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ABSTRACT

Cubic spline interpolation is commonly applied in signal recon-
struction problems. However, overshooting between samples is
normally observed, and typically the reconstructed signal does not
preserve the statistical properties of the original data neither other
desired properties such as monotonicity or convexity. These unde-
sirable effects are minimized in the case of piecewise linear (PWL)
interpolation, of course with a discontinuous derivative. In this pa-
per we use a parameterized family of splines, named αsplines , that
allows a smooth transition from PWL (α = 0) to cubic spline in-
terpolation (α = 1). Closed-form expressions that relate α to the
smoothness and variance of the interpolation are derived. More-
over, a fast interpolation technique based on digital filtering can be
applied.

1. INTRODUCTION

The problem of fitting a smooth function to a given data set is
commonly solved by using a cubic spline based interpolation [1].
However, in many applications this solution is not adequate, due
to the large overshoots that cubic splines may undergo between
data samples [2]. This overshooting also implies other undesir-
able features: the interpolation may not conserve the monotonicity
of the data samples [3], or the statistical properties of the recon-
structed signal (for instance, its power) are not consistent with the
estimated variance of the original data set [4]. Of course, all these
drawbacks disappear in the case of piecewise-linear (PWL) inter-
polation, but with a discontinuous derivative.

In this letter we use a family of spline interpolants based on
B-spline convolution kernels [5] that depend on a single parameter
α: when α equals zero we obtain the PWL solution, whereas if
α is one we get the cubic spline interpolation. For intermediate
values of the parameter we get solutions that are in between both
approaches, trading off between the optimal curvature of the cubic
spline interpolations and the desirable properties of the solutions
closer to the PWL interpolation.

We will derive closed-form expressions for the smoothness
and the variance of the interpolation as a function of α and the
original data set. This expression allows seeking the value of the
parameter that fits the desired solution.

In the next section, we will present the αspline kernel, its prop-
erties and the interpolation techniques. Section 3 and section 4
evaluate the smoothness and variance of the αspline interpolation,
respectively, and section 5 presents some simulations and practical
examples. Finally, the main conclusions are shown in section 6.

This work was supported by MCYT (Ministerio de Ciencia y Tec-
nologı́a) under grant TIC2001-0751-C04-03.

2. αSPLINES

2.1. αspline Kernel

It is well known that a B-spline of order n can be generated by
convolving (n + 1) times a centered normalized rectangular pulse
[6, 7]. In [5] a new family of spline kernels, called spline bi-
kernels, are constructed convolving two B-splines of degrees n1,
n2 and witdths h1, h2. We propose in this paper a particular case
of those bi-kernels and to use them in order to obtain an adecuate
interpolation solution in terms of smoothness and variance.

We call αspline of parameter α, denoted by βα (x), to the con-
volution of two unit-width centered normalized rectangular pulses,
β0 (x) = pα (x) |α=1, and two α-width centered normalized rect-
angular pulses, pα (x):

βα (x) = β0 (x) ∗ pα (x) ∗ β0 (x) ∗ pα (x) , (1)

where

pα (x) =

{
1
α

, |x| ≤ α
2
;

0 , |x| > α
2
.

Hence, the following expresion for the αspline kernel is obtained:

βα (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − |x| − 1
3α2 (α − |x|)3, x ∈ X1;

1 − |x|, x ∈ X2;
(α+1)(3−(α−2)2−3x2)

6α2 + (α−1)2+x2

2α2 |x|, x ∈ X3;

1 − |x| + 1
6α2 (α − 1 + |x|)3, x ∈ X4;

1
6α2 (α + 1 − |x|)3, x ∈ X5;

0, x ∈ X6;

where X1 = {|x| < min(α, 1 − α)}, X2 = {α ≤ |x| < 1 − α},
X3 = {1 − α ≤ |x| < α}, X4 = {max(α, 1 − α) ≤ |x| < 1},
X5 = {1 ≤ |x| < 1 + α}, and X6 = {|x| ≥ 1 + α}.

Figure 1 depicts βα (x) for different values of α. It is clear
that if α = 0 the αspline kernel is identical to B-spline of order
one, β1 (x) . On the other hand, when α = 1 the αspline kernel
becomes the cubic B-spline, β3 (x) . Intermediate values of α
provide base functions in between both solutions; i.e., controlling
the curvature and the closeness to the linear solution. In any case,
except when α = 0, the interpolation maintains the continuity of
the first and second derivatives.

2.2. αspline Interpolation

The αspline representation, Sα(x), of a function, f(x), is

Sα(x) =

+∞∑
k=−∞

c[k]βα (x − k) , (2)
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Fig. 1. αspline kernel, βα (x) , for several values of α.

where βα (x − k) is the k-th αspline kernel, and c[k] are the
coefficients that meet the interpolatory condition

Sα(k) = f(k), ∀ k ∈ Z.

The value of the coefficients c[k] can be evaluated in a similar
way than the cubic spline interpolation coefficients [1]; i.e., by
solving a tridiagonal matrix using standard numerical techniques.
Then, the N point interpolation of the function f(x), assuming
periodical boundary conditions, requires to solve⎡

⎢⎢⎢⎢⎢⎣

a b 0 0 . . . 0 b
b a b 0 . . . 0 0
0 b a b . . . 0 0
... · · ·

...
b 0 0 0 . . . b a

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

c[1]
c[2]
c[3]
...

c[N ]

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

f(1)
f(2)
f(3)

...
f(N)

⎤
⎥⎥⎥⎥⎥⎦
(3)

where

a = βα (x)|x=0 =
3 − α

3
,

b = βα (x)|x=+1 = βα (x)|x=−1 =
α

6
.

Digital filter techniques can also be applied to solve this inter-
polation problem [6, 8] as Figure 2 shows. First, it is necesary to
define the discrete αspline kernel, bα [k] ,

bα [k] = βα (x) |x=k =
α

6
δ[k + 1] +

6 − 2α

6
δ[k] +

α

6
δ[k − 1],

with z transform

Bα(z) =
(
αz + (6 − 2α) + αz−1

)
/6.

Its inverse is given by

Dα(z) = (Bα)−1 (z) =
−6z1

α

(
1

1 − z1z−1

) (
1

1 − z1z

)
,

(4)
with

z1 =
α − 3 +

√
9 − 6α

α
.

�
f [k]

d+
α [k] �

c+[k]
d−

α [k] �
c−[k] − 6z1

α
�

c[k]
βα (x − k) �

Sα(x)

Fig. 2. αspline interpolation scheme.

Therefore, the direct filter, dα [k] , which provides the coefficients
c[k] from the function values f(k), can be obtained by inverse z
transform of (4)

dα[k] =
(1 − z1)

(z1 + 1)
z
|k|
1 , (5)

and it can be factorized in two digital filters: one causal, d+
α [k],

and one anticausal, d−
α [k],

d±
α [k] = z±k

1 u[±k].

Therefore, (5) can be rewritten as

dα[k] =
−6z1

α
d+

α [k] ∗ d−
α [k].

Finally, the N point αspline interpolation of the function f [k],
with periodical constrains, can be solved in a recursive and effi-
cient way that requires only (5N − 2) operations:

c+[0] =
1

1 − zN
1

(
f [0] +

N−1∑
k=1

zk
1f [N − k]

)
;

c+[k] = f [k] + z1c
+[k − 1], for k = 1, 2, . . . , N − 1;

c−[N − 1] =
1

1 − zN
1

(
c+[N − 1] +

N−2∑
k=0

zk+1
1 c+[k]

)
;

c−[k] = c−[k + 1] − z1c
+[k], for k = N − 2, . . . , 0;

c[k] =
−6z1

α
c−[k], for k = 0, 1, . . . , N − 1.

3. αSPLINE INTERPOLATION SMOOTHNESS

The smoothness of a 1D function in a closed interval [a, b] is de-
fined as the inverse of the strain energy, that can be evaluated as

EL =

∫ b

a

[f (2)(x)]2dx.

where f(2)(x) denotes the second derivative of f(x). This value
is minimized by the cubic spline interpolation [1], and we will
show that it grows monotonically with the smoothness parameter
of the αspline interpolation. We consider the interpolation of N
samples representing M periods of a sinusoidal function, f(x),
with discrete frequency ω0 = 2π/T0 = 2πM/N :

f [k] = A sin (ω0k + Φ0) = A sin

(
2π

M

N
k + Φ0

)
, (6)

where 0 ≤ M ≤ N − 1, and 0 ≤ ω0 ≤ 2π.
Then, the strain power of the αspline interpolation can be eval-

uated as

PS (Sα(x)) =
1

MT0

∫
MT0

(
S(2)

α (x)
)2

dx. (7)

Due to the linearity and invariance of the interpolatory process
(see Figure 2) the second derivative of the αspline interpolation is

S
(2)
α (x) =

+∞∑
k=−∞

c[k]β(2)
α (x − k) =

+∞∑
k=−∞

c(2)[k]
1

α
∆

(
x

α

)
,

II - 598

➡ ➡



where ∆ (x) represents the triangular pulse function:

∆ (x) = βα (x) |α=0 =

{
1 − |x|, |x| < 1;

0, |x| ≥ 1;

and c(2)[k] the discrete-time second difference of the αspline co-
efficients

c(2)[k] = c[k] ∗ h2[k] = f [k] ∗ dα[k] ∗ h2[k],

where h2 = δ[k + 1] − 2δ[k] + δ[k − 1] is the second order
derivative filter. Since the input signal, f [k], is sinusoidal we can
write

c(2)[k] = f [k] · Dα(z) · H2(z)|z=ejω0

= A sin (ω0k + Φ0)
3

3 + α(cos ω0 − 1)
(2 cos ω0 − 2).

Then, remembering the periodical boundary conditions, we
obtain

PS (Sα(x)) =
1

N

∫
N

[
N∑

k=1

c(2)[k]
1

α
∆

(
x − k

α

)]2

dx,

and, after some algebra, we can express the strain power of the
αspline interpolation of a sinusoidal signal as

PS (Sα(x)) =
A2

2

24

α

(
cos ω0 − 1

3 + α(cos ω0 − 1)

)2

· G(α, ω0), (8)

where

G(α, ω) =

⎧⎨
⎩

1, 0 ≤ α ≤ 1/2;

1 +
(2α − 1)3

2α3
cos ω, 1/2 < α ≤ 1.

It is clear from (8) that the strain power of a unit power sinu-
soidal signal can be evaluated as a function of its frequency, ω, and
the smoothness parameter, α, using

PS (α, ω) =
24

α

(
cos ω − 1

3 + α(cos ω − 1)

)2

· G(α, ω). (9)

Now we consider the αspline interpolation of an arbitrary se-
cuence, f [k], of length N , which discrete Fourier transform is

F [n] =
N−1∑
k=0

f [k]e−j2πnk/N ,

where ω = 2πn/N is the discrete frequency. Due to the orthog-
onalty of the sinusoidal terms, the strain power can be evaluated
as

PS =
1

N2

N−1∑
n=0

|F [n]|2 PS (α, ω = 2πn/N) (10)

4. αSPLINE INTERPOLATION VARIANCE

The variance of the αspline interpolation of a sinusoidal function,
(6), can be evaluated using (2), as

Var (Sα(x)) =
1

MT0

∫
MT0

(Sα(x))2 dx

=
1

N

∫
N

(
N∑

k=1

c[k]βα (x − k)

)2

dx.

If we take into account the compact support of the base func-
tion, βα (x), and the periodical constrains, we obtain the variance
as a function of α and of the discrete frequency, ω,

Var (α, ω) = 9
I0 + 2I1 cos ω + 2I2 cos 2ω + 2I3 cos 3ω

[3 + α(cos ω − 1)]2
,

(11)
where

Ik(α) =

∫ ∞

−∞
βα (x)βα (x − k) dx

are polinomial functions of the parameter α.
Then, the variance of the αspline interpolation of an arbitray

secuence, f [k], can be evaluated as

Var =
1

N2

N−1∑
n=1

|F [n]|2 Var (α, ω = 2πn/N) . (12)

5. SIMULATIONS AND APPLICATION EXAMPLES

First, we have verified the validity of the smoothness (10) and vari-
ance (12) expressions by means of simulations. As an example, we
generate N = 512 samples of a zero-mean Gaussian signal, f [k],
and perform the αspline interpolation for two distinct smoothness
parameter values (α1 = 0.3, and α2 = 0.8). To estimate the
smoothness and the variance of the continuous-time signal, we
use a resampling factor of R = 1000; i.e., obtaining sequences
of L = N · R = 512000 samples. Figure 3 shows a section
of the interpolated signals and their respective second derivatives.
It becomes clear the greater smoothness of the interpolation with
α = 0.8 and the larger values of the second derivative of the inter-
polation with α = 0.3.

In a quantitative way, the variance and the strain power values
of the interpolated signals (evaluated as the quadratic mean of the
samples of the signal and of their second derivative respectively)
exactly match up with the values obtained from the analytical ex-
pressions; as Table 1 shows.

From (11), it can be stated that the variance of the αspline in-
terpolation monotonically increases with α for any value of the fre-
quency ω, except for a small region (0.7 < α < 1, and ω > 0.9π)

α = 0.3 α = 0.8

Signal using (12) 0.782817 0.867299
Variance simulated 0.782817 0.867299

Strain using (10) 17.46541 13.32091
Power simulated 17.46551 13.32093

Table 1. Analytical and simulated values of the variance and strain
power for two values of α.
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Fig. 3. αspline interpolation and its second derivative for α = 0.3
and α = 0.8.

where the variance is nearly constant. Similarly, from (9) we
can assert that the αspline interpolation smoothness increases (the
power strain decreases) with the parameter α for every ω. Again,
in a small region (0.5 < α < 0.65, and ω > 0.9π) the behaviour
is nearly constant. Therefore, in a practical situation where the
signal to interpolate is formed by multiple frequency components,
the variance and the smoothness of the αspline interpolation in-
creases as α increases. This fact allows us to look for the value of
α that matches the desired variance or smoothness of the interpo-
lated signal prior to performing the interpolation. We can obtain
the value α0 that produces the desired power strain, PS0

PS (α0) = PS0 ,

using standard numerical methods. Similar techniques can be used
to obtain the desired variance.

It is possible to use αsplines to interpolate non stationary sig-
nals and to control the variance or the smoothness of the solution
using distinct values of the parameter α in distinct regions of the
signal. This can be accomplished by applying

Sα(x) =

+∞∑
k=−∞

c[k]βαk (x − k) ,

and substituting every element (i, k) of the matrix in (3) with the
value βαk (i − k). An example of this application is shown in Fig-
ure 4, where three different values of α have been used to control
the highest value of the second derivative of the αspline interpola-
tion despite the nonstationary variance of the original samples.

6. CONCLUSIONS

A parameterized family of splines that allows a smooth transition
from the PWL to the cubic spline interpolations has been pre-
sented, and analytical expressions for the smoothness and the vari-
ance of the interpolation have been derived and validated through
simulations. The αspline interpolation problem can be solved us-
ing the standard matrix formulation or digital filter techniques (with
lower computational and memory cost).
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Fig. 4. Multiple α interpolation.

In applications where the variance or the smoothness is an im-
portant issue, the αspline interpolation can play an important role
by taking advantage of the a priori control over both characteris-
tics.

The extension of the αspline interpolation to a nonuniform
grid is straightforward, but some work must be still carried out.
Finally, there are some values of the smoothness parameter of the
αsplines that produce digital filters with roots of the form z1 =
2−n, allowing a fast hardware implementation of the interpolation
filters by means of simple bit shifts instead of multiplications.
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