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Abstract— Recent work has shown how the support vector
machine (SVM) framework can be used for blind equalization
of constant modulus (CM) signals. The basic idea consists of
exploiting the CM property of the input signals to reformulate
the blind equalization problem as a regression problem. In this
paper, we extend this idea to encompass the problem of separating
and estimating multiple CM signals mixed through an unknown
matrix (i.e., blind beamforming). The quadratic inequalities
derived from the CM property are transformed into linear ones,
thus yielding a quadratic programming (QP) problem. Then an
iterative reweighted procedure is proposed to blindly restore the
CM property. Once a signal is recovered, its contribution to the
original observations is removed and the iterative procedure can
be applied again to extract another CM signal. Simulation results
show that this SVM-based algorithm offers better performance
than the algebraic constant modulus algorithm (ACMA), mainly
when only a small number of snapshots is available.

I. INTRODUCTION

In this work we consider the problem of separating and
estimating multiple CM signals (e.g., QPSK) mixed through
an unknown matrix. This is a common problem in wireless
communications, where an array of antennas receives a num-
ber of signals from distinct locations at the same frequency
and at the same time (blind beamforming) [1].

In the context of blind beamforming, the constant modulus
algorithm (CMA) has been applied to train a set of linear
filters (beamformers) to restore the constant modulus property
of the sources [2]. Different variations and implementations
(block or iterative) of the CMA for beamforming have been
proposed [3], [4], [5]. In particular, the analytical constant
modulus algorithm (ACMA) [6] is a block technique which
finds the solution for P beamformers by solving a general-
ized eigenvalues problem. The ACMA is a robust algorithm
in the presence of noise; however, its perfomance degrades
substantially whit rank-deficient or ill-conditioned covariance
matrices. This is a typical situation, for instance, in passive
sonar, where large aperture arrays that require larger duration
snapshots are used [7]. Also, in wireless communications, the
use of blind beamforming techniques which are able to work
with only a few snapshots, can reduce unnecessary delays and
increase the throughput.

To solve this drawback, in this paper we propose a new
technique for blind beamforming based on regression via
support vector machines (SVM). The SVM-based learning
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approach has been recently applied to several unsupervised
digital communication problems, such as blind equalization
of CM signals [8], [9], or blind identifications of single-
input-multiple-output (SIMO) channels [10]. This technique
is extended here to the case of multiple CM signals mixed
through an unknown matrix. Specifically, we consider the blind
beamforming problem due to its interest in wireless communi-
cations. Nevertheless, the proposed technique can be applied to
any mixing matrix (blind source separation). Although with a
high computational cost, the proposed technique benefits from
the advantages of SVM in regression problems. In particular,
as it was expected, simulation results show that the proposed
SVM-based blind beamforming technique requires a smaller
number of snapshots than the ACMA.

II. PROBLEM FORMULATION

A set of L signals that simultaneously impinges on a linear
array of M antennas is considered. Observations at the output
of the array can be modeled as

X = AS + N,

where X is a matrix of dimensions M x N that contains N
samples of the signals (baseband) received by each of the M
antennas, S is an L x N matrix with the CM source signals,
and A is an M x L matrix that represents the array response.
Finally, N is an M x N matrix that takes into account the
additive noise present at the observations, which is modeled
as spatially white and Gaussian. For an uniform linear array
of omnidirectional antennas, matrix A is given by
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where d is the antenna separation, A is the wavelength of the
signals and 6; is the angle of arrival of the i-th signal [1].

In our problem, we suppose that a number P (known) from
the L incident signals are constant modulus. The problem



consists in finding the P beamformers w; which provide the
estimates of the original signals,

yiln] = Y wijiln] = wix[n],

for j =1,...,Pand n = 0,...,N — 1; where x[n] is the
n-th column of X.

III. SVM-BASED BLIND BEAMFORMING

In this section we consider the situation where only one of
the incident signals has constant modulus (P = 1). The goal
of the beamformer is to restore the CM property of this digital
communications signal, i.e., |[y[n]]* = Hwa[n]H2 =1, for
n=0,...,N—1

The support vector machine (SVM) is a powerful learning
technique for solving classification, regression and estimation
problems that has received considerable attention in recent
years [11], [12]. In the context of SVM regression [11], the
blind beamforming problem amounts to minimize the cost
function
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where
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is the Vapnik’s e-insensitive loss function, and C is the
regularization parameter that penalizes errors larger than e.
This problem is equivalent to minimizing the function
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forn=0,...,N —1.

In the conventional SVM formulation, the constraints are
linear with respect to the unknowns w. Then, a quadratic
programming (QP) problem results that can be efficiently
solved [13]. However, inequalities (1) and (2) are quadratic
with respect to the beamformer weights. The method proposed
in [8], [9] is used to solve this problem. In particular, the
squared modulus at the beamformer output can be rewritten
as

ly[n]||* = W x[n]||* = W'g[n],

where we have defined
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and (-)* denotes complex conjugated.

It is important to note that in (3) we have considered the
beamformer output y[n] fixed. In this way, inequalities (1) and
(2) become
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which are linear with respect to w. Now, the problem can be
written as follows: to maximize
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subject to 0 < v, &, < C'; and where (g[n], g[m]) denotes
the inner product.

In summary, by considering the weighted input patterns,
we have shown that the problem can be reformulated as a
conventional QP problem with real variables. Its solution is
given by

N—-1
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Finally, it is straightforward to show that the beamformer
coefficients can be expanded as

w= 3 (@ — oyl = Y A’ ()

where a new set of weighted Lagrange multipliers have been
defined as

Bn = (&n - an)y[n}- ®)

Typically, the linear regressor in a SVM framework includes
a bias term: y[n] = w'x[n] + b. For this particular problem,
however, b = 0 is needed; otherwise, the trivial solution w = 0
and b = 1 would be always obtained.

IV. ITERATIVE REWEIGHTED QP

The problem formulated in the previous section cannot
be directly solved in a single step, because the weighted
Lagrange multipliers depend on y[n] (see (8)). Consequently,
an iterative procedure must be applied to find the solution.
Here we use the algorithm introduced in [8]: it is called
the Iterative Reweighted Quadratic Programming (IRWQP)
algorithm, because its similarity with the Iterative Reweighted
Least Squares (IRWLS) algorithm used in some approximation
and regression problems [14].

The IRWQP method is summarized in three steps:

1) Solve the QP problem (6), assuming y[n] fixed.

2) Obtain new beamformer coefficients with (7) and update

the output y[n].

3) Repeat until convergence.

The algorithm is completed with a smoothing of the beam-
former coefficients, iteration from iteration. In this way, we
avoid a possible oscillation of the output values between



y[n] and 1/y[n]. In particular, the beamformer coefficients at
iteration k are obtained as

Wi = Awi_1 + (1 — N)wep,

where wqp are the coefficients obtained from the QP problem
at the k-th iteration, and A is a smoothing parameter.

V. BLIND SEPARATION OF MULTIPLE CM SIGNALS

In this section the simultaneous separation of P CM signals
is considered. The algorithm consists of two stages; in the
initialization stage each beamformer roughly extracts a dif-
ferent CM source. In the convergence stage each beamformer
continues iterating as in the single source method discussed
in Section IV, refining the solutions obtained in the previous

stage.
For a correct initialization, the signals extracted by the
previous beamformers 1,...,k — 1 are subtracted from the

observations at the input of the k-th beamformer. In this way,
the k-th beamformer cannot extract a CM source already

extracted by any of the previous 1,...,k — 1 beamformers.
In particular, denoting the output at the k-th beamformer as
Vi = [wel0] 1], [NV — 1],

the input data matrix for the (k4 1)-th beamformer (during the
initialization stage) is the orthogonal projection of the original
data matrix onto the complementary subspace of the extracted
CM sources,
-1
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After a number of iterations of the initialization stage, each
beamformer roughly extracts one of the CM signals. The
convergence stage begins at this point. In this final stage the
signal cancelling mechanism is not used, and each beamformer
carries out a number of iterations independently from each
other.

Finally, the proposed method for the simultaneous separa-
tion of P CM signals is summarized in Algorithm 1.

VI. SIMULATION RESULTS

In this section the proposed method is compared with the
ACMA [6]. An example with four signals is considered. Three
of the signals are QPSK (constant-modulus) and the other
is Gaussian distributed. The signals impinge on an uniform
array of omnidirectional antennas. The angles of arrival are:
0°, 30° and 60° for the QPSK signals, and —20° for the
Gaussian signal. The signal to noise ratio is 15 dB for every
signal. Examples with a different number of snapshots are
considered, N = §,10,13,16,25,50. For each number of
collected snapshots the results of 300 independent simulations
are averaged.

For the beamforming method based on SVM, the following
values are chosen: € = 0.01 (Vapnik’s function parameter) and
A = 0.3 (smoothing factor). The regularization parameter C'
is estimated according to

Initialize C, €, A and wo k.
Initialization stage
for p=1,2,... niter]l do
for k=1,2,...,P do
Compute yj, for w,_1 , and Xj.
Solve QP problem (6) and obtain wp.
Wp.k = )\Wp—l,k + (]. — )\)WQP.
Compute yj, for wp, 1, and X1 with (9).
end for
end for
Convergence stage
for p=1,2,... niter2 do
for k=1,2,...,P do
Compute yj, for w,_ , and X.
Solve QP problem (6) and obtain wgp.
Wp k= Awp_l.’k + (1 - /\)WQP.
end for
end for

Algorithm 1: Summary of the SVM-based blind beamforming algorithm.
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where g,,[n] = ||zm[n]||* and g,,[n] denotes the mean. As
discussed in [15], this choice increases the robustness of the
regression method. Finally, a maximum of 5 iterations of the
IRWQP procedure described in Section IV, were applied for
the initialization and convergence stages.

As a figure of merit for the extracted signals, we have
used the Average Modulus Error (AME), which measures the
deviation over the ideal CM property of the sources and is

defined as
N—1 1/2

1
% 3 (bl - 1)
n=0

Figure 1 shows the evolution of the AME for each source
(in logarithmic scale) versus the number of iterations for one
realization of the IRWQP procedure. The first 5 iterations
correspond to the initialization stage, whereas the last 5
correspond to the convergence stage: the final AME of the
second and third sources is reduced during the convergence
stage.

Although we have not been able to theoretically prove the
convergence of the proposed procedure yet, in all the examples
the algorithm always converged to a solution for which the
AME was a minimum. Note, however, that a minimum of
the AME does not necessarily mean that one of the original
sources has been extracted. This point is further clarified in
Fig. 2 that shows the probability of correct signal extraction
as a function of the number of snapshots for the blind SVM-
based method and the ACMA. For both methods an extracted
signal is considered correct if the quadratic error to signal
power ratio is

sk — Fxll3
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Fig. 1. AME vs. number of iterations for the IRWQP procedure. N=50,
SNR=15dB.

where sy is the original QPSK signal, and yy is a scaled
version of yy that minimizes the quadratic error with respect
to skx. The scale factor applied to yi is needed due to the
phase ambiguity (i.e. a rotation of the constellation) inherent
to blind equalization and beamforming problems.

From Fig. 2 we can see that the proposed blind-SVM
method provides a better extraction probability than the
ACMA, mainly when the number of snapshots is small
(NN < 25, which is a moderate number for array processing
applications).

Finally, Fig. 3 depicts the mean value of the final AME
for the three sources versus the number of snapshots for the
ACMA and blind-SVM approaches: again, for examples with
very few snapshots the proposed method achieves a much
lower AME than the ACMA.

It must be noticed, however, that these improvements over
the ACMA are obtained in exchange for an increase in compu-
tational cost. To elaborate on this point, let us remark that the
ACMA requires two SVD’s, the first one of an M x N matrix
and the second one of an (N — 1) x L? matrix. Moreover,
the ACMA solves a simultaneous diagonalization problem of
P matrices of dimension L x L [6]'. On the other hand, the
proposed method requires to solve (niterl + niter2) x P a
quadratic programming problem of size /N, where niterl and
niter2 are the number of iterations of the IRWQ procedure
for the initialization and convergence stages, respectively
(niterl + niter2 = 10 for this example). Using the Matlab
SVM toolbox available in [13] to solve the QP problem at
each iteration, the proposed approach requires roughly five
more times of execution time (without any code optimization)
than the ACMA. The application of some efficient techniques

IRemember that M is the number of antennas, N is the number of
snapshots, L is the number of sources and P < L is the number of CM
signals
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Fig. 2. Correct extraction probability in an example with three QPSK signals
and one with non-constant modulus, SNR = 15dB.
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Fig. 3.  Average modulus error (AME) in an example with three QPSK
signals and one non-constant modulus signal, SNR = 15dB; as a function of
the number of snapshots N.

recently proposed to solve the QP problem [16], [17], [18] can
be useful to alleviate this drawback .

VII. CONCLUSIONS

In this paper, blind beamforming for CM signals problem
has been formulated as a regression problem and a SVM based
technique has been applied to solve it. An iterative algorithm
has been proposed; it converges to one of the constant-modulus
signals present at the observations. This method has been used
to elaborate a new method with a number of beamformers
working in parallel for the extraction of multiple CM signals.

Simulation results show that the proposed method offers a
better performance than the ACMA, mainly in the cases with a
small number of snapshots, which is of interest in wireless as



well as in passive sonar applications. The proposed algorithm,
however, has a high computational cost. The application of
recently proposed efficient techniques for solving QP problems
[16], [17], or the iterative reweighted least squares procedure
described in [18] can be useful for reducing this drawback .

Finally, another advantage of the proposed procedure is that
it can readily be extended to nonlinear blind beamforming by
performing the linear regression in another space of higher
dimension by the so-called kernel trick [12]. The nonlinear
beamforming problem, as well as the development of “on-
line” adaptive versions of the proposed batch procedure are
currently under investigation.
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