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ABSTRACT

We propose a novel semi-supervised classifier for handwritten digit
recognition problems that is based on the assumption that any digit
can be obtained as a slight transformation of another sufficiently
close digit. Given a number of labeled and unlabeled images, it is
possible to determine the class membership of each unlabeled image
by creating a sequence of such image transformations that connect it,
through other unlabeled images, to a labeled image. In order to mea-
sure the total transformation, a robust and reliable metric of the path
length is proposed, which combines a local dissimilarity between
consecutive images along the path with a global connectivity-based
metric. For the local dissimilarity we use a symmetrized version of
the zero-order image deformation model (IDM) proposed by Key-
sers et al. in [1]. For the global distance we use a connectivity-based
metric proposed by Chapelle and Zien in [2]. Experimental results
on the MNIST benchmark indicate that the proposed classifier out-
performs current state-of-the-art techniques, especially when very
few labeled patterns are available.

Index Terms— Semi-supervised classification, handwritten
character recognition, connectivity, deformation models.

1. INTRODUCTION

For many classification problems, obtaining labeled training data is
a time-consuming and expensive task, whereas large unlabeled data
sets are typically available. This is particularly true in many prob-
lems involving high-dimensional data, e.g., handwritten digit recog-
nition [1] or protein classification [3]. Semi-supervised classifica-
tion algorithms exploit this setting by making efficient use of both
labeled and unlabeled data [4, 5]. The success of these techniques re-
lies mainly on two key assumptions: i) two data points are similar to
each other if they are connected by a high-density region (cluster as-
sumption), and ii) the input data lie on or close to a low-dimensional
manifold (manifold assumption).

Most semi-supervised classifiers start by constructing an undi-
rected weighted graph on the labeled and unlabeled data points,
where the edge weights measure the pairwise similarities, and then
apply different approaches to design a global classifying function
with some desirable properties (e.g., smoothness, robustness, etc.).
Typically, they use a local dissimilarity measure based on the Eu-
clidean distance (see for instance [4, 6, 7, 8, 9]), regardless of the
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Fig. 1. By applying a short sequence of small transformations
it is possible to transform any pattern into another pattern of the
same class. All patterns of the sequence belong to the same low-
dimensional manifold.

particular application considered. Their emphasis is on how a suit-
able global metric or function should be estimated from that graph,
and to this end they proposed quite sophisticated methods.

Nevertheless, it is well-known that all pairwise Euclidean dis-
tances seem to be similar in high-dimensional data sets. This obser-
vation is sometimes referred to as the “concentration phenomenon”
in the pattern recognition literature [10]. The limitations of the Eu-
clidean distance can be illustrated with a simple example. Suppose
we are given two images that are identical except for the fact that
one image is shifted a few pixels to the right. Although these im-
ages are almost identical, the Euclidean distance between vector-
representations of these images will indicate a high dissimilarity.
Hence, in image classification problems it seems necessary to use
distances that are invariant to certain transformations of the input.

In this paper we translate most of the complexity to the com-
putation of the local dissimilarity measure. This metric should be
problem-dependent to better characterize the data manifold struc-
ture at a local scale. In particular, it should be less sensitive to small
image transformations (e.g., translations, rotations, scaling and other
small deformations) and to noise. We use a symmetrized version of
the zero-order image distortion model (IDM) as a local dissimilarity
measure, originally proposed by Keysers et al. in [1] for supervised
classification, because of its good tradeoff between computational
simplicity and matching flexibility. This allows us to simplify the
global metric as a shortest path based metric, which can be imple-
mented using Dijkstra’s algorithm. As we will show, this concep-
tually simple procedure provides very good results in problems that
involve series of spatially related images.

The remainder of the paper is organized as follows. In Section
2 we review the semi-supervised classification setting and describe
the main assumptions on which the proposed method is based. Sec-
tion 3 describes the local and global similarity measures, which form
the basis of the proposed semi-supervised classifier and Section 4 il-
lustrates the obtained results on the MNIST database. Finally, we
summarize the main conclusions of this work in Section 5.
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2. PROBLEM SETTING

Consider a classification problem with N classes {C1, . . . , CN}. In
a semi-supervised classification setting, we are given a labeled data
set containing m patterns, Xl = {xi ∈ R

d | i = 1, . . . ,m} with
class labels Yl = {yi ∈ {1, 2, . . . , N} | i = 1, . . . ,m}, and an
unlabeled data set containing n patterns, Xu = {xj ∈ R

d | j =
m + 1, . . . ,m + n}. We assume that all input patterns Xl

⋃
Xu

have been drawn independently and identically distributed (i.i.d.)
from some unknown marginal data distribution P (x). This is the
conventional setting assumed in most semi-supervised classification
techniques described in the literature [4]. Furthermore, we consider
semi-supervised classification problems wherem is very small com-
pared to the total number of available unlabeled patterns, n.

The proposed approach relies on the following assumptions:

Assumption 1 If two patterns xi and xj belong to the same class
(yi = yj), there exists a sequence of k consecutive geometric trans-
formations

xi = Tk ◦ Tk−1 ◦ · · · ◦ T2 ◦ T1(xj) (1)

that is both short (meaning that the total number of transformations
k is small), and well connected (meaning that the distance between
two consecutive patterns along the path is also small). These se-
quences are referred to as consistent.

Assumption 2 If two patterns xi and xj belong to different classes
(yi �= yj), all possible sequences of transformations between xi

and xj are either very long (meaning that k � 1), or are not well
connected (meaning that the connecting path contains at least one
weak link formed by two distant patterns).

As a result of Assumption 1, each pattern can be obtained as a
sequence of connected image transformations from any other pat-
tern of the same class (see Fig. 1), and all patterns that compose a
consistent sequence belong to the same class. These transformations
should have limited flexibility, otherwise any two patterns could be
transformed one into each other by a single transformation. Under-
lying Assumption 1 is the idea that all patterns of the same class lie
on a low-dimensional manifold. On the other hand, Assumption 2 is
closely related to the idea that the classes form clusters that are sep-
arated by zones of low density. In other words, Assumptions 1 and
2 are somewhat equivalent to the standard low-dimensional mani-
fold and cluster assumptions that are usually considered in semi-
supervised settings. However, as we will see, the idea of connected
transformations brings a new perspective on how these assumptions
should be exploited in an efficient way, especially when only a few
labeled data are available.

3. PROPOSED CLASSIFIER

According to the model of connected transformations given by Eq.
(1), a global path-based distance measure should be computed by
taking into account the whole sequence of local deformations or dis-
similarities, starting from an unlabeled pattern and reaching a la-
beled one. Therefore, the proposed classifier requires defining three
stages or blocks: i) a local pairwise dissimilarity metric ds, ii) a
global distance dc that measures the length of the path through all
connected image transformations, and iii) a final classification step
based on the proposed global distance.

In this paper we mainly focus on the first two stages that provide
us with a robust density-based metric for semi-supervised classifica-
tion. In particular, once a suitable distance has been computed, any

Algorithm 1 Image deformation model (IDM) dissimilarity [1].
input: images a and b.
initialize: d = 0
for each p = 1, 2, . . . , P ; q = 1, 2, . . . , Q do

d = d+minr∈{1,...,P}
⋂
{p−w,...,p+w}

s∈{1,...,Q}
⋂
{q−w,...,q+w}

‖apq − brs‖
2

end for
output: didm(a,b) = d.

of the nearest neighbor-based techniques can be used for classifica-
tion. For simplicity we choose the 1-NN classifier that selects the
class of the closest labeled example xnn ∈ Xl, which is found as

xnn = argmin
xi∈Xl

dc(xj ,xi). (2)

In the following we first review the image deformation model of
[1] which is used to compute the (local) similarity between image
pairs, and then the (global) ρ-connectivity distance, as proposed in
[2], which allows to allows to find optimal paths of transformations.

3.1. Dissimilarity based on local deformations

We are interested in a dissimilarity measure that allows to compen-
sate for small geometric intra-class deformations while retaining the
larger inter-class differences. The literature on image deformation
models is vast, from elastic matching techniques [11] to shape con-
tour models [12]. Apart from being flexible enough (but not too
flexible), the chosen transformation model should be computation-
ally efficient. As a good tradeoff between all these requirements, we
use the image distortion model (IDM) proposed by Keysers et al. in
[1]. This model has a very simple implementation and it has been
applied successfully in supervised handwritten digit recognition.

Let us denote two images taken from the complete data set as
a = {apq} and b = {bpq}. The pixel positions are indexed by
p = 1, . . . , P and q = 1, . . . , Q. In case the images differ in
size, a scaling is taken into account (see [1] for details). In gen-
eral, apq,bpq ∈ Rh are hyperpixels that can represent grey values
(h = 1), color values (h = 3), the horizontal and vertical local im-
age gradients (h = 2), or a larger pixel context (for instance, h = 18
if the 3× 3 pixel contexts of the local gradients are considered).

A summary of the IDM computation is provided in Algorithm 1.
Specifically, for each hyperpixel apq of image a, IDM aims to find
the optimally corresponding hyperpixel brs of image b in a neigh-
borhood limited by a warp range w. The IDM dissimilarity is then
calculated as the conventional Euclidean distance between the image
a and the transformed image b. Since the optimal warping of one
hyperpixel does not affect the optimal warping of its neighboring hy-
perpixels, IDM is referred to as a zero-order model. Models of first
and second order take into account one or two levels of neighboring
pixels, which guarantees a smoother warping, at the cost of a much
higher computational burden.

An important observation on IDM is that it is not a symmet-
ric proximity measure, and therefore it cannot be used directly as a
distance function. Furthermore, as preliminary experiments on the
MNIST data set pointed out, the differences between didm(a,b) and
didm(b, a) can be significant for certain pairs of examples, indicat-
ing that IDM is a less reliable dissimilarity measure for some pat-
terns. Motivated by these observations, the distance measure used
as a local dissimilarity in the proposed method consists of a “worst
case” symmetric IDM, specifically

ds(xi,xj) = max (didm(xi,xj), didm(xj ,xi)) . (3)
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Algorithm 2 Connected image transformations (CIT) classifier.
input: data set Xl with labels Yl, and data set Xu.
Construct X = Xl

⋃
Xu.

Calculate hyperpixels of all xi ∈ X .
for each xi ∈ X , xj ∈ Xu, do
Calculate IDM dissimilarity ds(xi,xj) with (3) and Alg. (1).

end for
for each xj ∈ Xu, do
Compute closest labeled pattern xnn ∈ Xl with (4) and (2).
Assign label ynn of closest labeled pattern xnn to xj .

end for
output: Estimated labels Ŷu corresponding to Xu.

3.2. The ρ-connectivity global distance measure

In order to find optimal paths of transformations, we define pi,j to
be a path of length r = |pi,j | that connects xi with xj through an ar-
bitrary sequence of intermediate patterns: pi,j = {xi,xi2 , . . . ,xj}.
All patterns composing a given path are in Xl

⋃
Xu without dis-

tinguishing between labeled and unlabeled patterns. We use the
notation pi,j(k) to denote the k-th pattern in the path, therefore
pi,j(1) = xi and pi,j(r) = xj .

LetPi,j denote the set of all paths starting at xi and ending at xj .
The original connectivity distance between xi and xj , proposed in
[13] as a mean to improve clustering algorithms, was defined as the
length of the longest link of the shortest path joining the two points.
In this way, points that can be connected through high-density re-
gions are close to each other. In order to increase noise robustness,
this measure was subsequently modified in [2] to accumulate the
weighted dissimilarities between points along the shortest path. This
modified connectivity distance, denoted here as “ρ-connectivity”, is
defined as

dc(xi,xj) =
1

ρ
ln

⎛
⎝1 + min

pi,j∈Pi,j

|pi,j |−1∑
k=1

(
e
ρds(xk,xk+1) − 1

)⎞⎠ ,

(4)
where ds(xk,xk+1)measures the dissimilarity between patterns xk

and xk+1. In words, (4) estimates the “optimal” path joining xi and
xj as a weighted sum of the dissimilarities between pairs of consec-
utive points along such a path. The parameter ρ controls how these
small deformations must be weighted along the path: for ρ = 0 we
simply obtain the shortest path along all deformations without any
weighting, while for ρ → ∞ only the worst link (i.e., the largest
deformation) produced along the path is considered. A proper selec-
tion of ρ yields a trade-off between these two extremes. Specifically,
a value of ρ < ∞ allows to denoise the metric at a global scale and
increases its robustness against outliers and bridge points. This is
the principal parameter of the proposed classifier and, in general, the
optimal value of ρ is problem-dependent.

3.3. Algorithm summary and implementation

An overview of the proposed CIT algorithm is given in Algo-
rithm 2. In terms of computational cost, the bottleneck operation
of the proposed method is the pattern matching procedure of IDM.
Taking into account that the local dissimilarity is never computed
between pairs of labeled data, the total amount of data pairs in this
step is n2 + 2mn. Each of these calculations requires to search a
grid of (2w + 1)2 neighbors for each of the p · q hyperpixels of the
reference image. Since m 	 n, the computational complexity of
this step can be approximated as O(n2 · pq · w2h).
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10−2

10−1

100

number of labeled data points per class
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LDS
IDM
CIT

Fig. 2. Results on the MNIST data set using different numbers of
labeled patterns and 1000 unlabeled patterns.

4. EXPERIMENTAL RESULTS

In this section we compare the results of four classification algo-
rithms on the MNIST database. The MNIST database is the standard
benchmark for handwritten character recognition1. All images con-
tained in this database are gray-valued, sized 28× 28, and they have
been preprocessed by normalization and centering. The database
contains a very large number of training and test data from 10 digit
classes, 60000 and 10000 data points, respectively.

State-of-the-art supervised classification techniques obtain clas-
sification errors well below 1%when trained on all available MNIST
training data. In particular, the k-NN classifier using IDM dissimi-
larities [1] obtains 0.54% error rate. In order to emphasize the capa-
bility of semi-supervised algorithms to exploit the information con-
tained in the unlabeled data, we only use a very low number of la-
beled data in these experiments, together with a significant number
of unlabeled data. The applied algorithms are the following:
1. MSA: The “Manifold Structure Approximation” technique
from [9] aims to approximate each class as a low-dimensional
manifold. This is achieved by calculating a low-rank approx-
imation of the k nearest neighbor adjacency graph, whose
weights are 1 between nearest neighbors and 0 otherwise.

2. LDS: The “Low Density Separation” algorithm from [2] in-
troduces the ρ-connectivity distance to detect clusters that are
separated by regions of low density, using the Euclidean dis-
tance as a local dissimilarity measure. It further exploits the
unlabeled data by applying a transductive SVM classifier.

3. IDM: In [1] the “Image Deformation Model” dissimilarity
measure was applied to construct a 1-NN classifier. We in-
clude its results to demonstrate that this supervised classifier
is able to outperform some semi-supervised classifiers when
only very few labeled patterns are available.

4. CIT: The proposed “Connected Image Transformations” clas-
sifier as described in Algorithm 2.

In Fig. 2 the classification results of the four algorithms are
shown for varying numbers of labeled data patterns per class. These
patterns were chosen randomly from the available training data for
each class. In addition, 1000 unlabeled data patterns were used that

1http://yann.lecun.com/exdb/mnist.
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Fig. 3. Error probabilities obtained by applying the LDS and CIT
classifiers with different values of ρ on the MNIST data set. For
ρ = 0 the used distance is the shortest path length, while for ρ = ∞
the distance is the original connectivity distance from [13].

were chosen randomly from the entire unlabeled data pool. The pa-
rameters used for each algorithm are given in Table 1. The results
were averaged out over 10 Monte-Carlo simulations. Using only
m = 10 labeled data per class, CIT obtains an error rate of 4.64%
here. To obtain the same error rate, IDM requires at least 3 times as
many labeled patterns, while MSA and LDS do not even reach this
rate in the tested range.

MSA k = 8, p = 0.2m (as in [9])
LDS ρ = 4, rest as in [2]
IDM h = 18, w = 2 (as in [1])
CIT h = 18, w = 2, ρ = 40

Table 1. Parameters used for each algorithm.

As mentioned earlier, the principal parameter of the CIT classi-
fier is ρ. This value depends on the particular data set and can be
selected using cross-validation techniques, for instance. However,
we have observed experimentally that optimal performance is typi-
cally achieved for a wide range of values. Fig. 3 shows the error rate
versus ρ for the MNIST database, obtained for 10 labeled patterns
per class and 1000 total unlabeled patterns. A similar behavior has
been observed for other numbers of labeled and unlabeled patterns.
In general, higher values of ρ assign more confidence to the weakest
link in a path, while lower values can be used to average out several
less reliable connections. This explains the difference between the
optimal ρ for LDS, which uses an Euclidean local dissimilarity mea-
sure, and for CIT, which is based on the IDM measure. Finally, the
paths plotted in Figures 4 and 5 allow to analyze the decisions taken
by the proposed CIT classifier more closely.

5. CONCLUSIONS

We have proposed a semi-supervised handwritten digit classifier that
is capable of operating with only very few labeled data available, us-
ing a distance measure that combines a local dissimilarity measure
with a global connectivity-based metric. In experiments with subsets
of the MNIST database, the presented classifier significantly outper-
forms other state-of-the-art semi-supervised algorithms.

Although the proposed classifier is easy to implement, it requires
to calculate the IDM dissimilarity between all data points, which can
be computationally costly. Therefore, future research topics include
improving this local metric in terms of computational cost and accu-
racy, and also performing tests on other image databases.

0.07 0.10 0.08 0.07 0.42 0.31 0.20 0.21 0.20

0.28 0.22 0.16 0.28 0.17 0.24 0.23 0.20

Fig. 4. Examples of paths followed for correctly classified digits.
Each path starts at the unlabeled image to be classified, and after
following several connections (other unlabeled images) it reaches
the closest labeled image (depicted on a white background).

0.34 0.16 0.26 0.20 0.21 0.21 0.15

Fig. 5. Examples of paths followed for incorrectly classified digits.
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