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Abstract— We consider the application of kernel canonical
correlation analysis (K-CCA) to the supervised equalization of
Wiener systems. Although a considerable amount of research
has been carried out on identification/equalization of Wiener
models, in this paper we show that K-CCA is a particularly
suitable technique for the inversion of these nonlinear dynamic
systems. Another contribution of this paper is the development
of an online K-CCA algorithm which combines a sliding-
window approach with a recently proposed reformulation of
CCA as an iterative regression problem. This online algorithm
permits fast equalization of time-varying Wiener systems. Sim-
ulation examples are added to illustrate the performance of the
proposed method.

I. INTRODUCTION

Wiener systems are well-known nonlinear models con-
sisting of a possibly time-varying linear filter followed by
a memoryless nonlinearity. These structures have been suc-
cessfully applied in a number of areas such as chemical and
biological modeling, signal processing and communications.
A considerable amount of research has been carried out
in the last decades on identifying and/or inverting Wiener
systems. These techniques include neural network mod-
els, orthonormal functions, higher-order input-output cross-
correlations and many others (see, for instance, [1], [2],
[3], [4], [5]). However, most of these techniques do not
exploit the specific cascade structure of Wiener systems
in the identification/equalization procedure: they are black-
box models. A recent exception to this rule is the work
by Aschbacher and Rupp [6], which jointly identifies the
inverse nonlinearity and the linear filter of the Wiener model.
Inspired by this work, in this paper we propose to use
kernel canonical correlation analysis (K-CCA) as a suitable
technique to exploit the structure of Wiener systems in
supervised identification/equalization algorithms.

Canonical correlation analysis (CCA) is a well-known
technique in multivariate statistical analysis, which has been
widely used in economics, meteorology and in many modern
information processing fields, such as communication the-
ory, statistical signal processing and blind source separation
(BSS). The concept of CCA was first introduced by H.
Hotelling [7] as a way of measuring the linear relationship
between two multidimensional sets of variables and was later
extended to several data sets [8].

Several extensions of CCA to account for nonlinear re-
lationships between two data sets have recently been pro-
posed [9], [10]. Among them, one of the most promising
approaches is the application of K-CCA [11], [12]. K-CCA

searches for nonlinear relationships between data sets, by
first applying a nonlinear kernel transformation that maps
the input data onto a high dimensional feature space (usually
infinitely dimensional) and then performing conventional
(linear) CCA. In the proposed approach for supervised equal-
ization of Wiener systems, given a set of input-output pat-
terns, K-CCA tries to maximize the correlation between the
linearly transformed input and the nonlinearly transformed
output (i.e. we use a linear kernel for the input data and
a nonlinear kernel for the output). In this way, K-CCA
efficiently exploits the cascade structure of Wiener systems
and provides estimates of the linear filter and the inverse
nonlinearity.

In their original forms, most of the kernel algorithms
cannot be used to operate online because of a number of
difficulties such as the growing dimensionality of the kernel
matrix and the need to avoid overfitting of the problem.
Recently, a kernel RLS algorithm was proposed that deals
with both difficulties [13]: by applying a sparsification pro-
cedure the kernel matrix size was limited and the order of the
problem was reduced. In [14] we presented a different kernel
RLS approach in which conventional regularization was used
to avoid overfitting and a sliding-window procedure fixed the
kernel matrix size, allowing the algorithm to operate online
in time-varying environments. In this paper we extend the
basic sliding-window kernel RLS algorithm to K-CCA. In
addition, we also extend to K-CCA a recent reformulation of
CCA as a pair of coupled iterative regression problems [15],
[16], which allows us to avoid any generalized eigenvalue
decomposition in the computation of the K-CCA solution
for each window.

The rest of this paper is organized as follows: in Section
II CCA and K-CCA are briefly reviewed. In Section III
the proposed procedure to identify/equalize Wiener systems
based on K-CCA is described. In Section IV the online
version of this algorithm is derived, followed by simulation
results and comparisons in Section V. Finally, Section VI
summarizes the main conclusions of this work.

II. CCA AND KERNEL CCA

A. Canonical Correlation Analysis

Given two full-rank data matrices X1 ∈ R
N×m1 and X2 ∈

R
N×m2 , canonical correlation analysis (CCA) is defined as

the problem of finding two canonical vectors h1 ∈ R
m1×1

and h2 ∈ R
m2×1 that maximize the correlation between the
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canonical variates y1 = X1h1 and y2 = X2h2, i.e.

argmax
h1,h2

ρ =
yT
1 y2

‖y1‖‖y2‖
=

hT
1 R12h2√

hT
1 R11h1hT

2 R22h2

, (1)

or equivalently

argmax
h1,h2

ρ = yT
1 y2 s.t. ‖y1‖ = ‖y2‖ = 1,

where Rkl = XT
1 X2 is an estimate of the cross-correlation

matrix. An alternative formulation of CCA into the frame-
work of least squares (LS) regression has been proposed in
[16], [17]. Specifically, it has been proved that CCA can be
reformulated as the problem of minimizing

J =
1
2
‖X1h1 − X2h2‖2 s.t.

1
2

2∑
k=1

‖Xkhk‖2 = 1, (2)

and solving (1) or (2) by the method of Lagrange multipliers,
CCA can be rewritten as the following generalized eigenvalue
(GEV) problem

1
2

[
XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

]
h = β

[
XT

1 X1 0
0 XT

2 X2

]
h, (3)

where h = [hT
1 hT

2 ]T , and β = (ρ+1)/2 is a parameter related
to a principal component analysis (PCA) interpretation of
CCA [17].

The solution of (3) can be directly obtained applying stan-
dard GEV algorithms. However, the special structure of the
CCA problem has been recently exploited to obtain efficient
CCA algorithms [16], [17], [18]. Specifically, denoting the
pseudoinverse of Xk as X+

k = (XH
k Xk)−1XH

k , the GEV
problem (3) can be viewed as two coupled LS regression
problems

βhk = X+
k y, k = 1, 2,

where y = (y1 + y2)/2. This idea has been used in [16],
[17] to develop an algorithm based on the solution of these
regression problems iteratively: at each iteration t two LS
regression problems are solved using

y(t) =
y1(t) + y2(t)

2
=

X1h1(t − 1) + X2h2(t − 1)
2

as desired output. Furthermore, this LS regression framework
has been exploited to develop adaptive CCA algorithms
based on the recursive least-squares algorithm (RLS) [16],
[17].

B. Kernel Canonical Correlation Analysis

Although CCA constitutes a good technique to find linear
relationships between two or several [17] data sets, it is not
able to extract nonlinear relationships. In order to solve this
problem, CCA has been extended to nonlinear CCA and
kernel-CCA (K-CCA) [11], [12], [19]. Specifically, kernel
CCA exploits the characteristics of kernel methods, consist-
ing in the implicit nonlinear transformation of the data xi

from the input space to a high dimensional feature space
x̃i = Φ(xi). Then, solving CCA in the feature space we are
able to extract nonlinear relationships.

The key property of the kernel methods and reproducing
kernel Hilbert spaces (RKHS) is that, since the scalar prod-
ucts in the feature space can be seen as nonlinear (kernel)
functions of the data in the input space, the explicit mapping
to the feature space can be avoided, and any linear technique
can be performed in the feature space by solely replacing
the scalar products by the kernel function in the input space.
In this way, any positive definite kernel function satisfying
Mercer’s condition [20]: κ(xi, xj) = 〈Φ(xi),Φ(xj)〉 has an
implicit mapping to some higher-dimensional feature space.
This simple and elegant idea is known as the “kernel trick”,
and it is commonly applied by using a nonlinear kernel such
as the Gaussian kernel

κ(x, y) = exp
(
−‖x − y‖2

2σ2

)
,

which implies an infinity-dimensional feature space.
After transforming the data and canonical vectors to fea-

ture space, the GEV problem (3) can be written as

1
2

[
X̃

T

1 X̃1 X̃
T

1 X̃2

X̃
T

2 X̃1 X̃
T

2 X̃2

]
h̃ = β

[
X̃

T

1 X̃1 0

0 X̃
T

2 X̃2

]
h̃, (4)

where X̃k ∈ R
N×m′

k represents the transformed data and
h̃ = [h̃

T

1 h̃
T

2 ]T contains the transformed canonical vectors of
length m′

1 and m′
2. Taking into account that the canonical

vectors h̃1 and h̃2 belong to the subspace defined by the
rows of X̃1 and X̃2 respectively we can find two vectors
αk ∈ R

N×1 such that

h̃k = X̃
T

k αk k = 1, 2,

and left-multiplying (4) by[
X̃1 0
0 X̃2

]
we obtain

1
2

[
K2

1 K1K2

K2K1 K2
2

]
α = β

[
K2

1 0
0 K2

2

]
α, (5)

where Kk = X̃kX̃
T

k is the kernel matrix with elements

Kk(i, j) = κk(xk[i],xk[j]),

in its i-th row and j-th column, κk(·, ·) is the kernel applied
to the k-th data set, and xT

k [i] denotes the i-th row of the
k-th data matrix. Finally, (5) can be simplified to

1
2

[
K1 K2

K1 K2

]
α = β

[
K1 0
0 K2

]
α, (6)

and the resulting GEV constitutes again two coupled kernel-
LS regression problems defined now as

Jk(βαk) = ‖Kkβαk − y‖2 k = 1, 2,

where yk = Kkαk and y = (y1 + y2)/2 is the desired
output.

To summarize, the application of the kernel trick permits
the solution of the CCA problem in the feature space without
increasing the computational cost and conserving the LS
regression framework.
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x1[n]
y[n] z[n]

v[n]

x2[n]H(z) f(.)

Fig. 1. A nonlinear Wiener system.

C. Measures Against Overfitting

For most useful kernel functions, the dimension of the
feature space, m′

k, will be much higher than the number of
available data points, N . In such cases the kernel matrices
Kk do not have full rank and Eq. (6) could have an infinite
number of solutions, representing an overfit problem. Various
techniques to handle this overfitting have been presented.

1) Order Reduction: One way of dealing with overfitting
is by reducing the order of the transformed data X̃k through
PCA or a similar technique [11], [12], [13], in which the
data X̃k ∈ R

N×m′
1 are to be transformed to X̄k ∈ R

N×m′′
k

with m′′
k < N by considering its m′′

k principal components.
2) Regularization: A second method considers regulariz-

ing the solution by adding a normalization restriction to the
norm of h̃k [11], [12] or αk [21]. Here, we apply the classical
regularization technique in the framework of LS regression,
which yields the following CCA-GEV problem

1
2

[
XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

]
h̃ = β

[
XT

1 X1 + cI 0
0 XT

2 X2 + cI

]
h̃,

or, in the case of K-CCA

1
2

[
K1 K2

K1 K2

]
α = β

[
K1 + cI 0

0 K2 + cI

]
α. (7)

Therefore, the regularized version of CCA (or K-CCA) can
be reformulated as two coupled LS (or kernel-LS) regression
problems.

III. KERNEL CCA FOR WIENER SYSTEMS

A Wiener system is a well-known and simple nonlinear
system which consists of a cascade of a linear dynamic
system and a memoryless nonlinearity (see Fig. 1). Such a
nonlinear channel is encountered frequently, e.g. in digital
satellite communications [22] or in digital magnetic record-
ing [23]. Traditionally the problem of nonlinear equalization
or identification has been tackled by considering nonlinear
structures such as multilayer perceptrons (MLPs) [24], recur-
rent neural networks [25] or piecewise linear networks [26].
Most of the proposed techniques treated the Wiener system as
a black-box, although use can be made of its simple structure.

Recently a supervised identification setup for Wiener sys-
tems was presented [6] that exploits the cascade structure
by introducing joint identification of the linear filter and the
inverse nonlinearity, as in Fig. 2. The estimator models for
linear filter and nonlinearity are adjusted by minimizing the
error between their outputs y1[n] and y2[n]. By doing so,
Ĥ(z) will represent an estimator of H(z), while g(.) will
represent f−1(.) in the noiseless case, assuming that f(.) is
invertible in the output data range.

x1[n]
y1[n] y2[n]

e[n]

x2[n]Ĥ(z) g(.)

Fig. 2. The used Wiener system identification diagram.

To avoid the trivial zero solution or divergence of the
estimators, a restriction should be taken into account for
this approach to work. The two most obvious options are
imposing restrictions on

1) the norm of the estimator coefficients
2) the norm of the signals y1[n] and y2[n].

The first type of restriction was used in [6]. Interestingly,
the second type is a direct application of (kernel) CCA, as
can be seen from Eq. (2). K-CCA can be applied to this
problem by maximizing the correlation between the linear
projection y1[n] (linear kernel, κ(x, y) = xT y) of the system
input x1[n] and the nonlinear projection y2[n] (gaussian
or other nonlinear kernel) of the system output x2[n]. To
prevent overfitting, the nonlinear kernel matrix is regularized
as mentioned in Section II-C. However, regularization is not
needed for the linear kernel, since the feature space of a linear
kernel is the original data space, with dimension mk < N .
Using this insight the linear kernel matrix can be replaced
by an estimate of the correlation matrix, as shown below.
Starting from the general form of the GEV problem (7)

1
2

[
K1 K2

K1 K2

] [
α1

α2

]
= β

[
K1 0
0 K2 + cI

] [
α1

α2

]
, (8)

and substituting K1 = X1XT
1 and w1 = XT

1 α1, (8) is
equivalent to solving

1
2

[
XT

1 X1 XT
1 K2

K2X1 K2
2

] [
w1

α2

]
= β

[
XT

1 X1 0
0 K2(K2 + cI)

] [
w1

α2

]

where w1 represents the solution to the primal problem, for
the linear part, and α2 represents the solution to the dual
problem, for the nonlinear part. Substituting y = 1

2 (y1 +
y2) = 1

2 (X1w1 + K2α2), this GEV constitutes two coupled
LS regression problems:{

βw1 = (XT
1 X1)−1XT

1 y
βα2 = (K2 + cI)−1y

(9)

IV. ONLINE ALGORITHM

A. System Identification

An important characteristic of the Wiener system is that
its linear filter is usually time-varying. Whereas the iden-
tification method of Section III will reliably identify the
different blocks of a static system as a batch method, an
online approach is required to track the time-variations of a
Wiener system.

An online prediction setup assumes we are given
a stream of input-output pairs {(x1[n], x2[n]), (x1[n −
1], x2[n − 1]), . . . }, in which every x1[n] = (x1[n], x1[n −
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Algorithm 1 The sliding-window K-CCA algorithm.

Initialize K(0) = I and K(0)
reg = (1 + c)I.

Initialize w(0)
1 and α

(0)
2 randomly.

for n = 1, 2, . . . do
Obtain K(n)

reg from the data x(n)
2 as in (10).

Calculate

{
y(n)
1 = X(n)

1 w(n−1)
1

y(n)
2 = x̃(n)

2 (x̃(n−1)
2 )T α

(n−1)
2 .

Calculate y(n) = 1
2 (y(n)

1 + y(n)
2 ).

Calculate (K(n)
reg)

−1 according to (11).

Obtain the updated solutions w(n)
1 and α

(n)
2 as in (9).

end for

1], . . . , x1[n − L + 1])T is a vector representing a memory
of the length of the linear filter H(z). A key feature of
online algorithms is that the number of computations must
not increase as the number of samples increases. Since the
size of a kernel matrix depends on the number of samples
used to calculate it, we chose to take into account only a
“sliding-window” containing the last N input-output pairs of
this stream. For window n, the observation matrix X(n)

1 =
(x1[n], x1[n−1], . . . , x1[n−N+1])T and the observation vec-
tor x(n)

2 = (x2[n], x2[n−1], . . . , x2[n−N +1])T are formed
and the corresponding kernel matrix K(n) = x̃(n)

2 (x̃(n)
2 )T and

regularized kernel matrix K(n)
reg = K(n)+cI can be calculated.

To solve (9), in each iteration the N × N inverse matrix
(K(n)

reg)
−1 must be calculated. This is costly both compu-

tationally and memory-wise (requiring O(N3) operations).
Therefore in [14] an update algorithm was developed that can
compute (K(n)

reg)
−1 solely from knowledge of the data of the

current observation vector x(n)
2 and the previous (K(n−1)

reg )−1.
Given the kernel matrix K(n−1)

reg , the new kernel matrix
K(n)

reg can be constructed by removing the first row and

column of K(n−1)
reg , referred to as K̂

(n−1)

reg , and adding kernels
of the new data as the last row and column:

K(n)
reg =

[
K̂

(n−1)

reg kn−1(x
(n)
2 )

kn−1(x
(n)
2 )T knn + c

]
(10)

with kn−1(x
(n)
2 ) = [κ(x(n−N+1)

2 , x(n)
2 ), . . . , κ(x(n−1)

2 , x(n)
2 )]T

and knn = κ(x(n)
2 , x(n)

2 ).
Calculating the inverse kernel matrix (K(n)

reg)
−1 is done

in two steps, using the two inversion formulas from the
appendix at the end of this paper. Note that these formulas do
not calculate the inverse matrices explicitly, but rather derive
them from known matrices maintaining an overall time and
memory complexity of O(N2) of the algorithm.

First, given K(n−1)
reg and (K(n−1)

reg )−1, the inverse of the

N −1×N −1 matrix K̂
(n−1)

reg is calculated according to Eq.
(12). Then (K(n)

reg)
−1 can be calculated applying the matrix

inversion formula from Eq. (11), based on the knowledge of
(K(n−1)

reg )−1 and K(n)
reg .

The complete algorithm to solve (9) in an adaptive manner
is summarized in Alg. (1).

B. System Equalization

While performing system identification of the Wiener
system, an estimate is made of the inverse nonlinearity
g(.), which compensates for the nonlinearity f(.). A linear
equalizer W (z) is proposed to compensate for H(z), as
shown in Fig. 3. A wide range of techniques are available to
estimate this linear filter, among others the least mean squares
algorithm (LMS), RLS, linear Wiener filter estimation, etc.
We opted for the RLS algorithm with convergence speed in
mind.

V. SIMULATION RESULTS

A. Static Wiener System

Simulations are carried out to illustrate the performance
of the proposed equalization algorithm. The performance is
evaluated on a Wiener system consisting of the non-minimum
phase linear filter H(z) = 1 + 0.8668z−1 − 0.4764z−2 +
0.2070z−3 and the nonlinearity f(x) = tanh(x). The input
signal is a white zero-mean Gaussian with unit variance. The
output is affected by additive white Gaussian noise, matching
an SNR of 25dB. Given x2[n], the desired output of the
equalizer is a delayed version of the signal x1[n − d], with
d = 1/2(L + LW ), where L is the length of the linear filter
Ĥ(z) and LW is the length of the equalizer W (z).

Equalization is performed by the proposed online K-CCA
method, for which a Gaussian kernel with σ = 0.2 and the
regularization constant c = 0.1 were used. The filter W (z)
has length LW = 15 and the RLS forgetting factor is 0.99.
For comparison, two other equalization methods are also
included. The first one is the gradient identification method
proposed in [6] to which we added the same RLS block
for equalization as in the presented K-CCA method. The
second one is a time-delay MLP with LW = 15 inputs for
its time-delay (i.e. equal to the equalizer’s length), 15 neurons
in its hidden layer and µ = 0.01. The MLP does not take
the system structure into account, and hence its equalization
results are only included to see the advantages of the other
two methods (that do exploit the Wiener system structure).
All three methods were trained with a training data set in
an adaptive manner, while at every iteration the equalizing
capabilities of each method were tested using a separate test
data set, generated by the same Wiener system. In Fig. 4 the
mean square error (MSE) curves are compared for these three
methods, averaged out over 50 Monte-Carlo simulations.

Fig. 5 shows the coefficients estimated by the K-CCA
algorithm after processing 1000 samples online for the given
example when L = 10 instead of the correct L = 4
coefficients for the linear filter. Fig. 6 compares the MSE
curves obtained for different values of L when the correct
value is L = 4. Note that the effect of overestimating L on
the algorithm’s performance is minimal.

A parameter that affects the performance of the K-CCA
algorithm more is the length N of the sliding-window. Fig.
7 shows MSE curves for different window lengths, for the
given setup. A longer window corresponds to a bigger kernel
matrix, leading in turn to a better representation of the inverse
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x1[n] x2[n]y[n] z[n]

v[n]

x̂1[n − d]

H(z) g(.)f(.) W (z)

y2[n]

eeq[n]

x1[n − d]

Fig. 3. Diagram for supervised equalization: Sliding-window K-CCA is applied on the input x1[n] and output x2[n] of the Wiener system. This estimates
the nonlinear function g(.) and its output y2[n]. Using y2[n] and a time-delayed version of the system input x1[n − d], an equalizer W (z) is estimated.

0 500 1000 1500 2000 2500 3000
−12

−10

−8

−6

−4

−2

0

2

iteration

M
SE

 (
dB

)

kernel CCA
gradient identification
MLP

Fig. 4. Wiener system equalization MSE for the presented online K-CCA
method, the gradient identification method from [6] and a time-delay MLP.
The MLP does not make use of the system structure and hence achieves
a worse result. The K-CCA method needs an initialization period of the
length of its window (L = 150), after which the MSE drops fast and
reaches convergence. The steepness of this slope is mainly determined by
the speed of the RLS algorithm.

1 2 3 4 5 6 7 8 9 10
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
real coefficients
estimated coefficients

Fig. 5. The 4 real coefficients of the filter H(z) versus the 10 coefficients
of the estimated filter Ĥ(z). The 6 additionally estimated coefficients are
very close to 0.

0 200 400 600 800 1000 1200
−15

−10

−5

0

iteration

M
SE

 (
dB

)

L = 13

L = 4

Fig. 6. MSE curves for equalization of a Wiener system with linear filter
length 4, for different values of L, the length of the linear filter used in
system identification. In the ideal case (L = 4) the filter length is known.
The presented MSE curves for L = 5 till L = 13 show very similar
equalizer performance for all cases. The curves were averaged out over 50
simulations.

nonlinearity g(.) and hence a lower equalization error. The
curves were averaged out over 50 simulations.

In a second setup, the same Wiener system is used with
a BPSK input signal. After training the K-CCA algorithm
online with 1000 symbols, its bit error rate (BER) was
calculated on a test data set. The BER curve is shown in
Fig. 8.

B. Time-varying Wiener System

A third setup is presented to test the tracking capability of
the online K-CCA algorithm. The analyzed Wiener system
has a minimum phase linear filter whose coefficients change
linearly from H(z) = 1 + 0.3551z−1 + 0.4587z−2 −
0.1708z−3 to H(z) = 1 + 0.0563z−1 − 0.3677z−2 −
0.2046z−3 over 2000 input samples, and nonlinearity f(x) =
x + 0.1x3. The input signal is a white zero-mean Gaussian
with unit variance and additive white Gaussian noise with
zero-mean is added to the output, matching an SNR of 25dB.
The online K-CCA algorithm is applied with N = 150. As
an example we present the evolution of the third coefficient
of Ĥ(z) compared to the third coefficient of H(z) (see Fig.
9). After an initialization period of length N in which the
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0 500 1000 1500
−12

−10

−8

−6

−4

−2

0

iteration

M
SE

 (
dB

)

N = 300
N = 200
N = 150
N = 100
N = 75
N = 50

Fig. 7. Influence of the window length N on the MSE curves of the online
K-CCA algorithm. Note the initialization period of length N , needed for
replacing the initialization data in the kernel matrix by real data.

10 12 14 16 18 20 22
10

−5

10
−4

10
−3

10
−2

10
−1

SNR

B
E

R

Fig. 8. BER curve for the online K-CCA algorithm using BPSK input
symbols.

initialization data in the kernel matrix are replaced by real
data, it can be observed that the algorithm is capable of
functioning in a time-varying environment.

VI. CONCLUSIONS

We presented a novel K-CCA algorithm for the supervised
equalization of nonlinear Wiener systems, exploiting the
system structure. We also developed an online version of this
algorithm, which combines a sliding-window approach with
a reformulation of CCA as an iterative regression problem.
Simulation examples show fast equalization of time-varying
Wiener systems and results of the influence of the different
algorithm parameters on its performance were presented.
In particular, if the length of the Wiener system filter is
not known and overestimated, the algorithm performance is
hardly affected.

0 500 1000 1500 2000
−1

−0.5

0

0.5

1

1.5

iteration

real coefficient
estimated coefficient

Fig. 9. Tracking capability of the online K-CCA algorithm. The dotted line
represents a coefficient of the linear filter of a time-varying Wiener system.
The straight line represents the estimated filter coefficient.

APPENDIX

MATRIX INVERSION FORMULAS

Adding a row and a colum: To a given non-singular matrix
A a row and column are added as shown below, resulting in
matrix K. The inverse matrix K−1 can then be expressed in
terms of the known elements and A−1 as follows:

K =
[

A b
bT d

]
, K−1 =

[
E f
fT g

]

⇒ K−1 =
[

A−1(I + bbT A−1Hg) −A−1bg

−(A−1b)T g g

]
(11)

with g = (d − bT A−1b)−1.
Removing the first row and column: From a given non-

singular matrix K a row and column are removed as shown
below, resulting in matrix D. The inverse matrix D−1 can
then easily be expressed in terms of the known elements of
K−1 as follows:

K =
[
a bT

b D

]
, K−1 =

[
e fT

f G

]

⇒ D−1 = G − ffT /e. (12)
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