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ABSTRACT

In this paper we consider the application of a homotopy-continuation
based method for finding interference alignment (IA) solutions for
the deterministic K-user multiple-input multiple-output (MIMO)
channel, when all users wish to send one stream of data. Homo-
topy continuation is based on the idea of deforming a start system,
whose solution can easily be found, to reach the target system that
we want to solve. For the IA problem we show that a good initial
system is obtained by considering a rank-one approximation of the
original MIMO interference channels. Specifically, as long as the
original system is feasible, a rank-one approximation of the MIMO
channels allow us to find a closed-form interference-free solution.
The proposed algorithm is shown to have a lower complexity than
previous methods with comparable sum-rate performance. Fur-
thermore, it is also shown that the trivial system (rank-one MIMO
channels) and target system (full-rank MIMO channels) have ex-
actly the same number of solutions. Exploiting this equivalence,
an efficient method to enumerate all the IA solutions that exist in a
single-beam MIMO network is proposed.

Index Terms— Interference alignment, interference channel,
MIMO, homotopy continuation, mixed volume.

1. INTRODUCTION

The degrees of freedom (DoF) of wireless interference networks rep-
resent the number of non-interfering data streams that can be simul-
taneously transmitted over the network. Recently, it has been shown
that to achieve all or most of the achievable DoF of K-user multiple-
input multiple-output (MIMO) networks with constant channel co-
efficients, the interference from other transmitters must be aligned at
each receiver in a lower-dimensional subspace [1]. This is the basic
idea of the interference alignment (IA) technique.

In this paper we focus on single-beam K-user MIMO networks
in which the transmitters use only one beamforming vector. Further-
more, the decoders are assumed to be linear. Even for single-beam
networks, closed-form IA solution are only known so far for some
particular scenarios, such as the well-known 3-user channel with 2
antennas at both sides of the link, or the 4-user MIMO network with
2 and 3 antennas at the transmitter and receiver side, respectively
[2]. Also, a constructive method for finding closed-form solutions
has been proposed for the case where the number of transmit anten-
nas equals the number of receive antennas (NT = NR = N ) and
the number of users equals K = N + 1 [3].
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In more complex scenarios, we typically have to resort to iter-
ative algorithms to find the set of IA beamformers. To this end, a
popular algorithm based on an alternating minimization procedure
was proposed in [4, 5]. Other algorithms that do not attempt per-
fect alignment and consider alternative optimization criteria such as
the minimum mean-square error (Min MSE) [6], or the maximum
signal-to-interference noise ratio (Max SINR) [4] have been also
considered. However, the computational complexity of all these ap-
proaches becomes a problem in practice.

In this paper, we explore the application of a homotopy-conti-
nuation based method for solving the multivariate polynomial sys-
tem of equations that results from the interference alignment con-
ditions. Homotopy methods find the solution of a target system of
nonlinear equations by smoothly deforming the known solutions of
a start system (typically a system with a trivial solution). For the
IA problem we show that a good initial system is obtained by con-
sidering a rank-one approximation of the original MIMO interfer-
ence channels. Specifically, as long as the original system is feasi-
ble, a rank-one approximation of the MIMO channels allows us to
find an interference-free solution in which each transmitter employs
zero-forcing beamforming (ZF-BF) to a subset of receivers. Interest-
ingly, exploiting classical results in algebraic geometry [7] we also
show that the number of solutions of the trivial system (using rank-
one channels) is exactly the same as the number of IA solutions of
the original system with full-rank channels. Since the rank-deficient
system can be trivially solved, this allow us to count and find (via
homotopy-continuation) all IA solutions for a given problem.

2. SYSTEM MODEL AND BACKGROUND

We consider the K-user interference channel, comprised of K trans-
mitter - receiver pairs (links) that interfere with each other. We as-
sume that all users wish to send one stream of data and are equipped
with NT and NR antennas at each side of the link. These scenarios
are usually denoted as (NT × NR, 1)

K . Let now vk ∈ C
NT×1 be

the transmit beamforming vector for user k. The discrete-time sig-
nal at receiver k is the superposition of the signals transmitted by the
K users, weighted by their respective channel gains and affected by
noise, i.e.,

yk = Hkkvksk +
∑
l �=k

Hklvlsl +wk, (1)

where Hkl ∈ C
NR×NT is the flat-fading MIMO channel from trans-

mitter l to receiver k, sl ∈ C is the signal transmitted by the l-th user,
and wk is the additive and spatially white Gaussian noise at receiver
k.

For the MIMO network in (1), interference alignment is possible
if there exists a set of unit-norm beamformers vl (l = 1, . . . ,K) and
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unit-norm decoders uk (k = 1, . . . ,K) such that

uH
k Hklvl = 0, ∀k �= l and (2)

uH
k Hkkvk �= 0. (3)

The Tx and Rx beamformers in (2) are rotationally invari-
ant. Therefore, without loss of generality we can assume that
the first element of each vector is fixed to one (e. g. vl =

[1 v
(1)
l . . . v

(NT−1)
l ]T ). Moreover, for notational convenience we

assume that the entries of the Rx beamformer are complex conju-

gated, uk = [1 u
(1)†
k . . . u

(NR−1)†
k ]T , where complex conjugation

is denoted with the † operator.
From (2) it is evident that finding an IA solution amounts to

solving a system, E , of bilinear equations, where each equation has
(NT − 1) + (NR − 1) free variables [2]. For example, for the
(3 × 3, 1)5 MIMO network (for which no closed-form IA solution
is known) the structure of one of these bilinear equations is

h
(1,1)
kl + h

(1,2)
kl v

(1)
l + h

(1,3)
kl v

(2)
l +

h
(2,1)
kl u

(1)
k + h

(2,2)
kl v

(1)
l u

(1)
k + h

(2,3)
kl v

(2)
l u

(1)
k +

h
(3,1)
kl u

(2)
k + h

(3,2)
kl v

(1)
l u

(2)
k + h

(3,3)
kl v

(2)
l u

(2)
k = 0

(4)

where h
(i,j)
kl is the ij-th entry of Hkl.

The solvability of the multivariate polynomial system E has been
analyzed in [2], where it has been shown that the (3× 3, 1)5 system
is solvable because it consists of Ne = K(K − 1) = 20 equations
in the same number of variables (Nv = K(NT + NR − 2) = 20).
Moreover, the system is generic [8, Chapter 4] due to the assump-
tion of MIMO channel matrices with independent and identically
distributed (i.i.d.) elements. To solve this multivariate polynomial
system, one can resort to iterative approaches such as as those pro-
posed in [4] and [5]. In these techniques, the precoders vl are first
fixed to some random value thus reducing E to a system of linear
equations in uk, which can be easily solved. In the next step, the
values of uk are fixed and a solution to vl is found by solving again
a linear system. The process is iterated until convergence.

Another well-known method in the mathematical literature for
numerically solving systems of polynomial equations is the homo-
topy continuation technique [8, 9]. The main contribution of this
paper is to particularize this mathematical tool for the system E re-
sulting from the IA conditions, and discuss the advantages of this
approach.

3. A HOMOTOPY CONTINUATION METHOD FOR IA

Homotopy continuation is a method for solving systems of polyno-
mial equations which is based on the idea of defining a parametrized
transformation that gradually deforms a start system, whose solu-
tions are known, to reach the unknown solutions of the system that
we wish to solve, or target system. Usually, the start system is cho-
sen to be easily solvable, therefore, it is called trivial system [8, 9].

3.1. Closed-form solution for rank-one channels

A suitable trivial system for our problem can be found by consid-
ering rank-one MIMO interference channels, H̄kl, which can be
obtained by truncating the singular value decomposition (SVD) of
the original full-rank channel matrices, Hkl

1. The main point of

1It is interesting to remark that rank-one MIMO channels also appear in
single-input multiple-output (SIMO) interference networks when symbol ex-
tensions are applied over time-invariant channels, or due to the propagation
geometry (“keyhole channel”).
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Fig. 1. Signal space at the receiver of user 1 for the (3× 3, 1)5 sce-
nario with rank-one MIMO channels. In this case, user 1 only sees
the interference coming from users 2 and 3 (users 4 and 5 employ
ZF-BF), which spans a subspace of dimension 2. The direction or-
thogonal to that subspace provides the required signalling dimension
free of interference (u1).

the proposed rank-one approximation is that the bilinear equations
in the target system, E , can be factored as a product of two linear
terms. The first one is a linear combination of the decoder variables,
whereas the second term only involves the precoder variables. More
precisely, if the rank-one MIMO channel H̄kl is given by

H̄kl = σklfklg
H
kl (5)

the bilinear equations obtained from replacing Hkl by H̄kl in (2)
can be written in the following form

uH
k fkl︸ ︷︷ ︸

L(uk)

gH
klvl︸ ︷︷ ︸

L(vl)

= 0, (6)

where L(uk) is a linear form in the variables u
(i)
k , ∀i ∈ {1, . . . , NR−

1}, while L(vl) is a linear form in the precoder variables v
(j)
l , ∀j ∈

{1, . . . , NT − 1}. Taking again the (3 × 3, 1)5 scenario to il-
lustrate this point, one of the bilinear equations for the rank-one
approximation would be

(f
(1)
kl + f

(2)
kl u

(1)
k + f

(3)
kl u

(2)
k )(g

(1)†
kl + g

(2)†
kl v

(1)
l + g

(3)†
kl v

(2)
l ) = 0.

The new set of bilinear equations, denoted here as Ē , can be trivially
solved by nulling a subset of linear terms in such a way that all the
nulled linear factors form a full-rank linear system. In other words,
a valid subset of linear terms must be a linear system with as many
variables as independent equations. Thus, solving the trivial system
consists of solving a linear equation system. Looking more carefully
at the IA conditions (2) for rank-one channels, we observe that strict
interference alignment in this case is neither needed nor possible.
Actually, with rank-one MIMO interference channels it is possible
to create, at any given receiver, a subspace free of interference of
the required dimensionality just by selecting a subset of interfering
users that employ zero-forcing beamforming (ZF-BF) for that partic-
ular receiver. In other words, each transmitter must design its signal
to lie in the nullspace of a chosen rank-one MIMO channel. This
idea is depicted in Fig. 1 for the (3 × 3, 1)5 network. Specifically,
users 4 and 5 employ ZF-BF so as to not cause interference on user
1, whereas the interference caused by users 2 and 3 spans a subspace
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of dimension 2 (remember that we are considering rank-one chan-
nels). Therefore, user 1, who observes a 3-dimensional subspace,
has one signalling dimension free of interference (u1 in the figure).
Let us notice, finally, that global channel knowledge is not required
anymore in order to obtain interference-free signalling dimensions
with rank-one channels. Nevertheless, certain coordination among
users is still needed in order to determine which subset of interfering
users should employ ZF-BF at a given Rx.

3.2. Path-following procedure

The general IA problem in (2) can be reliable solved by defining a
simple homotopy q as follows

q(x, t) = γ(1− t)Ē(x) + tE(x), γ ∈ C, t ∈ [0, 1] (7)

where Ē is the start system and E is the target system. The homotopy
q is a Nv × 1 column vector and is a function of the vector x, and
the continuation parameter, t. The vector x is a Nv × 1 vector that
contains all the variables in Ē or E . The constant γ is randomly
chosen to guarantee that the solution paths defined by the homotopy
are regular. A solution path is regular if the Jacobian matrix2 of q is
regular for all t ∈ [0, 1).

Our goal is to move along the path, from t = 0 to t = 1 in
small steps, Δt. Usually, this path is followed by using a numerical
predictor/corrector method. Basic Euler prediction and Newton cor-
rection, are both accomplished by considering a local model of the
homotopy function via its first order approximation:

q(x+Δx, t+Δt) � q(x, t) +Qx(x, t)Δx+ qt(x, t)Δt (8)

where Qx = ∂q
∂x

is the Nv × Nv Jacobian matrix and qt = ∂q
∂t

has size Nv × 1. If we have a point (x1, t1) near the path, that
is, q(x1, t1) � 0, one may predict to a new approximate solution
at t1 + Δt by setting q(x + Δxp, t1 + Δt) = 0 and solving the
resulting linear system to get the Euler prediction step

Δxp = −Q−1
x (x1, t1)qt(x1, t1)Δt.

On the other hand, when q(x1, t1) is not as small as one would like,
one may hold t constant by setting Δt = 0 and solving the equation
to get the Newton correction step

Δxc = −Q−1
x (x1, t1)q(x1, t1).

Although these are the conventional steps of a path-following pro-
cedure, there are many possible choices for the implementation of
each step. A common strategy is to execute the Newton correc-
tion step for a maximum of MaxNwtIter times. The correction
is said to be successful if Newton’s method converges within a
pre-specified path-tracking tolerance, NwtTol, within the allowed
number of iterations. Usually, a good choice of the parameters is:
MaxNwtIter = 3 and NwtTol = 10−4. Also, the step length
must be adapted depending on the success of the path tracking. This
path-following procedure is carried out in the Step 4 of the overall
algorithm that is summarized in Algorithm 1.

4. NUMBER OF IA SOLUTIONS

The equivalence between the IA problem and the solution of a set of
multivariate polynomial equations has been exploited in [2] to find

2The Jacobian matrix Fx = ∂f
∂x

of a system f is a matrix whose entries
are the derivatives of each equation with respect to the variables in f .

Algorithm 1: Perfect interference alignment via homotopy
continuation for single-beam scenarios.

1. Obtain the best rank-one approximation, H̄kl, of every
channel matrix Hkl via the SVD decomposition.

2. Build the start system, Ē(x) = 0, from channel matrices H̄kl

and the target system, E(x) = 0, from channel matrices Hkl.

3. Obtain one solution, xĒ , to the start system.

4. Execute the path-following procedure on the homotopy

q(x, t) = γ(1− t)Ē(x) + tE(x)
Input: q(x, t), xĒ , Δt, NwtTol, MaxNwtIter
Output: A solution to the target system, xE
t = 0, x = xĒ
t∗ = t, x∗ = x
while t < 1 do

// Euler prediction

Δxp = −Q−1
x (x, t)qt(x, t)Δt

x = x+Δxp

// Newton correction
t = t+Δt
for iter=1 to MaxNwtIter do

Δxc = −Q−1
x (x, t)q(x, t)

x = x+Δxc

if ||Δxc|| < NwtTol then
Success = true break

if Success then
Δt = 2Δt
t∗ = t, x∗ = x

else
Δt = Δt/2
t = t∗, x = x∗

xE = x

5. Build precoders, vl, and decoders, uk, from the solution xE .

how many different IA solutions exist for a particular scenario (or
to provide upper bounds when the exact number of solutions can-
not be found). Based on classic results from algebraic geometry,
in [2] it is stated that, for feasible single-beam MIMO networks,
the number of IA solutions coincides with the mixed volume of the
Newton polytopes that support each equation of the system (i.e.,
N (E) = MV(E)). Although this solves theoretically the problem,
at least for single-beam networks, in practice the computation of the
mixed volume of a set of bilinear equations using the available soft-
ware tools [10] can be very demanding. In consequence, the exact
number of IA solutions was only known so far for some particular
cases [2, 11].

Interestingly, the introduction of rank-one MIMO channels in
the network also opens the possibility to count the exact number of
IA solutions in a much more efficient way. The main point is to
notice that the number of solutions of the trivial system coincides
with the number of solutions of the original system with full-rank
channels, N (Ē) = N (E). The proof is straightforward by taking
into account that the same monomials are present in both Ē and E .
We can now use a tree search approach along with a backtracking
procedure to count the number of solutions of N (Ē) 3. Since we
are exploiting the specific structure of the IA bilinear equations, this

3Due to the lack of space we do not provide details here.
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Scenario (2× (K − 1), 1)K (3× (K − 2), 1)K (4× (K − 3), 1)K

K=3 2 – –
K=4 9 9 –
K=5 44 216 44
K=6 265 7570 7570
K=7 1854 357435 1975560
K=8 14833 22040361 749649145

Table 1. Number of IA solutions for several symmetric single-beam
scenarios.

procedure is much more efficient than resorting to general software
packages to compute the mixed volume. Using this method we have
obtained the results in Table 1. As an example, our enumeration
method for the (3×5, 1)7 scenario takes less than 6 minutes to count
the 357435 solutions, whereas the existing software takes several
days to obtain the same solution.

5. NUMERICAL RESULTS

In this section, the proposed algorithm is evaluated in terms of sum-
rate performance and computational complexity. We consider the
(3 × 3, 1)5 interference MIMO channel and evaluate the average
sum-rate with respect to the SNR for the proposed IA algorithm
(IA-HC), the conventional IA (IA-AM) and MaxSINR algorithms
in [4]. The results of 100 independent realizations were averaged. In
Fig. 2 we observe that the proposed algorithm provides a sum-rate
performance comparable to that provided by the IA-AM algorithm.
However, one of the advantages of the proposed algorithm is that it
can find and trace all the IA solutions starting from a simplified net-
work created from rank-one channels. For this setting the total num-
ber of solutions is 216. With the proposed method, it is very easy to
find all the different solutions for the rank-one channels, and then,
apply the homotopy-continuation method to get all the solutions for
the full-rank channels. This would be impossible for the conven-
tional IA algorithm, which typically starts the alternating minimiza-
tion procedure with a set of random precoders. Therefore, with the
proposed method it is also possible to find the maximum sum-rate
solution (IA-MaxSR-HC in the figure) by exhaustive search on the
whole set of solutions. As expected, for low SNRs the best results
are provided by the MaxSINR algorithm, but at high SNRs, where a
perfectly aligned solution is desirable, the IA-MaxSR-HC provides
the best results.

Finally, although we do not have enough space to provide a de-
tailed analysis, let us mention that the computational complexity of
the IA-HC algorithm is lower than that of the IA-AM algorithm.
Just to give an idea, for the (3 × 3, 1)5 scenario, the total number
of complex floating point operations required to compute a solution
with the IA-HC algorithm is approximately five times lower than
with the conventional IA algorithm.

6. CONCLUSION

In this paper we have proposed a new method for solving the single-
beam IA problem via homotopy continuation. The basic idea is de-
forming a start system, whose solution can easily be found, to reach
the target system that we want to solve. We have shown that a rank-
one approximation of the original MIMO interference channels gives
a good start system and allows to enumerate all the IA solutions. The
proposed algorithm is shown to have a lower complexity than pre-
vious methods with comparable sum-rate performance. As a further
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Fig. 2. Average sum-rate performance of the IA-AM, MaxSINR,
IA-HC and IA-MaxSR-HC algorithms for the (3×3, 1)5 scenario.

line, we are studying how to extend the proposed technique to multi-
beam scenarios. In this case, the start system should be obtained
from rank-d channels, where d is the number of interference-free
streams per user.
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