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ABSTRACT

This work addresses the problem of deciding whether a set of real-
izations of a vector-valued time series with unknown temporal corre-
lation are spatially correlated or not. Specifically, the spatial correla-
tion is induced by a colored source over a frequency-flat single-input
multiple-output (SIMO) channel distorted by independent and iden-
tically distributed noises with temporal correlation. The generalized
likelihood ratio test (GLRT) for this detection problem does not have
a closed-form expression and we have to resort to numerical opti-
mization techniques. In particular, we apply the successive convex
approximations approach which relies on solving a series of con-
vex problems that approximate the original (non-convex) one. The
proposed solution resembles a power method for obtaining the dom-
inant eigenvector of a matrix, which changes over iterations. Finally,
the performance of the proposed detector is illustrated by means of
computer simulations showing a great improvement over previously
proposed detectors that do not fully exploit the temporal structure of
the source.

Index Terms— Multiple-channel detection, generalized likeli-
hood ratio test (GLRT), maximum likelihood (ML) estimation, con-
vex optimization, succesive convex approximations.

1. INTRODUCTION

The multiple-channel signal detection problem appears in many ap-
plications, such as sensor networks [1], radar detection with multiple
antennas [2] or cognitive radio [3]. In [4], this problem has been ad-
dressed for vector-valued random variables, where the authors pro-
posed a new measure called the generalized coherence (GC). The
generalized likelihood ratio test (GLRT) for testing an unstructured
covariance matrix against a diagonal one has been derived, under
the Gaussian assumption, in [5]. Eventually, the GLRT in [5, 6] co-
incides with the GC. The results in [4, 5] were extended in [7] to the
case of vector-valued time series with unknown temporal structure.
On the other hand, several authors have considered the case of more
structured signals. For instance, in [8], the GLRT for the detection
of a vector-valued random variable with rank-one covariance matrix
in independent and identically distributed (iid) noises has been de-
rived. In [9], the case of non-iid noises has been considered, where
an approximated GLRT is derived for an asymptotically low signal-
to-noise ratio (SNR). Moreover, by applying the asymptotic likeli-
hood (in the frequency domain), these results have been extended to
vector-valued time series in [10].

In this work, we consider the detection of a temporally corre-
lated signal (with arbitrary unknown spectral shape) which under-

goes propagation through a frequency-flat single-input multiple out-
put (SIMO) channel and is distorted by independent and identically
distributed noises. This might be the case of detecting a typical com-
munications signal without performing synchronization, i.e. the de-
tection is made just after the analog-to-digital (ADC) conversion.
Another example for this model is a communications system trans-
mitting a signal that has been linearly precoded using an unknown
filter. In this scenario, even if the synchronization and sampling at
the symbol rate are performed, we will obtain a temporally corre-
lated signal over a frequency-flat channel.

To solve this detection problem, we propose to apply the GLRT.
Following the lines of our previous work in [10], the maximum like-
lihood (ML) estimation of block-Toeplitz matrices is avoided by ap-
plying the asymptotic likelihood (in the frequency domain). Even
with this approach, the ML estimation of the SIMO channel results
in a complicated non-convex problem with no closed-form solution.
Hence, we have to resort to numerical optimization techniques. In
particular, we apply the successive convex approximations approach
(or condensation method) [11, 12]. The resulting algorithm for the
ML estimate of the SIMO channel resembles a power method for
obtaining the dominant eigenvector of a matrix, which changes over
iterations. Finally, the performance of the proposed detector is illus-
trated by means of computer simulations showing a great improve-
ment over previously proposed detectors.

2. PROBLEM FORMULATION

In this paper, we address the following detection problem

H1 : x[n] = hs[n] + v[n], n = 0, . . . , N − 1,
H0 : x[n] = v[n], n = 0, . . . , N − 1,

(1)

where x[n] ∈ C
L is a vector of measurements, h ∈ C

L is the
unknown frequency-flat SIMO channel,1 s[n] is the zero-mean
wide sense stationary (WSS) time series whose unknown covari-
ance function is rs[n] = E [s[m]s∗[m− n]] and v[n] ∈ C

L

is the independent and identically distributed (iid) noise vector
whose unknown matrix-valued covariance function is Rv[n] =
E
[
v[m]vH [m− n]

]
= rv[n]I. We assume that the signal and

noise are complex circular Gaussian distributed. Unlike other mod-
els, where the signal, channel and noise are all either frequency-
flat [4–6, 8] or frequency-selective [7, 10], we consider time-colored
signals and noises but frequency-flat channels.

1Without loss of generality, we assume ‖h‖2 = 1, since any scaling
factor can be absorbed by s[n].
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In order to proceed, let us construct the data matrix X

X =
[
x[0] x[1] . . . x[N − 1]

] ∈ C
L×N ,

where the i-th row contains N samples of the time series {xi[n]}
at the i-th sensor, and the n-th column is the n-th time sample of
the vector-valued time series. The vector z = vec (X) stacks the
columns of X, and taking into account the WSS assumption, its
block-Toeplitz covariance matrix R ∈ C

LN×LN is given by

R =

⎡
⎢⎢⎢⎣

R[0] R[−1] · · · R[−N + 1]
R[1] R[0] · · · R[−N + 2]

...
...

. . .
...

R[N − 1] R[N − 2] · · · R[0]

⎤
⎥⎥⎥⎦ ,

where R[n] = E
[
x[m]xH [m− n]

]
is a matrix-valued covariance

function. Therefore, the test in (1) may be rewritten as

H1 : z ∼ CN (0LN ,R1) ,
H0 : z ∼ CN (0LN ,R0) .

(2)

That is, we are testing two different block-Toeplitz matrices where
each block has a different structure under each hypothesis. Under
H0 each block is diagonal, whereas, under H1, it is given by R[n] =
hrs[n]h

H + rv[n]I.

To solve the hypothesis test in (2), we propose to use the gener-
alized likelihood ratio test (GLRT). Consequently, we must find the
ML estimates of the unknown parameters under both hypotheses.
The ML estimation of Toeplitz matrices is a complicated problem
with no closed-form solution [13, 14]. Additionally, the rank-one
structure of the signal covariance matrix complicates the problem
even more. To overcome the Toeplitz structure problem, we propose
to use the asymptotic log-likelihood [10], which converges in the
mean square sense to the conventional (time-domain) log-likelihood.

Let us consider M iid realizations of z. Dropping constant terms
for notational simplicity, the asymptotic log-likelihood [10] is given
by

log p
(
z0, . . . , zM−1;S

(
ejθ

))
= −

∫ π

−π

log det S
(
ejθ

) dθ

2π

−
∫ π

−π

tr
[
Ŝ
(
ejθ

)
S−1

(
ejθ

)] dθ

2π
, (3)

where S
(
ejθ

)
is the power spectral density (PSD) matrix, the sam-

ple PSD matrix is Ŝ
(
ejθ

)
= 1

M

∑M−1
i=0 xi

(
ejθ

)
xH
i

(
ejθ

)
with

xi

(
ejθ

)
= 1√

N

∑N−1
n=0 xi [n] e

−jθn. Using (3), the test in (2)

asymptotically (N → ∞) becomes

H1 : x
(
ejθ

) ∼ CN (
0,S1

(
ejθ

))
,

H0 : x
(
ejθ

) ∼ CN (
0,S0

(
ejθ

))
,

(4)

where S1

(
ejθ

)
= hSs

(
ejθ

)
hH +Sv

(
ejθ

)
I denotes the PSD ma-

trix under H1 and S0

(
ejθ

)
= Sv

(
ejθ

)
I is the PSD matrix under

H0. Ss

(
ejθ

)
and Sv

(
ejθ

)
are, respectively, the Fourier transforms

of rs[n] and rv[n].

3. DERIVATION OF THE GLRT

The GLRT for H0 : S0

(
ejθ

)
= Sv

(
ejθ

)
I, vs. H1 : S1

(
ejθ

)
=

Ss

(
ejθ

)
hhH + Sv

(
ejθ

)
I, is based on the generalized likelihood

ratio L [15]

L = max
Sv(ejθ)

log p
(
z0, . . . , zM−1;Sv

(
ejθ

))
−

max
h,Ss(ejθ),Sv(ejθ)

log p
(
z0, . . . , zM−1;h, Ss

(
ejθ

)
, Sv

(
ejθ

))
.

(5)

It is easy to show that the ML estimate of Sv

(
ejθ

)
under H0 is given

by

Ŝv

(
ejθ

)
=

1

L
tr
(
Ŝ
(
ejθ

))
. (6)

On the other hand, the ML estimates under H1 are more involved to
find. Let us start by defining α

(
ejθ

)
= hH Ŝ

(
ejθ

)
h, which may be

seen as a frequency-dependent estimate of the total energy in the sig-
nal subspace. Hence, applying the matrix inversion and determinant
lemmas to S1

(
ejθ

)
, the log-likelihood under H1 is given by

log p
(
z0, . . . , zM−1;h, Ss

(
ejθ

)
, Sv

(
ejθ

))

= −
∫ π

−π

log

(
1 +

Ss

(
ejθ

)
Sv (ejθ)

)
dθ

2π
− L

∫ π

−π

logSv

(
ejθ

) dθ

2π

−
∫ π

−π

1

Sv (ejθ)
tr
[
Ŝ
(
ejθ

)] dθ

2π

+

∫ π

−π

Ss

(
ejθ

)
α
(
ejθ

)
S2
v (ejθ) + Sv (ejθ)Ss (ejθ)

dθ

2π
.

To obtain the ML estimate of Ss

(
ejθ

)
, assuming for the mo-

ment Sv

(
ejθ

)
known, we may solve the following optimization

problem

maximize
Ss(ejθ)

log p
(
z0, . . . , zM−1;h, Ss

(
ejθ

)
, Sv

(
ejθ

))
,

subject to Ss

(
ejθ

) ≥ 0,

whose solution is given by

Ŝs

(
ejθ

)
=

[
α
(
ejθ

)
− Sv

(
ejθ

)]+
,

where [a])+ = max (a, 0).

Now, we shall consider two different cases: (i) Ŝs

(
ejθ

)
= 0

and (ii) Ŝs

(
ejθ

)
> 0. The first one reduces to H0 and, therefore,

the ML estimate of Ŝv

(
ejθ

)
is given by (6). In the second case, it is

straightforward to show that the ML estimate of Sv

(
ejθ

)
is

Ŝv

(
ejθ

)
=

1

L− 1

(
tr
[
Ŝ
(
ejθ

)]
− α

(
ejθ

))
,

which can be seen as an estimate of the normalized energy (per di-
mension) in the noise subspace, at frequency θ.

Let us define β(ejθ) = max(α(ejθ), tr[Ŝ(ejθ)]/L), which is
the maximum of the energy in the signal subspace and the aver-
age energy per dimension. Thus, substituting the ML estimates of

Ŝs

(
ejθ

)
and Ŝv

(
ejθ

)
, the compressed log-likelihood becomes

log p (z0, . . . , zM−1;h) = −
∫ π

−π

log β
(
ejθ

) dθ

2π

− (L− 1)

∫ π

−π

log

[
1

L− 1

(
tr
[
Ŝ
(
ejθ

)]
− β

(
ejθ

))] dθ

2π
.

(7)
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The ML estimate of h is given by the solution of the following opti-
mization problem

maximize
h,β(ejθ),α(ejθ)

log p (z0, . . . , zM−1;h)

subject to β
(
ejθ

)
= max

(
α
(
ejθ

)
, 1
L

tr
[
Ŝ
(
ejθ

)])
,

α
(
ejθ

)
= hH Ŝ

(
ejθ

)
h,

hHh = 1.
(8)

This is very difficult to solve due to the convexity2 of
log p (z0, . . . , zM−1;h) in β

(
ejθ

)
and the non-convexity of the

constraints. To solve it we propose to use the successive convex
approximations approach (or condensation method) [11, 12]. This
method relies on solving a series of convex problems, in which
the non-convex problem is replaced by a convex approximation.
In [12] it is proven that , when the approximation satisfies some
conditions, the condensation method converges to a point satisfying
the Karush-Kuhn-Tucker (KKT) conditions of the original problem.
Nevertheless, since the original optimization problem is not convex,
this solution is not guaranteed to be the global maximum of the
objective function.

We shall start by the convex approximation of (7) and we take it
to be the first order Taylor’s series expansion3 around a given point
h(i), i.e.,

log p (z0, . . . , zM−1;h) ≈ a+

[∫ π

−π

bH
(
ejθ

) dθ

2π

](
h− h(i)

)
,

where a = log p
(
z0, . . . , zM−1;h

(i)
)

,

bH
(
ejθ

)
=

∂ log p (z0, . . . , zM−1;h)

∂h

∣∣∣∣
h=h(i)

= b
(
ejθ

)
h(i)H Ŝ

(
ejθ

)
,

with b
(
ejθ

)
given by

b
(
ejθ

)
=

⎧⎪⎨
⎪⎩

L− 1

tr
[
Ŝ (ejθ)

]
− α(i) (ejθ)

− 1

α(i) (ejθ)
, if θ ∈ Θ

(i)
+ ,

0, if θ ∈ Θ
(i)
− ,

α(i)
(
ejθ

)
= h(i)H Ŝ

(
ejθ

)
h(i) is the estimated energy in the signal

subspace at the i-th iteration, and Θ
(i)
+ and Θ

(i)
− are the following

sets of frequencies

Θ
(i)
+ =

{
θ | α(i)

(
ejθ

)
≥ 1

L
tr
[
Ŝ
(
ejθ

)]}
,

Θ
(i)
− =

{
θ | α(i)

(
ejθ

)
<

1

L
tr
[
Ŝ
(
ejθ

)]}
.

Thus, at each iteration, the optimization problem is given by

maximize
h

h(i)HR̂wh,

subject to hHh = 1,

2Remember that maximizing a convex function is a non-convex problem.
3It is easy to show that this approximation satisfies the necessary con-

ditions of [12] and, therefore, it converges to a point satisfying the KKT
conditions.
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Fig. 1: ROC curve for L = 3, M = 3, N = 128 and SNR =
−13 dB.

where

R̂w =

∫ π

−π

b
(
ejθ

)
Ŝ
(
ejθ

) dθ

2π
,

and its solution is given by

h(i+1) =

⎧⎪⎨
⎪⎩

R̂wh
(i)∥∥∥R̂wh(i)

∥∥∥ , if ‖R̂wh
(i)‖ 	= 0,

any unit-norm vector, otherwise.

This solution may be seen as one step of a power method for ob-

taining the dominant eigenvector of R̂w. Due to the iterative nature
of the propose approach, this estimate must be plugged into the ap-
proximated cost function and the procedure is repeated until conver-
gence. Essentially, the proposed solution is a power method in which
the matrix varies over iterations. To summarize, we have obtained
the ML estimates of the unknown parameters under both hypotheses,
and to obtain the log-GLRT, the ML estimates must be plugged into
(5).

One final comment is in order. Although it seems that the power
method is an alternative to alleviate the computational complexity
of an eigenvalue extraction, it naturally results from the Taylor’s
approximation. Nevertheless, using the Taylor’s approximation in
αi

(
ejθ

)
instead of h(i), we will obtain an algorithm in which the

dominant eigenvector of R̂w is the solution at each iteration.

4. NUMERICAL RESULTS

In this section we evaluate the performance of the proposed detec-
tor by means of numerical simulations. In particular, we obtain the
receiver operating characteristic (ROC) curve of the following de-
tectors:

• The proposed detector based on the condensation method.
The initial point of the algorithm is given by the dominant

eigenvector of R̂[0].

• The asymptotic GLRT which assumes that the channel is also
frequency selective [10].

• The GLRT which assumes that the signal and noise are tem-
porally uncorrelated [8].
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Fig. 2: Convergence curve of the condensation method for 20 ran-
dom initializations.

Notice that only the proposed detector matches the space-time struc-
ture of the model, that is, only the proposed detector is actually de-
signed for a colored source transmitted over a flat-fading channel.

Figure 1 shows the results of the experiment with the following
parameters: L = 3 sensors, M = 3 realizations of length N = 128
and SNR = 10 log10

Es
Lσ2 = −13 dB, where Es is the energy of

s[n]. The signal s[n] is a moving average (MA) process of order
qs = 19, and the noises at each antenna are also MA process of
order qv = 19 with energy σ2. We must note that proposed detector
presents much better performance than that of the detectors in [8,
10]. This may be explained by the fact that only the proposed GLRT
is actually designed to exploit the assumed space-time structure of
the model. Additionally, for this high frequency-selective scenario
(high qs and qv), it is important to notice that the detector of [10]
outperforms that of [8].

Figure 2 illustrates the convergence of the successive convex ap-
proximations approach. In particular, it shows the log-likelihood of
20 different initializations of h(0), where one of them (in red thick
line) is the dominant normalized eigenvector of R̂[0]. It can be seen
in the figure that the algorithm converges to the same solution re-
gardless of the initial point. Finally, we also observe in Fig. 2 that
the proposed initialization notably speeds up the convergence of the
successive convex approximation technique.

5. CONCLUSIONS

We have presented a new detector for a temporally correlated signal
which undergoes propagation through a frequency-flat single-input
multiple-output (SIMO) channel in independent and identically dis-
tributed noises with unknown temporal correlation. To solve this
hypothesis testing problem, we used the generalized likelihood ra-
tio test (GLRT). However, the ML estimation of the SIMO channel
results in a complicated non-convex optimization problem with no
closed-form solution. To overcome this limitation, the successive
convex approximations approach (or condensation method) has been
applied to obtain the ML estimate the SIMO channel. This solution
resembles a power method for obtaining the dominant eigenvector of
a matrix, which is obtained by integrating a weighted version of the
PSD matrix. Finally, by fully exploiting the spatio-temporal struc-
ture of this problem, the proposed detector outperforms previously

proposed approaches that do not exploit all the available space-time
structure.
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