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ABSTRACT: This paper proposes a generalized radial basis function (GRBF) network to
accurately describe drain to source current nonlinearity for intermodulation distortion
(IMD) prediction of MESFETs and HEMTs applications in their saturated region. Trying to
analytically reproduce the nonlinearities second and third order Taylor-series coefficients,
responsible for IMD performance in these devices, may result in a quite difficult task.
Neural networks were introduced as a robust alternative for microwave modeling, mostly
employing the black-box model type approach of the multilayer perceptron network. The
GRBF network we consider is a generalization of the RBF network, which takes advantage
of problem dependent information. Allowing different variances for each dimension of input
space, the GRBF network makes use of soft nonlinear dependence of the drain to source
current derivatives with drain to source voltage for improving accuracy at reduced cost. The
network structure and its learning algorithm are presented. Results of its performance are
compared to other structures with similar amounts of parameters. Carrier to intermodula-
tion (C/I) predictions validate this approach for precise IMD control versus bias and load
in class A amplifiers applications. © 1999 John Wiley & Sons, Inc. Int J RF and Microwave CAE
9: 261-276, 1999.
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I. INTRODUCTION

Predicting nonlinear distortion phenomena re-
sults is of great concern for the microwave com-
munity nowadays. The emerging multiple-carrier
communication systems have been determining
important efforts in analysis techniques and accu-
rate modeling at device, circuit, and system levels.

MESFETs and HEMTs constitute the most
widely employed transistors in microwave and
millimeter wave applications, thus concentrating
the modeling activities for some years [1, 2]. How-
ever, most of these venerable models were not
conceived for intermodulation distortion (IMD)

Correspondence to: J. A. Garcia.

© 1999 John Wiley & Sons, Inc.

prediction and have poor performance when this
nonlinear behavior either in large-signal or
small-signal regimes is of primary interest.
Reproducing the small-signal third order IMD
on a nonlinear device is quite a difficult and
common task (amplifiers working below the 1 dB
compression point and mixers excited by small
REF signals when compared to the local oscillator
are typical examples). Having success is only pos-
sible if its model not only describes the nonlinear
current—voltage (I/V) and charge—voltage (Q/V)
characteristics, but also their respective deriva-
tives up to the same order [3]. Successive numeric
differentiations or least squares fittings of the
commonly measured characteristics for a mild
nonlinear device (MESFETs and HEMTS are in-
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cluded) just exacerbate the measurement noise
and hide the nonlinear properties these coeffi-
cients enclose.

Trying to accurately reproduce IMD in 50
or similar conditions for applications in the satu-
rated region first requires the experimental ex-
traction of the transconductance coefficients from
harmonic measurements [4]. A proper load con-
trol needs however, a two-sided description of the
drain to source current Ids(Vgs, Vds) in the model
of Figure 1 with a procedure like {5]. High fre-
quency IMD contribution of the minor nonlinear-
ity Cgs(Vgs) could be also included with a tech-
nique like the one we proposed in [6].

Standard modeling approaches employ analyti-
cal expressions for the nonlinearities in terms of
the control voltages. Some simple functions could
be appropriate if we are just interested in repro-
ducing the absolute nonlinear characteristic, but
this would not be the case when concerned in
simultaneously adjusting the derivatives up to the
third order in the particular operating region.
Look-up table options [7] would also be difficult
to generate and manage when we try to find a
good trade-off between gain and C/I for a highly
linear design controlling both biases (Vgso and
Vdso) as well as the load condition.

On the other hand, neural networks have
emerged as a robust tool at device level, here of
our concern, for modeling microwave components
such as microstrip vias [8], interconnects [8, 9],
spiral inductors [10], coplanar waveguide ele-
ments [11], waveguide filters [12], and FETs
[13-15). They have been mainly employed as an
effective way of substituting complex electromag-
netic (EM)-physics calculations in optimization
and statistical design. They have also been intro-
duced for constructing a large-signal description
from the small signal linear elements dependence
with the bias voltages [16] and for IMD prediction
from pulsed measurements [17], both with the
empirical basis and the circuital description so
widely employed by microwave designers. Impor-
tant applications not at device but at circuit level,
have also been reported [9, 13-15].

As usually happens in other fields, all of these
neural approaches almost only consider the use
of the multilayer perceptron (MLP) with its back-
propagation training algorithm. As discussed in
[15], MLP networks are black-box type models
quite flexible for applications of different nature,
but do not take advantage of the problem nature
information. MLP may need large amounts of

training data or hidden neurons, and conse-
quently coefficients, to ensure model accuracy.

In this paper we make use of a generalized
radial basis function (GRBF) network to model
the coefficients of the Ids(Vgs,Vds) complete
two-sided Taylor-series expansion in the satu-
rated region for both a MESFET and a HEMT to
be properly included in a Volterra type simulator
for IMD calculations on a small-signal regime.
The GRBF network generalizes the RBF network
concept, allowing different variances for each di-
mension of the input space (two in our case for
the bias voltages Vgso and Vdso). By replacing
the typical radial Gaussian kernels of RBF net-
works with elliptical basis functions, we are able
to take advantage of the soft nonlinear depen-
dence of the network’s outputs (the DC value and
the nine first, second, and third order terms) with
the drain to source bias voltage in this operating
region. This could be thought of as a microwave
knowledge incorporated to the network, resulting
in a sort of knowledge-based neural model,
a concept proposed and effectively employed
in [15, 18].

This paper is organized as follows. Section II
reviews some aspects of nonlinear FET character-
ization for IMD purposes. Section III describes
the GRBF network and its associated training
algorithm. Section IV compares model accuracy
and cost in different neural network approaches
for this particular problem. Section V finally pre-
sents experimental results and simulations of C/1
ratio vs. gate bias and load condition to verify the
robustness of this approach for IMD accurate
control at device level.

Il. NONLINEAR CHARACTERIZATION
OF FET DEVICES FOR
INTERMODULATION DISTORTION
DESCRIPTION

There is a number of different tools for nonlinear
microwave analysis, some of them as harmonic
balance are preferred for large signal regime with
few noncommensurate excitations, while others as
spectral balance are adequate for strong nonlin-
ear condition with multiple carriers. For a small-
signal regime, the tool for excellence has been
the Volterra-series analysis, and particularly the
nonlinear currents technique [19, 20].
Volterra-series description or nonlinear trans-
fer functions approach is based on a Taylor-series
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expansion of the device nonlinearities around a
fixed bias point for amplifiers type applications or
around a time-varying large signal waveform for
mixers.

The predominant nonlinearity in the FET non-
linear equivalent circuit of Figure 1 is the drain to
source current Ids(Vgs, Vds). Its two-sided
power-series expansion around the bias point
could be written as

Ids(Vgs, Vds)
= Ids(Vgso, Vdso) + Gml.vgs + Gds.vds
+ Gm2.vgs®> + Gmd.vgs.vds
+ Gd2.vds* + Gm3.vgs®
+ Gm2d.vgs?.vds
+ Gmd2.vgs.vds® + Gd3.vds?, ¢}

where Ids(Vgso, Vdso) represents the DC value at
the internal bias voltages Vgso and Vdso. The
uppercases Ids, Vgs, and Vds represent the total
magnitudes and the lowercases their correspond-
ing small-signal time-varying components. The Gs
are the Taylor coefficients of first (Gm1 and Gds),
second (Gm2, Gmd, and Gd2), and third order
(Gm3, Gm2d, Gmd2, and Gd3), associated to the
derivatives as in [5, 21].

In Figure 2, we show typical values of Gm1 and
Gm3, related to the first and third derivatives of
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Ids with Vgs, vs. Vgso at a Vdso in the saturated
region for a MESFET (NE72084) and a HEMT
(DO2AH). The experimentally extracted values
were obtained from § parameters using Dambrine
technique [22] for the first order ones, say Gm1
and Gds, and following the procedure in [5] with
a similar test set-up for the rest.

The transconductance Gm1 fundamentally de-
termines the device output power behavior vs.
Vgso as we can observe in Figure 3a for the
MESFET. The real part of the load impedance
(RL) only contributes for values up to the order
of 1/Gds as it is expected for an approximate
parallel combination of both elements (see
Fig. 1).

The Gm3 behavior is predominant for the in-
band third order distortion products, 2f1-f2 and
2f2-f1, in the case of the standard two tones IMD
experiment in low load condition, as it is shown in
Figure 3b. In the MESFET, we can point out the
existence of one null of Gm3 in the region of high
Gml, related to the observed maximum in the
C/1 ratio; this bias point results of great interest
for low distortion designs and it is rarely repro-
duced even in models that are continuous in their
derivatives. Most of the widely employed models,
that are discontinuous at pinch-off or have a
polynomial dependence [1], behave even worse
for small-signal IMD prediction.

We can observe, however, a displacement of
this interesting optimum bias point with RL. This
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Figure 1. MESFET nonlinear equivalent circuit.
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Figure 2. First and third order transconductance coefficients in the saturated region. (a)
Gm1 and (b) Gm3 for a MESFET. (¢) Gm1 and (d) Gm3 for a HEMT.

behavior is due to the rest of the third order
coefficients (Gm2d, Gmd2 and Gd3) whose IMD
contribution grows with RL. In [5] and [23] this
cancellation of Gm3 contribution by the cross
terms have been shown to be responsible for the
existence of optimum load values for high C/1
distortion ratio.

At low frequencies, if we consider the capaci-
tors as opens and the inductors as shorts, we can
approximate the vds/vgs ratio for a gate excita-
tion as

K vds Gml.(Rs + Rd + RL)
"~ vgs  1+Gds.(Rs+Rd+RL)’

2

When we vary RL, the magnitude of this term
grows linearly for RL values up to the order of
1/Gds (it approaches Gm1 /Gds for high RL). In
this RL interval the contribution of Gm2d in (1)

will grow linearly, with a quadratic law for Gmd2
and following a cubic one for Gd3. Thus:

Ids(Vgs, Vds)
= -+ +(Gm3 + Gm2d.Kv

+Gmd2.Kv? + Gd3.Kv3).vgs® + --- .
3)

Taking into account the negative sign in Kv
and the signs of the third order coefficients we
can easily justify the cancellation phenomena. In
both [5] and [23] the reader can find a detailed
mathematical discussion.

Being able to predict the loadpull performance
of C/I ratio is certainly a quite complex task,
since we need not only to reproduce the predomi-
nant transconductance derivatives but also the
referred cross and output coefficients.

If we want to accurately reproduce all the
derivatives with an analytical function, we may be
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Figure

used in [17] to model Ids behavior from pulsed
measurements in order to assure large-signal per-
formance and to take advantage from neural net-

works

forced to employ an extremely complex formula-
tion whose adjustment procedure could be criti-

cal. Look-up tables would also be difficult to

* continuity for the derivatives reproduction.

manage for this case. Neural networks could how-
ever provide us with a robust solution. They were

The derivatives were in fact continuous, but some
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important differences appeared with the mea-
sured values since the derivatives information was
not employed to construct the model, and pulsed
measurements errors could perfectly hide higher
order dependence in a mildly nonlinear device.

For an accurate IMD control at device level,
we suggest a solution of the kind of [16] but with
the coefficients of the Taylor-series expansion for
Ids(Vgs, Vds) as outputs in the training set. In
short, we are faced to the problem of obtaining a
function (model) G: R* — R that approximates
the nonlinear mapping from the input space of
bias voltages V = (Vdso, Vgso), to the output
space of model parameters G(V) = (Idso, Gm1,
Gds, Gm2, Gmd, Gd2, Gm3, Gm2d, Gmd2, Gd3).
Although the input space contains bias voltages,
represented above with “0,” we obviate it in the
next section for notation simplicity when describ-
ing the network details.

lll. GENERALIZED RADIAL BASIS
FUNCTION NETWORK

A. Network Structure

The nonlinear input—output mapping between the
bias voltages and the transistor model parameters
could be described using universal approximators
such as the radial basis function (RBF) or the
multilayer perceptron (MLP) as feedforward lay-
ered networks. An RBF unit using a Gaussian
kernel performs a local approximation, while an
MLP constructs a global one to the input—output
mapping. RBF networks result of larger size for
input spaces of high dimension, but also of faster

GRBF Neural Network

training due to the linear characteristic of their
output layer.

Our model considers an extension of the RBF
network which allows a different variance for
each input dimension. The relaxation of the ra-
dial constraints transforms the standard Gaussian
kernels with circular symmetry into elliptic basis
kernels, which can reduce the dimensionality of
the input space. This scheme is denoted as the
generalized radial basis function (GRBF) net-
work [24].

The hyperellipses around the centers of the
basis functions were considered in [25] and a
generalization of the elliptic kernel (Gaussian bar
unit) was proposed in [26]. However, this general-
ization sums the weighted Gaussian responses
along each input dimension, while the conven-
tional RBF and the GRBF obtain a nonweighted
product.

For notation simplicity, let us decompose the
global mapping performed by the GRBF network
(G: R’ > R™) into a set of single-output net-
works as follows:

G(V) = [g(V),..., g4 (W], (4)

each scalar output is given by

gV =L A Yo e Vw2 s k=1,..., M,
i J

)

where i is the index of the GRBF units, j the
input dimensions, and k& the outputs. In Figure 4

Mt
Output k
Az
Z ak(V)
}“k V=(Vg,° s Vaso)

Figure 4. GRBF network structure for the kth output.



we show a diagram corresponding to one of these
scalar outputs.

The GRBF can be viewed as an RBF where
the Euclidean norm has been replaced by a
weighted norm:

IV = plly = V= )" - WT-W- (V= p), (6)

where W is a square matrix and T indicates the
transpose. In this paper we consider a simplified
version of the GRBF network which uses a diago-
nal weighting matrix W [Eq. (5)], we allow the
variances to vary along each input dimension, but
we do not allow the elliptic kernels to rotate.

To understand the application of a GRBF net-
work to the MESFET intermodulation problem,
we can observe Figure 5b and c. It shows the
measured coefficients Gm2 (second order) and
Gm3 (third order) as a function of the bias point
V = (Vgso, Vdso). As we can see, the shape of
these coefficients along the Vgso axis could be
approximated by a combination of Gaussians or
even by a single one as in the case of Gm2;
however, they have a quasilinear dependence
with Vdso.

In order to adjust a neural model with a mini-
mum number of parameters, we can take advan-
tage of the nature of the problem following previ-
ous ideas [15, 18]. If the activation functions in
the hidden layer were able to respond to a local-
ized region along Vgso and to a nonlocalized
region along Vdso; the soft nonlinear dependence
of the drain to source current with one of the
control voltages (Vdso), could be included as a
knowledge in the network.

The GRBF network is not only capable of
attaining this semilocal behavior, by allowing a
different variance for each input dimension; but it
is also appropriate to approximate, by broadening
the variance along both directions, some parame-
ters of the model that do not have a Gaussian
shape along Vgso. This is the case of the MES-
FET first order Gm1 and Gds (see Fig. 5a).

B. Network Training

For the GRBF networks, some modifications of
the learning strategy, as employed in RBF net-
works, are required in order to obtain an efficient
model. First, the variances along each direction
and the centers are obtained by applying a gradi-
ent descent algorithm. The gradient equations are
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given by
oF
— ==2- L Y V) 0(V,) Ay
80’,—,~ p k
2
1 V,i— My
R (_L___i , <
0 9ij
oE
= -2- L X eV,) 0V) - Ay
I p k
1 V,i— M
el (_p,_, , (8)
i i

where p indexes the input patterns and k the
output dimensions, €,(V,) = y,(V,) — g,(V,) is the
network error for the kth output component, and

oV = [Te-rmi el )
i

is the output of the ith unit.

The second modification consists of selecting
the GRBF units one by one until the squared
error decreases below some threshold or a maxi-
mum number of units is reached. Looking again
at Figure 5b we can understand the benefits of
the proposed procedure: the Gm2 parameter can
be approximated by placing a single GRBF unit
and broadening its variance o;; along the drain to
the source input voltage direction. Therefore, the
selection of the GRBF units one by one let us
take full advantage of their semilocal approxima-
tion capabilities.

The algorithm employed to model Ids deriva-
tives behavior can be summarized in the following
steps:

1. Initialize the output of the model G*(V,) =
©,...,0); for p=1,..., P. All along this
algorithm, G"(Vp) = [g{(Vp),..., gn(VD)]
denotes the output of the network after
locating the nth neuron.

2. Initialize the learning parameters for the
variances and the centers, ng and 7., Te-
spectively; the final number of neurons N,
and the standard deviation of the GRBF
units according to the input data spread.

3. Forn=1to N,

3.1. Obtain the output error for the given
model and the training data set:

E=Y ¥ (5(V,) — g7 'v))s
r k

k=1,...,M and p=1,..., P. (10)
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3.2. Locate the new (nth) GRBF unit to get
a maximum decrease in the error and as-
suming a fixed value for its variance. As the
number of input data patterns is small,
an exhaustive search for the center can be
applied.

3.3. Update all the variances and centers by
applying a gradient descent algorithm:

JE )
o-ijk+1)=0-ijk)_ns'ﬁ’ i=1,...,n,
ij
(11)
JE
IL’,}c+1) — /“Li}c) — nc——-a“ s [ = 1’ , M,
ij
(12)

where the gradients are given by (7) and (8),
respectively.

The iterations are carried out until either
the error decreases below a threshold value,
or a maximum number of iterations is
reached.

3.4. Estimate the amplitudes of the global
GRBF network by solving the following lin-
ear least squares problem,

0,(V}) -+ 0,(V,) A A

Ol(vp) On(vp) )‘ln )‘Mn

Y1V} -+ yp (V)
= s , (13)
¥1(Vp) - ya (Vp)

where 0i(Vp) is the output of unit i for
pattern p, YAVp) = [y(Vp),..., yM(Vp)] is
the pth target output, and A,; is the ampli-
tude connecting the ith GRBF unit in the
hidden layer to the kth unit in the output
layer.

3.5. Obtain the new output of the GRBF
network for the input patterns, G*(V,), for
p=1,..., P.

End.
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IV. MESFETS AND HEMTS
MODELING RESULTS

The experimentally extracted Taylor-series coef-
ficients and the Ids DC value for a NE72084
MESFET and a DO2AH HEMT in their satu-
rated regions were employed to train the pro-
posed GRBF network in order to accurately model
the Ids(Vgs, Vds) nonlinearity for small-signal
IMD prediction. For the MESFET, Vdso was
swept from 3 to 6 V in steps of 0.25 V and Vgso
from —2V to 0 V with smaller steps of 0.05 V
due to the stronger nonlinear dependence of all
the outputs with this bias voltage, resulting in a
total of 533 input—output training patterns. In the
case of the HEMT, we varied Vdso between 1.5
and 3 V with 0.25 V steps, and Vgso between
—1.8 and 0.4 V with 0.04 V steps obeying to the
same reasons, here for a total of 392 patterns.

Three different neural network models were
constructed: the highly local RBF network, the
global MLP, and our GRBF network; in order to
evaluate their accuracy and their cost (basically
the number of parameters because the training
set was the same) for this particular problem. We
employed just one hidden layer; for N neurons in
this layer, and taking into account we want to
map G: R? - R', a GRBF function and an MLP
require 14N parameters, while 13N an RBF. The
initial variance for the GRBF was selected ac-
cording to the distance between the input pat-
terns, o;> = (0.025,0.1) for the MESFET and
a2 = (0.05,0.2) for the HEMT.

For evaluating the accuracy of each model, a
“signal to noise ratio (SNR)” was employed as a
figure of merit for each scalar output. Taking the
predominant third order term, Gm3, as an exam-
ple, its SNR would be defined as

2
Zp Gm3,p

G

SNR = 10log,, 5
m3,p)

, (14)

(G

P m3,p -

where p indexes the training patterns, G2
the desired output, and G2
network estimates.

In Figures 6-8 we represent the MESFET and
HEMT transconductance derivatives surfaces as
obtained at the network outputs for an RBF with
N = 10, an MLP and the proposed GRBF both
with N = 8. The higher number of neurons in the

3,p 18

3,p is the output the
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Figure 6. RBF network modeled surfaces. Gm1 (a) and Gm3 (b) for a NE72084. Gm1 (¢)

and Gm3 (d) for a DO2AH.

RBF network responds to the fact we want to
compare accuracy for a similar number of param-
eters. These surfaces can be qualitatively com-
pared to the respective measured ones, previously
shown in Figure 5. While the MLP and GRBF
models, of a more global nature, seem to capture
the nonlinear behavior of these parameters, the
highly local nature of the RBF solution deter-
mines excessively hilly output functions.

In Tables I and II we provide a more detailed
quantitative comparison. First of all, it is signifi-
cant that the GRBF network provides the best
results for a small number of model parameters,
and consequently a reduced cost. Second, taking
into account the differences in SNR, achieving a
similar performance would only be possible with
an MLP of nearly twice as many parameters as
the GRBF, and with an even higher amount for
the RBF in the MESFET. These differences are

not so marked in the HEMT where even the first
order parameters, Gml and Gds have a strong
nonlinear dependence with Vgso.

V. INTERMODULATION DISTORTION
PREDICTION VALIDATION

The accuracy of this approach was only justified
by the critical behavior of the C/I ratio in small-
signal regime with both the bias voltages and the
load condition in these devices. We are then
forced to validate it with measurements and cal-
culations of this linearity figure of merit for typi-
cal class A amplifiers applications.

For the bias dependence, we will show the
predicted C/I behavior vs. Vgso at Vdso =5 V
in the saturated region of the characterized
NE72084 MESFET, and at Vdso = 3 V for the



DO2AH HEMT in the same region. A standard
two-tone excitation experiment was carried out
with input frequencies of 2 and 2.01 GHz and
50 Q load condition for an input power level per
tone of —20 dBm well below the 1 dB compres-
sion point where Volterra calculations are valid.
In Figure 9 we present the evolution of both the
output power (Pout) and the C/I ratio vs. Vgso,
making use of the experimental derivatives de-
scription and the GRBF network for both devices.
We should remark about the good agreement in
the results, as well as the reproduction of the
optimum C/I point (sweet-spot) for the MESFET
in its high gain region. Some differences appear
in the pinch-off region where the derivatives have
smaller values and the relative errors are greater,
this bias region is however of low interest for the
application of our concern.

vgso V]

(b)

Vdso [V]

Vgso [V]

TRy
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On the other hand, simulations of load-pull
IMD behavior in Figure 10 for the MESFET
confirm previously published results [5, 23] about
the existence of optimum load values for high
C/1 and high Pout trade-offs in highly linear
designs. We employed a two-tone excitation at 10
and 10.01 GHz well in the microwave region
trying to assure unconditional stability. As the
Cgs(Vgs) contribution could be important at these
frequencies, we employed its measured second
and third order derivatives at this particular bias
point, Vgso = —0.5 Vand Vdso =5 V.

The excellent load-pull description supports a
precise reproduction not only of the predominant
transconductance derivatives, but also of the cross
terms responsible for this peculiar C /1 behavior.
This feature is hardly obtained with most of the
analytical models, validating a neural network

©

Vdso [V}

(@

DO2AH MLP

05 15

Vdso [V]
Vgso V]

Figure 7. MLP network modeled surfaces. Gm1 (a) and Gm3 (b) for a NE72084. Gm1 (c)

and Gm3 (d) for a DO2AH.
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Figure 8. GRBF network modeled surfaces. Gm1 (a) and Gm3 (b) for a NE72084. Gm1 ()

and Gm3 (d) for a DO2AH.

TABLEIL Comparison of Neural Networks Modeling Results for a NE 72084 MESFET: GRBF (N = 8), RBF (10),

and MLP (8)°

Npar Ids Gml Gds Gm?2 Gmd Gdz2 Gm3 Gm2d Gmd2 Gd3
GRBF (8) 112 22.8 272 254 17.0 17.9 19.1 185 18 16.09 15.7
RBF (10) 130 12.0 12.0 12.3 6.4 6.3 10.7 23 35 3.6 9.5
MLP (8) 112 20.0 30.0 24.6 13.5 13.6 13.5 8.9 9.9 10.7 14.0

*The first column indicates the number of parameters for each model, the following 10 columns show the SNR in dB for each

output of the model.

TABLEIL Comparison of Neural Networks Modeling Results for a DO2AH HEMT: GRBF (N = 8), RBF (10),

and MLP (8)*

Npar Ids Gml Gds Gm?2 Gmd Gd2 Gm3 Gm2d Gmd2 Gd3
GRBF (8) 112 243 29.8 28.7 24.1 26.2 215 175 16.0 16.7 10.8
RBF (10) 130 18.4 19.8 20.7 14.6 13.9 19.8 145 139 14.8 15.0
MLP (8) 112 247 30.5 274 19.8 24.6 21.1 16.2 14.1 13.0 13.1

*The first column indicates the number of parameters for each model, the following 10 columns show the SNR in dB for each

output of the model.
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Figure 9. Two-tones excitation Pout (@f1 = 2GHz) and C/1 (@2f1 — 2 = 1.99 GHz) vs.
gate to source bias. Pout (a) and C/I (b) for a NE72084. Pout (c¢) and C/I (d) for a DO2AH.
(open circles) With the experimental coefficients, (solid line) GRBF network model.

approach when such an accurate IMD control is
needed.

VL. CONCLUSIONS

A neural network model for the nonlinearity
Ids(Vgs, Vds), that basically determines the IMD
behavior of MESFETs and HEMTss in their satu-
rated region, has been presented for an accurate
description of this relevant nonlinear distortion.
The proposed GRBF network allows different
variances for each dimension of the input space,
thus taking advantage of the soft nonlinear de-
pendence of the Taylor-series coefficients with
the drain to source bias voltage (a sort of knowl-
edge-based neural network). This results in a
parsimonious and accurate model adequate for
small-signal IMD calculations with a Volterra-
series simulator.

Our GRBF network requires a reduced num-
ber of parameters when compared to the RBF
and MLP networks for this particular problem.
The agreement in C/I prediction with bias and
load supports its robust performance for the
small-signal quasilinear description of this nonlin-
earity.

The Cgs(Vgs) minor nonlinearity power-series
expansion could be also described by this tech-
nique using a similar procedure. Linear region
description where the coefficients are strongly
dependent of both bias voltages could be incorpo-
rated with an analogous approach and a region
description as the one proposed in [15].
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