the parameter stage from O(2N ) to O(N ),
for large data records or on-line estimation this algo-
rithm is still impractical. In these cases, we can apply
the CLMS algorithm described in Section 3. The pa-
rameter vector considered is θ = [1 a]T , where the first
parameter is fixed. The two possible input vectors v[n]
at each iteration are obtained as

v[n]

=
{

[−(1 − y[n])/2 (1 + y[n])/2], s[n] = −1;

[(1 − y[n])/2 (1 + y[n])/2], s[n] = 1;

(27)

The competition and adaption is performed as de-
scribed in Section 3 for both input vectors, with the par-
ticularity that in this case one of the parameters is fixed,
and only the second coefficient of the filter needs to be
adapted. Hence, the algorithm in this case becomes

a[n] = a[n − 1] + µ[n]e[n](1 + y[n])/2, (28)

where e[n] is the error after each iteration:

e[n] =
{

e1[n], e2
1[n] ≤ e2

2[n];

e2[n], e2
1[n] > e2

2[n];
(29)

and e1[n] and e2[n] is the error for each of the two
models:

e1[n] = y[n − 1] −
(

(1 + a[n − 1])(1 + y[n])

2
− 1

)
,

(30)
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Figure 4. Comparison of alternatives of parameter estimation for
N = 99, a = 0.5.

and

e2[n] = y[n − 1] −
(

1 − (1 − a[n − 1])(1 + y[n])

2

)
.

(31)

4.3.3. Simulation Results and Discussion. In this
subsection we analyze the performance of the com-
petitive chaotic model estimator, and compare it with
the block model estimators developed in [8]. Concern-
ing parameter estimation we compare the gradient de-
scent approach and the HCLS solution with the CLMS
algorithm. In Fig. 4 we show a typical MSE curve ob-
tained averaging the results of 1000 simulations for
each of the different values of SNR, for a skew-tent
map with a = 0.5, N = 99 and a random initial con-
dition. From Fig. 4 it can be inferred that the compet-
itive method improves the performance of the gradi-
ent descent algorithm, and is very close to the HCLS
estimate.

In this application our objective is to estimate as
accurately as possible the chaotic signal. Therefore,
to assess the performance of the proposed algorithm
we evaluate the cuadratic error of the whole sequence
for N = 99 and different values of a and SNR. The
parameter a is obtained using the CLMS algorithm,
which provides a hard-censoring estimate of s once
convergence is attained. Then applying (22) recursively
with the estimated itinerary and parameter, and using
x[N ] = y[N ], we may reconstruct the full sequence.
The results are shown in Fig. 5. With this approach we
achieve up to 20 dB of upgrade in SNR with respect

Figure 5. Mean Square Error of the estimated chaotic sequence for
N = 99.

to the original signal, obtaining better results for low
absolute values of the parameter a.

5. Conclusions

In this paper we have considered the multiple com-
posite hypothesis testing problem, restricted to the
case where all the hypotheses depend linearly on the
same set of unknown parameters. Direct application
of the GLRT to this problem is feasible, but shows
an exponential increase in computational cost. As a
low-complexity alternative, we have derived a stochas-
tic gradient descent approach. Furthermore, we have
shown that this algorithm can also be derived from a
stochastic error functional (from which the cost func-
tion of the stochastic gradient is a sample function),
where the exact gradient can be obtained. The result-
ing algorithm, which resembles the LMS, updates the
unknown parameters only along the direction of the
winning hypothesis. This approach also presents sim-
ilarities with competitive learning techniques, in the
sense that at each iteration the different hypotheses
compete to train the parameters. The technique has
been applied to the scenarios of blind system identifica-
tion/equalization, and chaotic AR(1) model estimation.

Appendix

We follow a reasoning parallel to [18] to show the exact
gradient descent algorithm for the optimization of the
proposed cost function. The optimization of the cost
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function J2(θ) = E{e2[n]} = E{(y[n] − θT vc[n])2}
by gradient descent cannot be solved directly because
vc[n] is a discontinuous function of all the possible vec-
tors {v0[n], . . . , vM−1[n]}, and the parameter vector θ.
However, this problem can be circumvented by making
use of the following lemma: if {ai } is a set of positive
real scalar numbers, then

min
i

{ai } = lim
r→−∞

(∑
i

ar
i

)1/r

. (A.1)

Another required result concerns the functional form

f (x, r ) = (1 + x2r )1/r . (A.2)

Excluding the values of x at which f or limr→−∞ f are
not differentiable, i.e. x ∈ {−1, 0, 1}, holds:

lim
r→−∞

∂ f

∂x
= ∂

∂x

(
lim

r→−∞ f
)
. (A.3)

To construct the gradient, notice that the function

[∑
i

(y[n] − θT vi [n])2r

]1/r

, (A.4)

is continuous, single-valued, well-defined, and contin-
uously differentiable in its arguments, except when the
error is zero or an input produces an error exactly equal
to the sum of the rest. With a stochastic x and continu-
ous p(x), all these singular cases have zero probability.
Thus, under these conditions, and using the first result,
the quadratic error e[n] may be expressed as

e2[n] = (y[n] − θT vc[n])2

= min
i

{(y[n] − θT vi [n])2}

= lim
r→−∞

[∑
i

(y[n] − θT vi [n])2r

]1/r

;

(A.5)

and, using the second result, the gradient becomes

∇θ(J2(θ))

= E

{
lim

r→−∞∇θ

([ ∑
i

(y[n] − θT vi [n])2r

]1/r)}
.

(A.6)

Denoting

A =
∑

i

(y[n] − θT vi [n])2r , (A.7)

the gradient of the cost function becomes

∇θ(J2(θ)) = E
{

lim
r→−∞∇θ(A1/r )

}
; (A.8)

where

∇θ(A1/r ) = 1

r
A1/r−1∇θ A, (A.9)

and the gradient of A is

∇θ = r
∑

i

[(y[n] − θT vi [n])2]r−1

× ∇θ[(y[n] − θT vi [n])2]

= −2r
∑

i

[(y[n] − θT vi [n])2]r−1

× (y[n] − θT vi [n])vi [n]. (A.10)

Using (A.10), and after some straightforward rear-
rangements, we may express (A.9) as:

∇θ A1/r =
−2A1/r

∑
i [(y[n] − θT vi [n])2]r−1(y[n] − θT vi [n])vi [n]

A
.

(A.11)

From (A.5)

lim
r→−∞A1/r = (y[n] − θT vc[n])2. (A.12)

Denoting

B =
∑

i [(y[n] − θT vi [n])2]r−1(y[n] − θT vi [n])vi [n]

A

=
∑

i

(y[n] − θT vi [n])2r (y[n] − θT vi [n])−1vi [n]∑
j (y[n] − θT v j [n])2r

=
∑

i

(∑
j

(y[n] − θT v j [n])2r

(y[n] − θT vi [n])2r

)−1

× (y[n] − θT vi [n])−1vi [n], (A.13)

and noticing that, when r → −∞, each of the terms in
the inner sum for any given v j [n], is maximum when
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v j [n] = vc[n], and starts to predominate progressively
over the other terms:

lim
r→−∞B =

∑
i

lim
r→−∞

[
(y[n] − θT vi [n])2

(y[n] − θT vc[n])2

]r

× (y[n] − θT vi [n])−1vi [n]

= (y[n] − θT vc[n])−1vc[n]. (A.14)

Combining the partial results, the exact gradient of the
cost function becomes:

∇θ(J2(θ)) = −2E{(y[n] − θT vc[n])vc[n]}.
(A.15)

The sample function of the gradient at any instant n is

[∇θ(J2(θ))]1 = −2(y[n] − θT vc[n])vc[n],

(A.16)

and the steepest descent of J at instant n occurs in
the direction of −[∇θ(J2(θ))]1, leading to the CLMS
algorithm:

vc[n + 1] = vc[n] + µ[n](y[n] − θT vc[n])vc[n].

(A.17)
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