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Abstract— Orthogonal space-frequency block coding (OSFBC)
combined with orthogonal frequency-division multiplexing
(OFDM) has been shown to be a simple and efficient means to
exploit the inherent diversity of multiple-input-multiple-output
(MIMO) broadband channels. In this paper we derive simple
analytical closed-form expressions for the ergodic and outage
capacity of OSFBC-OFDM systems assuming that the channel is
unknown at the transmitter and perfectly known at the receiver.
These expressions are simple functions of the spatial correlation
matrices at the channel taps. They clearly reveals the dependence
of the capacity on the channel and system parameters. Numerical
results show the excellent accuracy of the derived expressions.

I. INTRODUCTION

In MIMO-OFDM systems orthogonal block codes can be
applied across the transmit antennas and OFDM tones to
exploit the inherent space-frequency diversity of the channel,
leading to the so-called OSFBC. Different orthogonal coding
strategies have been proposed in the technical literature [1]
[2]. An inherent advantage of such orthogonal codes is the
significant low decoding and detection complexity. In fact,
in OSFBC maximum-likelihood (ML) detection is performed
separately on each symbol, which leads to simple receivers.
There are other more complex non-orthogonal space-frequency
block coding techniques that outperform OSFBC, but at the
price of higher decoding and detection complexity than in
OSFBC receivers [3], [4].

OSFBC can be concatenated with outer codes providing
frequency diversity and enhancing the system performance [5].
In this context, the channel capacity is a crucial performance
measure to investigate the capacity-approaching capabilities
of the overall system. The capacity of OFDM-based spatial
multiplexing MIMO systems was analyzed in [6]. Here, we
focus on the capacity of OSFBC systems when the channel is
unknown at the transmitter and known at the receiver.

In the case of narrowband fading channels, a number of
closed-form expressions has been proposed for the capacity of
orthogonal space-time block coding [7], [8], [9], [10] [11]. On
the contrary, from the author’s best knowledge, there are not
analytical expressions for the capacity of OSFBC in broadband
MIMO channels. In this work, from a general broadband
MIMO channel model model, we derive tight general closed-
form expressions for the ergodic and outage capacity of
OSFBC. These expressions give great insight into the influence
of the channel and system parameters on the capacity.

In general, the closed-form expressions are useful in two
ways. They can be used to generate performance curves (in
this case ergodic and outage capacity curves) without resorting
to time-consuming Monte Carlo simulations. Second and more
important, they can reveal the influence of the channel and
system parameters on the capacity. Based on the derived
expressions we can easily analyze the dependence of the
OSFBC capacity on the spatial correlation, power delay profile
(PDP), number of antennas, signal-to-noise ratio (SNR), etc.

II. BROADBAND MIMO CHANNEL MODEL

Consider a discrete-time broadband MIMO channel with nT

transmit antennas and nR receive antennas. The MIMO chan-
nel frequency response at the OFDM tones can be expressed
as follows

Hk =
L−1∑
n=0

Fn exp (−j2πnk/K) , k = 0, 1, . . .K, (1)

where K is the number of OFDM tones, Fn is a nR × nT

matrix denoting the n-th tap of the discrete-time MIMO fading
channel impulse response and L is the number of taps. The
entries of each matrix Fn are assumed to be circular symmetric
complex Gaussian random variables. In general, they are
correlated according to a specific spatial covariance matrix
Rn = E

[
vec (Fn) vecH (Fn)

]
, whose entries are given by

ρij,ks
n = E

[
f ij

n

(
fks

n

)∗]
, i,k = 1,...,nR, j,s = 1,...,nT (2)

where f ij
n is the entry of Fn corresponding to the jth transmit

and the ith receive antennas. Note that the diagonal terms of
the covariance matrices determine the PDP’s of the channel.
The nth term of the discrete-time PDP between the jth
transmit and the ith receive antennas is given by pij

n = ρij,ij
n .

In general, there will be different PDP’s for the different
pairs of transmit-receive antennas. We assume, without loss
of generality, that the channel is normalized so

nR∑
i=1

nT∑
j=1

L−1∑
n=0

pij
n =

L−1∑
n=0

Tr (Rn) = nRnT . (3)

Since the Fn are zero-mean Gaussian matrices, the power
correlation between the elements of Fn can be expressed as
follows [12]

E
[∣∣f ij

n

∣∣2 ∣∣fks
n

∣∣2] =
∣∣ρij,ks

n

∣∣2 + ρij,ij
n ρks,ks

n . (4)
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We assume that the matrices Fn at different taps are
uncorrelated. Therefore

E
[
f ij

n fks
m

]
= 0, n �= m. (5)

Although the above assumption is not exact due to the finite
bandwidth of the receiver, this is commonly accepted in
discrete-time broadband channel models [5], [6], [13]. Since
the f ij

n are Gaussian, they are independent. Then

E
[∣∣f ij

n

∣∣2 ∣∣fks
m

∣∣2] = ρij,ij
n ρks,ks

m , n �= m. (6)

Let γk denotes the squared Frobenius norm of the channel
response at the kth tone: γk = ‖Hk‖2

F . Considering (1) and
(5), it is straightforward to show that the γk’s are identically
distributed. The mean, and covariances of the γk’s are given
by

µγ =
L−1∑
n=0

Tr (Rn) , (7)

σk,s
γ =

L−1∑
n=0

L−1∑
m=0

Tr
(
RnRH

m

)
e−j2π(k−s) (n−m)/K . (8)

In particular, setting k = s, the variance of the γk’s is given
by

σ2
γ = var [γk] =

L−1∑
n=0

L−1∑
m=0

Tr (RnRm) = ‖RS‖2
F , (9)

where RS =
∑L−1

n=0 Rn is the sum of the correlation matrices
at the channel taps.

III. CAPACITY OF OSFBC-OFDM SYSTEMS

Assuming that the channel is unknown at the transmitter,
the total available power is allocated uniformly across all the
transmit antennas and the OFDM subchannels. In OSFBC,
the space-frequency codeword (of size nT × K) comprises a
number (N ) of different orthogonal block codewords of size
nT × LC , where LC is the number of adjacent OFDM tones
involved in each block. To exploit the frequency selectivity of
the channel, each block can be repeated S times, where S ≤ L
[2]. Then, the total number of OFDM tones is K = NLCS.
As example (10) shows the codeword in the simple case of
Alamouti coding (nT = 2, LC = 2), N = 2, S = 2 and
K = 8.

C =
[

s1 −s∗2 s3 −s∗4 s1 −s∗2 s3 −s∗4
s2 s∗1 s4 s∗3 s2 s∗1 s4 s∗3

]
. (10)

In general the code rate will be R/S, where R = nS/LC

is the code rate of the individual block codewords, and nS is
the number of symbols involved in the block. In the case of
Alamouti coding nS = LC = 2 ⇒ R = 1.

To derive an expression for the channel mutual information,
we consider the following assumptions: 1) the number of
OFDM tones (K) is high so the channel response is constant
at the tones involved in each orthogonal block. 2) In spite
of this, the channel stays constant during the transmission of

each codeword C. 3) The OFDM uses a cyclic prefix with
adequate length. Since the number of OFDM tones is high,
the transmission rate penalty and the SNR penalty due to the
transmission of the cyclic prefix is neglected.

Under the above assumptions, the broadband MIMO chan-
nel can be decomposed into a set of narrowband uncoupled
MIMO channels, each one associated with an individual block.
Moreover, due to the orthogonal coding of the individual
blocks, each narrowband MIMO channel can be viewed as
an effective scalar channel. Then, since each orthogonal block
is repeated S times in the codeword, the broadband MIMO
channel can be decomposed into a set of N effective scalar
channels with signal-to-noise ratio (SNR) given by

SNRn =
ρ

RnT

S−1∑
s=0

γ(n+sN−1)LC+1 = . . . (11)

=
ρ

RnT

S−1∑
s=0

γ(n+sN−1)LC+LC
,

where ρ is the average SNR at the receive antennas (assum-
ing AWGN noise). Each effective scalar channel transmits nS

symbols simultaneously using SLC OFDM tones. Since the
N effective channels use the K tones in each transmission,
the mutual information can be expressed as follows

I =
nS

K

N∑
n=1

log2 (1 + SNRn) , (12)

and considering (11),

I =
R

K

N∑
n=1

LC∑
l=0

log2

(
1 +

ρ

RNT

S−1∑
s=0

γ(n+sN−1)LC+l

)
.

(13)
Note that the blocks repetition (S > 1) in (10) provides

frequency diversity but at the price of a code-rate penalty by
a factor of 1/S. On the other hand, when S = 1, the code
is full-rate but it does not provide frequency diversity [1].
Another more efficient way to exploit the inherent frequency
diversity of the broadband channel is to combine an outer code
with an OSFBC code [5]. Assuming that we use an outer code,
a full-rate OSFBC (without repetion) is more efficient than a
OSFBC with repetitions. Therefore, hereafter we will focus
OSFBC codes with S = 1. In this case (13) reduces to

I =
K−1∑
k=0

Ik =
R

K

K−1∑
k=0

log2

(
1 + ρ

γk

nT R

)
. (14)

According to (14), I is a non-linear function of the γk’s.
Since the wireless channel is random, the γk’s are random
and I will be a random variable. The first two moments of
the mutual information can be approximated expanding I and
I2 in Taylor series about µγ and then, applying the expectation
operator. The resulting expressions for the mean and variance
of I are



µI ≈ R log2

(
1 +

ρ nR

R

)
− Rρ2 log2 e

2n2
T (R + ρ nR)2

‖RS‖2
F . (15)

σ2
I ≈

(
Rρ log2 e

nT (R + ρnR)

)2 L−1∑
n=0

‖Rn‖2
F . (16)

where e is the neper’s number.
If the is ergodic, the capacity is given by the ensemble av-

erage of the mutual information over the channel realizations,
hence it is given by (15). For quasi-static fading channels we
obtain the outage capacity from a Gaussian approximation of
the cumulative distribution function of I . Then, the q% outage
capacity is approximated as follows

Cq ≈ µI + σI

√
2 erfc−1

(
2 − q

50

)
. (17)

where erfc(x) is the complementary error function. Note
that, according to (15)-(17), the ergodic and the outage capac-
ities do not depend on the number of OFDM tones. Equation
(15) suggests that high spatial correlation at the individual
channel taps does not always produce low ergodic capacity
because RS is the coherent sum of the spatial correlation
matrices at the individual taps. On the contrary, according
to (15)-(17), higher spatial correlation always leads to lower
outage capacity.

A. Channel with a common correlation matrix

Assuming a spatially balanced channel with the same cor-
relation matrix for all the taps: Rn = pnR, where R is the
common spatial correlation matrix with unit entries in its main
diagonal, and {pn} is the common PDP. This situation tipically
arises when the antennas are very close at the transmit and/or
receive array, and when the transmitter and/or receiver are
surrounded by local scatterers, so the angular spectrums are
omnidirectional for any tap. In this case,

‖RS‖2
F = ‖R‖2

F ,

L−1∑
n=0

‖Rn‖2
F = ‖R‖2

F

L−1∑
n=0

p2
n.

Note that the spatially uncorrelated channel can be viewed as
a particular case where R is a diagonal matrix. In this case
‖R‖2

F = nRnT because of the channel normalization. In spa-
tially correlated channels, ‖R‖2

F ≥ nRnT , therefore µI will be
always lower than in the corresponding uncorrelated channels.
The variance σ2

I will be higher in spatially-correlated channel
than in the corresponding uncorrelated channel. Therefore, as
it is expected, the spatial selectivity also improves the outage
capacity.

In the particular case of uniform PDP’s, the variance reduces
to

σ2
I ≈

(
Rρ log2 e

nT (R + ρnR)

)2

‖R‖2
F

1
L

. (18)

This is the lower variance for all the possible PDP’s of length
L. The variance for a two-rays PDP is obtained by setting L =
2, regardless the delay between the two taps. By setting L = 1

we obtain the variance for a one-ray PDP which corresponds
to a channel with frequency flat response. In this case, the
σ2

I coincides with the variance of the mutual information in
narrowband spatially correlated MIMO-STBC channels with
Rayleigh fading [10].

B. One-side spatially correlated channels

We first focus on channels spatially correlated in reception
and uncorrelated in transmission. This situation usually arises
in the uplink of a typical NLOS urban outdoor channel
when the transmitter is surrounded by local scatterers and the
receiver is not obstructed by local scatterers. Assuming that
the correlation at the receiver array does not depend on the
transmit antenna, the correlation matrices at the channel taps
can be expressed as follows

Rn = RT
T
n ⊗ RRn = I ⊗ RRn,

where ⊗ denotes the Kronecker product, the superscript (·)T

denotes the matrix transpose operator, RRn is the nR × nR

receive correlation matrix for the n-th tap and RTn is the
nT × nT transmit correlation matrix for the n-th tap which,
in this case, equals the identity matrix I. Now,

‖RS‖2
F = nT ‖RRS‖2

F ,

L−1∑
n=0

‖Rn‖2
F = nT

L−1∑
n=0

‖RRn‖2
F ,

(19)
where RRS =

∑L−1
n=0 RRn is the sum of the correlation ma-

trices in reception. Substituting (19) in (15) and (16) we obtain
the corresponding expressions for the mean and variance of the
mutual information. Analogous expression are obtained when
the channel is spatially uncorrelated in reception and correlated
in transmission.

IV. SIMULATION RESULTS

To show the tightness of our approximation, we compare the
analytical predictions of (17) with Monte Carlo simulations for
a variety of channel conditions and system parameters. In all
cases the analytical predictions are represented by solid lines
and the Monte Carlo values are represented by markers. In
every simulation, 20000 independent Monte Carlo runs have
been performed.

Figure 1 shows the 10%-outage capacity for different
MIMO configurations and code rates, comparing the analytical
predictions of (17) with Monte Carlo simulations. The channel
has a truncated exponential PDP with length L = 3 and decay
factor 2/3. The channel is spatially balanced, uncorrelated in
transmission and correlated in reception with spatial corre-
lation matrices given by the Jakes correlation model [14].
This model assumes uniform angular spectrum at both the
transmitter and the receiver for all the channel taps. Also, it is
assumed that the antennas are identical and single-polarized,
at each array. According to this model the entries of R are
given by

ρij,ks = J0 (2πsik)J0 (2πsjs) , (20)

where J0 (x) is the zero-order Bessel function of the first kind
and sik and sjs are the distances (in wavelengths) between
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Fig. 1. 10%-Outage capacity of OSFBC for different MIMO configurations
as a function of the average SNR at the receiver antennas. The curves compare
the analytical predictions of (17) (solid lines) with Monte Carlo simulations
(markers).

the corresponding antennas in the receive and transmit arrays,
respectively. In the simulations we assume linear arrays with
uniform antenna separations equal to λ/6 in both arrays. We
also assume the same correlation matrix for all the channel
taps. The number of OFDM tones was K = 256. The
approximation error of (17)is lower than 0.06 bps/Hz in all
cases.

Figure 2 shows results of outage capacity versus outage
probability for a 3 × 3 MIMO channel with K = 64 OFDM
tones. The code rate is R = 3/4. The different curves
corresponds to uniform PDP’s with different lengths (L),
assuming that the average SNR is ρ = 10 dB in all cases.
There is common correlation matrix (R) for all taps, which
is obtained from the Jakes correlation model [14] (see (20))
assuming linear arrays with uniform antenna separations equal
to λ/5 in both arrays. The figure shows that expression (17) is
quite tight for any channel length and outage probability. The
relative maximum approximation errors were 2.8%, 1.1% and
0.24% for the the cases L = 2, L = 4 and L = 8, respectively.
The curves also show the dependency of the outage capacity
with the channel length. Note that the variance of the mutual
information is inversely proportional to L, as (18) shows.

Now, we consider channels spatially correlated in reception
and uncorrelated in transmission, where the spatial correlation
matrix is different at the channel taps. We consider the
channel model used in [6] and [13]. This model is suitable for
the uplink of a typical cellular suburban channel where the
transmitter is surrounded by local scatterers and the receiver
is not obstructed by local scatterers. The model assumes that
each channel tap is due to the waves arriving from a scatterer
cluster, where the waves from a given cluster experience the
same delay. The model also assumes a linear array at the
receiver with identical single-polarized antennas. For each
cluster/tap the angle of arrival of the incoming waves (with
respect the array axis) are Gaussian distributed around a mean
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Fig. 2. Outage capacity of 3 × 3 OSFBC, as a function of the outage
probability, for different channel lengths.

value (θ̄n) with standard deviation σθ
n. In practice, this stan-

dard deviation depends on the scattering radius of the cluster
and its distance to the receiver. Under these assumptions and
for small angular spreads, the entries of the receive correlation
matrices RRn can be expressed as follows [6], [13]

ρi,k
R n ≈ pn exp

[
−j2πsik cos θ̄n − 2

(
πsik σθ

nsin θ̄n

)2]
.

(21)
Note that, unlike in previous results, there are different corre-
lation matrices for each channel path. Figure 3 shows results
of 1% - outage capacity as function of the spacing between the
receive antennas for different MIMO configurations with two
transmit antennas and variable number of receive antennas.
The code rate is R = 1, the number of OFDM tones is K =
128 and the average SNR at the receiver branches is ρ = 15 dB,
in all cases. We consider L = 6 taps /clusters with mean angles
of arrival given by (n + 6)π/16, n = 0, . . . , L − 1. That is
the clusters are uniformly distributed around an arc of 5π/16
radians. We also assume uniform PDP and identical angular
standard deviation for all the clusters: σθ

n = (π/36). The mean
and variance of the outage capacity are obtained considering
(21) and (19). Once again, the analytical approximation of
(17) closely matches the outage capacity (markers), with an
relative approximation error lower than 2.8% in all cases.

V. CONCLUSIONS

In this work we have derived tigth closed-form approxi-
mations for the ergodic and outage capacity of OSFBC. The
derived expressions only depend on the spatial correlation
matrices of the MIMO channel at the channel taps and on the
system parameters. The accuracy of the expressions reveals
that these covariance matrices are the only channel statistics
needed for a tight estimation of the capacity. The expressions
are quite accurate for any spatial correlation conditions, power
delay profiles, SNR and system parameters. They clearly show
the dependency of the ergodic and outage capacity on the
system and channel parameters.
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Fig. 3. 1%-Outage capacity of different OFDM-STBC systems as a function
of the spacing between the receive antennas.

ACKNOWLEDGMENT

This work has been supported by Spanish Ministry of
Education and Science under grants number TEC2004-06451-
C05-02.

REFERENCES

[1] K. F. Lee and D. B. Williams, “A space-frequency transmitter diversity
technique for OFDM systems,” in Proc. IEEE GLOBECOM’00, vol. 3,
San Francisco, Cal., USA, November 2000, pp. 1473–1477.

[2] W. Su, Z. Safar, M. Olfat, and K. J. R. Liu, “Obtaining full-diversity
space-frequency codes from space-time codes via mapping,” IEEE
Transactions on Signal Processing, vol. 51, pp. 2905–2916, November
2003.

[3] W. Su, Z. Safar, and K. J. R. Liu, “Full-rate full-diversity space-
frequency codes with optimum coding advantage,” IEEE Transactions
on Information Theory, vol. 51, pp. 229–249, January 2005.

[4] L. Shao and S. Roy, “Rate-one space-frequency block codes with
maximum diversity for MIMO-OFDM,” IEEE Transactions on Wireless
Communications, vol. 4, pp. 1674–1687, July 2005.

[5] Y. Gong and K. B. Letaief, “An efficcient space-frequency coded OFDM
system for broadband wireless communications,” IEEE Transactions on
Communications, vol. 51(11), pp. 2019–2029, November 2003.

[6] H. Bölcskei, D. Gesbert, and A. J. Paulraj, “On the capacity of OFDM-
based spatial multiplexing systems,” IEEE Transactions on Communi-
cations, vol. 50, pp. 225–234, February 2002.

[7] R. U. Nabar, H. Bolcskei, and A. J. Paulraj, “Outage properties of space-
time block codes in correlated Rayleigh or Rician fading environments,”
in Proc. IEEE ICASSP 2002, Orlando, FL, May 2002, pp. 2381–2384.

[8] L. Musavian, M. Dohler, M. R. Nakhai, and A. H. Aghvami, “Closed-
form capacity expressions of orthogonalized correlated MIMO chan-
nels,” IEEE Communications Letters, vol. 8, pp. 365–367, June 2004.

[9] M. Dohler and H. Aghvami, “Information outage probability of dis-
tributed STBCs over Nakagami fading channels,” IEEE Communications
Letters, vol. 8, pp. 437–439, July 2004.
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