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ABSTRACT

This work considers the independent component analysis (ICA) of
quaternion random vectors. In particular, we focus on the Gaussian
case, and therefore the ICA problem is solved by exclusively ex-
ploiting the second-order statistics (SOS) of the observations. In the
quaternion case, the SOS of a random vector are given by the covari-
ance matrix and three complementary covariance matrices. Thus,
quaternion ICA amounts to jointly diagonalizing these four matri-
ces. Following a maximum likelihood (ML) approach, we show that
the ML-ICA problem reduces to the minimization of a cost func-
tion, which can be interpreted as a measure of the entropy loss due
to the correlation among the estimated sources. In order to solve the
non-convex ML-ICA problem, we propose a practical quasi-Newton
algorithm based on quadratic local approximations of the cost func-
tion. Finally, the practical performance and potential application of
the proposed technique is illustrated by means of numerical exam-
ples.

Index Terms— Independent component analysis, quaternion,
properness, maximum likelihood, second-order statistics

1. INTRODUCTION

The interest in quaternion signal processing has increased in the last
years due to its applications in image processing [1], wind model-
ing [2], and design (and processing) of space-time block codes [3].
This increasing popularity makes necessary the development of a
statistical theory for quaternion random vectors, as well as the gen-
eralization of the classical multivariate statistical analysis techniques
to the quaternion case. Thus, in [4] the authors have considered the
quaternion extensions of principal component analysis (PCA), par-
tial least squares (PLS), multiple linear regression (MLR) and canon-
ical correlation analysis (CCA). However, the independent compo-
nent analysis (ICA) [5] of quaternion random vectors has received
limited attention [6, 7], even though it can be considered (together
with PCA) as the most important multivariate statistical analysis
technique.

In a previous work [7], we have shown that under mild assump-
tions on the properness of the quaternion random vector, the ICA
problem can be solved from the second-order statistics (SOS) of the
observations. In this work, we focus on the derivation of a practical
quaternion ICA algorithm for Gaussian data, which requires the joint
diagonalization of the quaternion covariance matrix and three com-
plementary covariance matrices [4]. In particular, following a maxi-
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mum likelihood (ML) approach, we show that the ML-ICA problem
reduces to the minimization of a non-convex cost function, which
can be interpreted as the entropy loss due to the correlations among
the estimated sources. In order to solve the non-convex optimiza-
tion problem, we propose a quasi-Newton algorithm based on local
quadratic approximations of the cost function. Finally, some numer-
ical results illustrate the performance and practical application of the
proposed algorithm.

2. PRELIMINARIES

Throughout this paper we will use bold-faced upper case letters to
denote matrices, bold-faced lower case letters for column vectors,
and light-faced lower case letters for scalar quantities. Superscripts
(·)T and (·)H denote transpose and Hermitian (i.e., transpose and
quaternion conjugate), respectively. The notation A ∈ Rm×n (re-
spectively A ∈ Hm×n) means that A is a real (respectively quater-
nion) m × n matrix. �(A), Tr(A), and |A| denote the real part,
trace and determinant of matrix A. Im is the identity matrix of di-
mension m, 0m×n is the m × n zero matrix, and diag(a) denotes
the diagonal matrix with vector a along its diagonal. Finally, E is
the expectation operator, and in general Ra,b is the cross-correlation
matrix for vectors a and b, i.e., Ra,b = EabH .

2.1. Quaternion Algebra

Quaternions are hypercomplex numbers defined by

x = r1 + ηrη + η′rη′ + η′′rη′′ ,

where r1, rη, rη′ , rη′′ ∈ R are four real numbers, and the three
imaginary units (η, η′, η′′) satisfy

η2 = η′2 = η′′2 = ηη′η′′ = −1,

which also implies ηη′ = η′′, η′η′′ = η, and η′′η = η′.
Quaternions form a skew field H [8], which means that they sat-

isfy the axioms of a field except the commutative law of the prod-
uct, i.e., for x, y ∈ H, xy �= yx in general. The conjugate of
a quaternion x is x∗ = r1 − ηrη − η′rη′ − η′′rη′′ , and the in-
ner product of two quaternions x, y is defined as xy∗. Two quater-
nions are orthogonal if and only if (iff) their scalar product (the real
part of the inner product) is zero, and the norm of a quaternion x is

|x| = √
xx∗ =

√
r21 + r2η + r2η′ + r2η′′ . Furthermore, we say that

ν is a pure unit quaternion iff ν2 = −1 (i.e., iff |ν| = 1 and its real
part is zero). Finally, the involution of a quaternion x over a pure
unit quaternion ν is defined as

x(ν) = −νxν,

and it represents a rotation of angle π in the imaginary plane orthog-
onal to ν [8].
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2.2. Second-Order Statistics of Quaternion Random Vectors

Let us define1 x̄ =
[
xT ,x(η)T ,x(η′)T ,x(η′′)T

]T
as the augmented

quaternion vector, which allows us to simplify the second-order sta-
tistical analysis of the quaternion vector x [4]. In particular, the SOS
of x are given by the augmented covariance matrix

Rx̄,x̄ =

⎡
⎢⎢⎢⎢⎣

Rx,x Rx,x(η) R
x,x(η′) R

x,x(η′′)

R
(η)

x,x(η) R
(η)
x,x R

(η)

x,x(η′′) R
(η)

x,x(η′)

R
(η′)
x,x(η′) R

(η′)
x,x(η′′) R

(η′)
x,x R

(η′)
x,x(η)

R
(η′′)
x,x(η′′) R

(η′′)
x,x(η′) R

(η′′)
x,x(η) R

(η′′)
x,x

⎤
⎥⎥⎥⎥⎦ ,

where we can readily identify the covariance matrix Rx,x = ExxH

and three complementary covariance matrices Rx,x(η) = Exx(η)H ,

R
x,x(η′) = Exx(η′)H and R

x,x(η′′) = Exx(η′′)H . These matri-
ces have been used in [4] to introduce three different definitions of
quaternion properness. However, in this paper we will focus on the
strongest kind of quaternion properness (Q-properness), and we will
say that a quaternion random vector is proper iff (all) their comple-
mentary covariance matrices vanish.

3. INDEPENDENT COMPONENT ANALYSIS OF
QUATERNION GAUSSIAN VECTORS

3.1. ICA Model

Consider a quaternion random vector s ∈ Hm×1 representing m in-
dependent source signals, which are mixed by a non-singular mixing
matrix A ∈ Hm×m. That is, we have the model x = As, where
x ∈ Hm×1 is a quaternion random vector representing the available
observations. Due to the trivial ambiguities of the ICA model (per-
mutations and scale factors) [5], we can assume without loss of gen-
erality that the sources are unit-variance quaternion random variables

with diagonal complementary covariance matrices Λη = Ess(η)
H

,

Λη′ = Ess(η
′)H , Λη′′ = Ess(η

′′)H , i.e., we have

Rs̄,s̄ = Es̄s̄H =

⎡
⎢⎢⎢⎣

Im Λη Λη′ Λη′′

Λ
(η)
η Im Λ

(η)

η′′ Λ
(η)

η′

Λ
(η′)
η′ Λ

(η′)
η′′ Im Λ

(η′)
η

Λ
(η′′)
η′′ Λ

(η′′)
η′ Λ

(η′′)
η Im

⎤
⎥⎥⎥⎦ . (1)

With the above assumptions, and limiting our analysis to
SOS-based techniques, the ICA problem amounts to finding the
mixing matrix A and the complementary covariance matrices

Λη,Λη′ ,Λη′′ = Ess(η
′′)H satisfying

AAH = Rx,x, AΛηA
(η)H = Rx,x(η) ,

AΛη′A(η′)H = R
x,x(η′) , AΛη′′A(η′′)H = R

x,x(η′′) .

3.2. ML-ICA of Quaternion Gaussian Vectors

Let us consider T vector observations x[t] = As[t] (t = 0, . . . , T −
1) of the ICA model. Thus, assuming that the sources s[t] are i.i.d.
zero-mean quaternion Gaussian vectors with independent elements

1From now on, we will use the notation A(ν) to denote the element-wise
involution of matrix A.

of unit variance, it can be proved [9] that the ML estimation problem
can be written as

minimize
W∈D,Rs̄,s̄∈R

R̂ȳ,ȳ=WR̂x̄,x̄W
H

DKL(R̂ȳ,ȳ‖Rs̄,s̄), (2)

where DKL(R̂ȳ,ȳ‖Rs̄,s̄) is the Kullback-Leibler divergence be-
tween two zero-mean quaternion Gaussian distributions with covari-

ance matrices R̂ȳ,ȳ and Rs̄,s̄ [4]

DKL(R̂ȳ,ȳ‖Rs̄,s̄) =
1

2
ln

|Rs̄,s̄|
|R̂ȳ,ȳ|

+
1

2
�
[
Tr

(
R−1

s̄,s̄R̂ȳ,ȳ

)]
− 2m,

R̂x̄,x̄ = 1
T

∑T−1
t=0 x̄[t]x̄H [t] is the sample covariance matrix esti-

mator (which is assumed to be non-singular),

W =

⎡
⎢⎢⎣

W 0m×m 0m×m 0m×m

0m×m W(η) 0m×m 0m×m

0m×m 0m×m W(η′) 0m×m

0m×m 0m×m 0m×m W(η′′)

⎤
⎥⎥⎦ , (3)

W = A−1 is the estimated separation matrix, and R and D are the
the sets of quaternion matrices with the structures in (1) and (3).

Summarizing, the ML-ICA problem reduces to the minimiza-
tion of the KL divergence between an approximately diagonalized
version of R̂x̄,x̄, and the theoretical augmented covariance matrix
of the sources Rs̄,s̄.

3.3. Reformulation of the ML-ICA Problem

Unfortunately, the cost function in (2) is non-convex. However,
taking into account the invariance of the KL divergence under

linear transformations [10], we can write DKL(R̂ȳ,ȳ‖Rs̄,s̄) =

DKL(R̂ỹ,ỹ‖Rs̃,s̃), where

Rs̃,s̃ = PRs̄,s̄P
T =

⎡
⎢⎢⎢⎢⎣
Rs̄1,s̄1 04×4 · · · 04×4

04×4 Rs̄2,s̄2

. . .
...

...
. . .

. . . 04×4

04×4 · · · 04×4 Rs̄m,s̄m

⎤
⎥⎥⎥⎥⎦ ,

R̂ỹ,ỹ = PR̂ȳ,ȳP
T =

⎡
⎢⎢⎢⎢⎢⎣

R̂ȳ1,ȳ1 R̂ȳ1,ȳ2 · · · R̂ȳ1,ȳm

R̂ȳ2,ȳ1 R̂ȳ2,ȳ2

. . .
...

...
. . .

. . .
...

R̂ȳm,ȳ1 · · · · · · R̂ȳm,ȳm

⎤
⎥⎥⎥⎥⎥⎦ ,

P is a permutation matrix, s̄k ∈ H4×1 denotes the augmented vector
for the k-th source sk (k-th element of s), ȳk ∈ H4×1 is defined in
a similar way, and Rs̄k,s̄k , R̂ȳk,ȳk ∈ H4×4 are the corresponding
augmented covariance matrices.

With the above definitions, it is easy to prove that the matrix

Rs̃,s̃ minimizing DKL(R̂ỹ,ỹ‖Rs̃,s̃) is given by the block-diagonal

version of R̂ỹ,ỹ, i.e.,

Rs̃,s̃ = D̂ỹ,ỹ =

⎡
⎢⎢⎢⎢⎢⎣

R̂ȳ1,ȳ1 04×4 · · · 04×4

04×4 R̂ȳ2,ȳ2

. . .
...

...
. . .

. . . 04×4

04×4 · · · 04×4 R̂ȳm,ȳm

⎤
⎥⎥⎥⎥⎥⎦ ,
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which reduces the ML estimation problem to

minimize
W∈D

−1

2
ln |Φ̂ỹ,ỹ|, (4)

where Φ̂ỹ,ỹ = D̂
−1/2
ỹ,ỹ R̂ỹ,ỹD̂

−1/2
ỹ,ỹ is defined as the coherence ma-

trix. Interestingly, − 1
2
ln |Φ̂ỹ,ỹ| can be seen as a measure of the

entropy loss due to the correlation among the separated sources (en-
tries of y). Thus, as one could expect, the optimization problem
in (4) amounts to finding the separation matrix W minimizing the
correlation (dependence) among the estimated sources y.

4. PROPOSED ML-ICA ALGORITHM

In this subsection, we propose a practical quasi-Newton ML-ICA al-
gorithm based on local quadratic approximations of the non-convex

cost function − 1
2
ln |Φ̂ỹ,ỹ|. Analogously to other general joint diag-

onalization algorithms [11], the separation matrix is updated at each
iteration as W ← (Im +Δ)W, where Δ ∈ Hm×m is assumed to
be a small quaternion matrix.2

Let us start by introducing the matrix

W̃ = PWPT =

⎡
⎢⎢⎣
W̃1,1 · · · W̃1,m

...
. . .

...

W̃m,1 · · · W̃m,m

⎤
⎥⎥⎦ ,

where P ∈ R4m×4m is the permutation matrix defined in the pre-

vious section (i.e., R̂ỹ,ỹ = PR̂ȳ,ȳP
T ), and W̃k,l ∈ H4×4 is a

diagonal matrix obtained from the element wk,l in the k-th row and

l-th column of W as W̃k,l = diag

([
wk,l, w

(η)
k,l , w

(η′)
k,l , w

(η′′)
k,l

]T)
.

Now, with similar definitions of δk,l ∈ H, Δ̃ ∈ H4m×4m and

Δ̃k,l ∈ H4×4, we are ready to introduce the following lemma,
whose proof is omitted here due to the lack of space, but can be
found in the journal paper [9].

Lemma 1 Given a coherence matrix Φ̂ỹ,ỹ close to the identity, and
assuming ‖Δ‖2 � 1, the cost function − 1

2
ln |Φ̂ỹ,ỹ| can be ap-

proximated by the following quadratic expression:

−1

2
ln |Φ̂ỹ,ỹ| 	 1

2

m∑
k=1

m∑
l=k+1

‖Jk,l(δk,l, δl,k)‖2 , (5)

where

Jk,l(δk,l, δl,k) = R̂
−1/2
ȳk,ȳk

R̂ȳk,ȳlR̂
−1/2
ȳl,ȳl

+ R̂
−1/2
ȳk,ȳk

Δ̃k,lR̂
1/2
ȳl,ȳl

+ R̂
1/2
ȳk,ȳk

Δ̃H
l,kR̂

−1/2
ȳl,ȳl

.

Thanks to the approximation in (5), the optimization problem to
be solved in each iteration of the proposed method is decoupled into
m(m− 1)/2 simpler problems. In particular, the elements δk,l, δl,k
are obtained by solving the least squares (LS) problem

minimize
δk,l,δl,k

‖Jk,l(δk,l, δl,k)‖2 , (6)

whose solution is easily obtained by rewriting Jk,l(δk,l, δl,k) as a
(quadratic) function of the eight real components of δk,l and δl,k.
Finally, we must note that the computational complexity of the pro-
posed method, which is summarized in Algorithm 1, is dominated
by the solution of the m(m− 1)/2 LS problems in (6).

2In the final implementation of the algorithm Δ will be scaled (if neces-
sary) to ensure the invertibility of (Im +Δ).

Algorithm 1 Quaternion ML-ICA

Input: R̂x̃,x̃ ∈ H4m×4m and threshold 0 < μ < 1.
Output: Separation matrix W ∈ Hm×m.

Initialize: W = Im, R̂ỹ,ỹ = R̂x̃,x̃.
repeat

for k = 1, . . . ,m and l = k + 1, . . . ,m do
Obtain δk,l, δl,k solving the LS problem in (6).

end for
if ‖Δ‖ ≥ μ then

Δ ← μΔ/‖Δ‖
end if
Update W ← (Im +Δ)W.

Update R̂ỹ,ỹ ← (I4m + Δ̃)R̂ỹ,ỹ(I4m + Δ̃)H .
until Convergence

5. SIMULATION RESULTS

In this section, the performance of the proposed algorithm is illus-
trated by means of some simulation examples. In all the cases, the
entries of the mixing matrix have been generated as i.i.d. quaternion
proper Gaussian random variables with zero mean and unit variance,
and the sources are independent quaternion random variables with
zero mean, unit variance, and different complementary variances.
The proposed quaternion ML-ICA algorithm has been limited to 50
iterations, and the threshold to ensure invertibility (see Algorithm 1)
has been fixed to μ = 0.99.

In the first example we consider T = 100 observations of a
(square) mixture of m = 10 Gaussian sources with randomly gen-
erated SOS.3 In order to evaluate the possible convergence to local
minima, the proposed algorithm has been initialized in 100 different
points. Additionally, we have also considered 100 independent ex-
periments, with independently generated SOS and mixing matrices.
The results are shown in Fig. 1, where we can see that, despite the

non-convexity of the cost function J = − 1
2
ln |Φ̂ỹ,ỹ|, the proposed

algorithm always converges to the same solution.

In the second example we illustrate the application of the pro-
posed ML-ICA algorithm in a practical problem. In particular,
we consider a multiuser wireless communications system based
on Alamouti coding [12]. It is well-known [3] that the Alamouti
signal model can be compactly written in terms of quaternions as
x = hs+n, where x, h, s and n are quaternion scalars representing
the received symbols (in two consecutive channel uses), the 2 × 1
multiple-input single-output (MISO) channel, the information sym-
bols (s is constructed from two complex symbols), and the noise.
Thus, if we consider a synchronous uplink channel with m users and
a base station with m receive antennas, we obtain the model

x = Hs+ n.

In this experiment we consider a multiuser system with m =
2 users transmitting with the same power. The entries of H and
n are independent zero-mean proper quaternion Gaussian random
variables. The symbols of the first user are QPSK jointly com-
plex proper, whereas the second user transmits QPSK symbols with
a power imbalance between the in-phase and quadrature branches.
Specifically, the power of the in-phase component is three times

3The four real components of each quaternion source follow a zero mean
Gaussian distribution with covariance BBT , where the entries of B ∈ R4×4

are i.i.d zero mean and unit variance random variables.
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Fig. 1. Convergence of the ML-ICA algorithm. Ten sources and T =
100 vector observations. a) Fixed data and different initialization
points. b) Independent experiments.

higher than that of the quadrature component. This results in a mix-
ture of two independent quaternion sources, one of them proper and
the other improper.

For comparison purposes, we have evaluated the quaternion ex-
tension of the Infomax algorithm [6,13], as well as the linear MMSE
receiver with perfect channel knowledge. The obtained results for
different numbers of vector observations are shown in Fig. 2, where
we can see that the proposed method clearly outperforms the ap-
proach in [6]. This is due to the fact that the ML-ICA algorithm is
solely based on SOS, which can be accurately estimated from a lim-
ited number of vector observations. Furthermore, we must note that
this example illustrates the satisfactory performance of the proposed
algorithm even in the case of non-Gaussian data.

6. CONCLUSIONS

In this paper we have presented an independent component analysis
(ICA) algorithm for quaternion Gaussian vectors. In the quaternion
case, the maximum-likelihood approach to the quaternion ICA prob-
lem reduces to the joint-diagonalization of the covariance and three
complementary covariance matrices. In particular, the ML-ICA cost
function can be seen as a measure of the entropy loss due to the
correlation among the recovered sources and, although the ML-ICA
problem is not convex, we have proposed a quasi-Newton algorithm
which in practice provides very satisfactory results. Finally, some
numerical examples have illustrated the performance and practical
application of the proposed algorithm.
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