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ABSTRACT

In this paper the problem of blind equalization of constant modulus
(CM) signals is formulated within the support vector (SV) regres-
sion framework. The quadratic inequalities derived from the CM
property are transformed into linear ones, thus yielding a quadratic
programming (QP) problem. Then an iterative reweighted proce-
dure is proposed to blindly restore the CM property. The tech-
nique can be generalized to nonlinear blind equalization using ker-
nel functions. We present simulation examples showing that linear
and nonlinear blind SV equalizers offer better performance than
cumulant-based techniques, mainly in applications when only a
small number of data samples is available, such as in packet-based
transmission over fast fading channels.

1. INTRODUCTION

In many communication systems, digital signals are transmitted
through an unknown bandlimited channel with severe intersymbol
interference (ISI). When a training sequence is not available, blind
equalization techniques must be used to recover the input signal.
These techniques exploit the knowledge about the statistical prop-
erties of the input signal or the structure of the channel [1].

A number of blind algorithms are based on stochastic gradient
descent (SGD) minimization (on-line techniques) of a specially
designed non-MSE cost function (to this class belongs the widely
used CMA [2]). Other algorithms collect a block of data (batch
techniques) and iteratively maximize a cost function based on cu-
mulants (for instance, the so-called “super-exponential” algorithm
by Shalvi and Weinstein [3]).

In burst data transmission over fast fading channels, blind al-
gorithms must be able to remove a sufficient level of ISI by using
a short block of data. In this case stochastic gradient descent algo-
rithms, which typically suffer from slow convergence, cannot be
employed. Similarly, batch cumulant-based algorithms also offer
poor performance in this situation.

In this paper we propose an alternative blind equalization tech-
nique for CM signals, which is expected to require fewer data sam-
ples than SGD and cumulant-based algorithms. Blind equalization
is formulated as a support vector (SV) regression problem [4], and
an iterative procedure, denoted as iterative reweighted quadratic
programming (IRWQP), is proposed to find the optimal regressor.
Support vector machines (SVM) have been successfully applied
to linear and nonlinear supervised equalization problems [5, 6, 7].
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In these works the equalization problem is viewed as a supervised
classification problem (with a training sequence), and the corre-
sponding SV classifier is derived. In this paper the problem is for-
mulated as a nonsupervised regression problem: only the knowl-
edge about the CM property of the input signal is exploited.

Recently, some techniques have been proposed that formulate
the blind equalization problem either as a quadratic problem with
binary constraints [8], or as a convex optimization method sub-
ject to some linear and semidefiniteness constraints [9]. In both
cases, the problem is solved via semidefinite programming (SP)
techniques. Similarly to these approaches, here we formulate a
convex problem that has a global optimal solution, but, in addi-
tion to this, the proposed solution has several attractive features:
it is derived from the powerful theory of SV machines; efficient
quadratic programming (QP) implementations can be used [11];
and, finally, it can be readily extended to nonlinear blind equaliz-
ers. Some simulation examples show the advantages of this tech-
nique in comparison to cumulant-based algorithms.

2. PROBLEM FORMULATION

We consider a baud-rate sampled baseband representation of the
digital communication system. A sequence of i.i.d. symbols be-
longing to a binary alphabet{sk ∈ ±1} is sent through a linear
time-invariant channel with coefficientshk (the extension to com-
plex modulations is straightforward). The resulting channel output
can be expressed as

xk =
∑

n

hnsk−n + ek,

whereek is a zero-mean white Gaussian noise.
The objective of a blind linear equalizer is to remove the ISI

at its output without using any training sequence. Typically, the
equalizer is designed as an FIR filter withM coefficientsw; then,
its output is given by

yk =

M−1∑
n=0

wnxk−n = wT xk.

The method proposed by Shalvi and Weinstein [3], which will
be used for comparison purposes, maximizes|Ky|, subject to the
constraintE

[
|yk|2

]
= E

[
|sk|2

]
, whereKy is the kurtosis ofyk

defined as

Ky = E
[
|yk|4

]
− 2

(
E

[
|yk|2

])2 −
∣∣E [

y2
k

]∣∣2 .
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3. SV REGRESSION FOR BLIND EQUALIZATION

Suppose we are given a set ofN observations at the channel out-
put: (x1, · · · ,xN ), wherexi = (xi, xi−1, · · · , xi−M+1)

T . Then
the goal of a linear blind equalizer is to restore at its output the CM
property of the digital communications signal, i.e.,(wT xi)

2 = 1,
for i = 1, · · · , N .

To apply the SVM concept, let us first introduce the so-called
Vapnik’s ε-insensitive loss function

|1− (wT x)2|ε = max{0, |1− (wT x)2| − ε}.

According to the Structural Risk Minimization principle [4], to
estimate a linear equalizer with precisionε, one minimizes

J(w) =
1

2
‖w‖2 + C

N∑
i=1

|1− (wT xi)
2|ε,

which can be rewritten as the following constrained optimization
problem: for some penalty valueC > 0, to minimize the objective
function

L(w, ξ, ξ∗) =
1

2
‖w‖2 + C

N∑
i=1

(ξi + ξ∗i ), (1)

subject to

(wT xi)
2 − 1 ≤ ε + ξi, (2)

1− (wT xi)
2 ≤ ε + ξ∗i , (3)

ξi, ξ
∗
i ≥ 0, (4)

for all i = 1, · · · , N .
In the conventional SVM approach for regression and func-

tion approximation, the inequality constraints are linear in the un-
knowns,w, thus yielding a quadratic programming (QP) prob-
lem that can be efficiently solved [11]. The proposed constraints
(2) and (3) for blind equalization of CM signals are, however,
quadratic with respect to the coefficients of the equalizer. For
this reason, a direct introduction of the constraints into the cost
function, by means of Lagrange multipliers, does not render a QP
problem.

To circumvent this drawback, we propose a procedure for find-
ing the SV solution, which resembles the iterative reweighted least
squares (IRWLS) technique used in some approximation and re-
gression problems [10]. Let us first rewrite the squared modulus
of the output of the equalizer as(wT xi)

2 = yi(w
T xi). Now,

consideringyi fixed, the inequalities (2) and (3) become linear in
w and can be rewritten as

yi(w
T xi)− 1 ≤ ε + ξi, (5)

1− yi(w
T xi) ≤ ε + ξ∗i , (6)

in this way, the blind equalization problem can be formulated within
the conventional support vector framework. In particular, the opti-
mization problem reduces to the following: givenC andε, to find

a saddle point of the quadratic problem

L(w, ξ, ξ∗, α, α∗, γ, γ∗) =
1

2
‖w‖2 + C

N∑
i=1

(ξi + ξ∗i )

−
N∑

i=1

(γ∗i ξ∗i + γiξi)−
N∑

i=1

αi[1− yi(w
T xi) + ε + ξi]

−
N∑

i=1

α∗i [yi(w
T xi)− 1 + ε + ξ∗i ], (7)

minimum with respect tow, ξi andξ∗i ; and maximum with respect
to Lagrange multipliersαi ≥ 0, α∗i ≥ 0, γi ≥ 0 andγ∗i ≥ 0 , for
all i = 1, · · · , N .

The solution for the linear equalizer can be expanded in terms
of the outputsyi, the input patternsxi, and the Lagrange multipli-
ersαi andα∗i as

w =

N∑
i=1

(α∗i − αi) yixi. (8)

The Lagrange multipliers are obtained by maximizing the follow-
ing quadratic form

W (α, α∗) = −ε

N∑
i=1

(αi + α∗i ) +

N∑
i=1

(α∗i − αi)

− 1

2

N∑
i,j=1

(αi − α∗i )
(
αj − α∗j

)
(yiyj) 〈xi,xj〉 , (9)

subject to0 ≤ αi, α
∗
i ≤ C; and where〈xi,xj〉 denotes the inner

product between the inputs patterns.
According to the Karush-Kuhn-Tucker (KKT) condition, the

input patterns that appear in the expansion (8) are points where
exactly one of the Lagrange multipliers is greater than zero: these
input patters are called support vectors.

The difference with the conventional formulation for SV re-
gression problems is that the linear kernel〈xi,xj〉 in the quadratic
form (9) now is weighted by the factoryiyj , and that the solution
is expanded in terms of a set of weighted Lagrange multipliers,
which we define asβi = (α∗i − αi) yi

w =

N∑
i=1

βixi. (10)

Obviously, the procedure can be readily extended to nonlinear
regression just by replacing in (9) the linear dot product by a non-
linear kernel. For example, the polynomial kernelK(xi,xj) =
(〈xi,xj〉+ 1)p, or the radial basis function kernelK(xi,xj) =
exp

(
‖xi − xj‖2 /(2σ2)

)
could be used. The output of the non-

linear equalizer in this case is given by

yk =

N∑
i=1

βiK(xi,xk), (11)

whereβi are again the weighted Lagrange multipliers.
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4. ITERATIVE REWEIGHTED QP

The optimal blind regressor cannot be found in a single step be-
cause the weighted Lagrange multipliers depend on the solution
βi = βi(w). Therefore, we need to apply an iterative procedure,
which due to its similarity with the IRWLS technique is called iter-
ative reweighted quadratic programming (IRWQP). The procedure
is as follows:

1. Solve the QP problem (9) consideringyi fixed.

2. Obtain the new equalizer as (10) and compute the corre-
sponding new outputyi.

3. Repeat until convergence.

In order to complete the algorithm it is necessary to smooth
somehow the equalizer coefficients from iteration to iteration. The
reason for this smoothing is the following: suppose that the initial
output of the equalizer isyi, then, in the first step we perform a
linear (or nonlinear) regression trying to fit as desired output1/yi,
forcing in this way a constant modulus signal. If we apply a new
iteration of the IRWQP procedure, the new weights applied to the
Lagrange multipliers will be close to1/yi, whereas the new de-
sired output will be again close toyi. Then, to avoid a limit cy-
cle oscillation between these two outputs, some type of smooth-
ing must be introduced. In particular, we propose to smooth the
weighted Lagrange multipliers according to

βk = λβk−1 + (1− λ) β∗, (12)

whereβ∗ are the weighted Lagrange multipliers obtained by solv-
ing (9) at thek-th iteration, andλ is a constant parameter close to
one. This smoothing procedure can be applied to linear or nonlin-
ear blind SVM equalizers.

The initial β can be obtained by solving the following linear
problem

Dβ0 = yd, (13)

whereD is anN×N kernel matrix with elements given byDij =

K(xi,xj), andyd = (x1−d, · · · , xN−d)T . In this way the initial
equalizer delays the inputd samples. This delay is typically chosen
at the center of the equalizer coefficient vector.

Finally, the proposed algorithm can be summarized in the fol-
lowing steps

1. ChooseC, ε andλ.

2. Initializeβ0 according to (13).

3. Fork = 0, 1, · · · , maxiter
3.1. Obtain the output of the equalizer,yi, usingβk.
3.2. Solve the QP problem (9) and obtainβ∗.
3.3.βk+1 = λβk + (1− λ) β∗.

End.

5. SIMULATION RESULTS

In this section we compare the performance of the proposed blind
(linear or nonlinear) SVM and the batch super-exponential algo-
rithm proposed by Shalvi and Weinstein (denoted as SW) [3], which
is based on fourth-order cumulants. The QP problem at each step
of the IRWQP procedure has been solved using the Matlab SVM
toolbox available at [11].

In the first example we consider a linear blind SVM. A bi-
nary signal is sent through the channelH1(z) = (0.4 + z−1 −

0.7z−2 + 0.6z−3 + 0.3z−4 − 0.4z−5 + 0.1z−6) (used in [3])
and, at the channel output, white Gaussian noise is added. We
have used an equalizer of lengthM = 17, which was initialized
asw = δ[n − 8]. As a measure of equalization performance we
use the ISI defined as

ISI = 10 log10

∑
n |θn|2 −maxn |θn|2

maxn |θn|2
,

whereθ = h ∗ w is the combined channel-equalizer impulse re-
sponse, which is a delta function for a zero-forcing equalizer. The
initial ISI for the selected channel and for an equalizer initialized
with a centered spike is 1.03 dB.

Similarly to other cumulant-based algorithms, the SW algo-
rithm provides poor results with very short blocks of data [3]. This
could happen, for instance, in burst TDMA transmissions (with-
out any training sequence) over fast fading channels. It is in this
situation when the proposed blind SVM technique is expected to
offer some advantages. To corroborate this point, we have tested
the SW and blind SVM algorithms for blocks ofN = 50, 100
and 200 samples; and different noise levels. For the blind SVM
we used a penalty factor ofC = 10, a precision term ofε = 0.1,
a smoothing term ofλ = 0.9, and the Vapnik’sε-insensitive loss
function (the results were similar for the quadratic loss function).
A maximum of 30 iterations of the IRWQP procedure were carried
out and, if the final ISI was below -5 dB, we considered that the
channel was successfully equalized, since with this level of ISI it is
already possible to switch to a decision-directed mode. This con-
vergence criterion was also applied for the SW algorithm. For each
data block size and noise level, both algorithms were tested in 200
Monte-Carlo trials. The results are summarized in Table 1, that
shows the percentage of trials in which each algorithm converged,
and, for the successful trials, the mean ISI level after convergence.

Shalvi-Weinstein blind SV
SNR N % converg. ISI % converg. ISI

50 6% -9.4 66.5% -14.1
30 dB 100 67% -12.2 96.5% -15.2

200 98% -14.5 100% -15.7
50 0% – 14.0% -7.2

10 dB 100 9.8% -7.1 50.5% -8.6
200 69.6% -10.2 86.5 % -10.6

Table 1. Performance of the SW and blind SVM algorithms. For
each method, the first column shows the percentage of conver-
gence and the second column the mean final ISI.

The blind SVM obtains better results than the SW method,
mainly for very short data registersN = 50, 100. The price to be
paid is obviously an increase in the required computational burden.
The average ISI versus the IRWPQP iterations is plotted in Fig. 1.

In our second example we test the nonlinear blind SVM. We
consider a nonlinear channel composed of a linear channel fol-
lowed by a memoryless nonlinearity. Such a nonlinear channel
can be encountered in digital satellite communications and in dig-
ital magnetic recording. The linear channel considered isH(z) =
1−0.5z−1, and the nonlinear function applied isz = x+0.2x2−
0.9x3, wherex is the linear channel output. Finally, white Gaus-
sian noise for a SNR=10 dB was added. A short sequence of
N=100 samples was considered. For the nonlinear blind SVM
we use a polynomial kernel of degreep = 3 and the dimension
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Fig. 1. Average convergence curves for the IRWQP procedure
(N = 50, 100, and 200; SNR=30 dB).

of the input patterns isM = 5. We also selected a penalty factor
value ofC = 10, a precision term ofε = 0.01, a smoothing factor
of λ = 0.9, and the Vapnik’sε-insensitive loss function. Figure 2
shows the solution obtained by the nonlinear SVM (for which 89
patterns became support vectors) with solid line, and the true bits
depicted with asterisks. We have also included for comparison
the solution provided by the SW algorithm, although obviously a
linear FIR filter cannot remove the distortion introduced by a non-
linear channel. Nevertheless, we can see that the blind SVM is
able to restore the CM property of the input signal.
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Fig. 2. Output of a nonlinear blind SVM equalizer (solid line), a
linear equalizer trained with the SW algorithm (dotted line) and
the true bits (’*’).

6. CONCLUSIONS

In this paper, blind equalization of CM signals has been formu-
lated as a regression problem and the powerful SVM technique
has been applied to solve it. An iterative reweighted quadratic
programming (IRWQP) procedure has been proposed to find the
optimal regressor. It is shown in the paper that blind SVM equal-
ization has several attractive features: the quadratic programming
problem solved at each iteration is convex and has a globally opti-
mal solution; it simultaneously exploits all the information in the
given block of data, thus requiring fewer data samples than other
standard blind algorithms; and, finally, linear and nonlinear equal-
izers can be treated in an unified manner and within a powerful
machine-learning framework.
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