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ABSTRACT

In this paper the two main definitions of quaternion properness
(or second order circularity) are reviewed, showing their connec-
tion with the structure of the optimal quaternion linear process-
ing. Specifically, we present a rigorous generalization of the most
common multivariate statistical analysis techniques to the case of
quaternion vectors, and show that the different kinds of quaternion
improperness require different kinds of widely linear processing. In
general, the optimal linear processing is full-widely linear, which
requires the joint processing of the quaternion vector and its involu-
tions over three pure unit quaternions. However, in the case of jointly
Q-proper and Cη-proper vectors, the optimal processing reduces,
respectively, to the conventional and semi-widely linear processing,
with the latter only requiring to operate on the quaternion vector and
its involution over the pure unit quaternion η. Finally, a simulation
example poses some interesting questions for future research.

Index Terms— Quaternions, properness, second-order circular-
ity, widely linear processing.

1. INTRODUCTION

Although quaternion algebra [1] has been successfully applied to
several signal processing and communications problems [2, 3, 4],
the properness (or second order circularity) analysis of quaternion
random vectors has received limited attention [5, 6, 7], and a clear
definition of quaternion widely linear processing is still lacking [4].

In this paper the two main kinds of quaternion properness are
reviewed, and their implications on the optimal linear processing are
analyzed. In particular, we revisit the concepts of Q-properness and
Cη-properness [5, 6, 7], showing the relationships between the com-
plementary covariance matrices and the Cayley-Dickson representa-
tions of the quaternion vector, which results in new insights on the
structure of proper quaternion vectors. Furthermore, we present a
unified approach to quaternion multivariate statistical analysis and
show that, in general, the optimal linear processing is full-widely lin-
ear, which means that we must simultaneously operate on the four
real vectors composing the quaternion vector, or equivalently, on the
quaternion vector and its three involutions. Interestingly, in the case
of Q-proper vectors, the optimal processing is linear, i.e., we do not
need to operate on the vector involutions, whereas in the case of Cη-
proper vectors, the optimal processing is semi-widely linear, which
amounts to operate on the quaternion vector and its involution over
the pure unit quaternion η. Thus, we can conclude that different
kinds of quaternion improperness require different kinds of widely
linear processing.
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INGENIO 2010 Program) and FPU grant AP2006-2965.

2. PRELIMINARIES

Throughout this paper we will use bold-faced upper case letters to
denote matrices, bold-faced lower case letters for column vectors,
and light-faced lower case letters for scalar quantities. Superscripts
(·)T and (·)H denote transpose and Hermitian (i.e., transpose and
quaternion conjugate), respectively. The notation A ∈ Rm×n (re-
spectively A ∈ Hm×n) means that A is a real (respectively quater-
nion) m × n matrix. Tr(A) denotes the trace of matrix A, ⊗ is
the Kronecker product, In is the identity matrix of dimension n, and
0m×n denotes the m × n zero matrix. Finally, diag(a) denotes the
diagonal matrix with vector a along its diagonal, E is the expecta-
tion operator, and in general Ra,b is the cross-correlation matrix for
vectors a and b, i.e., Ra,b = EabH .

2.1. Quaternion Algebra

Quaternions are four-dimensional hypercomplex numbers intro-
duced by Hamilton [1]. A quaternion x ∈ H is described by four
real numbers (r1, rη , rη′ , r′′η ) and three imaginary units1 (η, η′, η′′)

x = r1 + ηrη + η′rη′ + η′′rη′′ , (1)

where the orthogonal imaginary units satisfy

ηη′ = η′′ = −η′η,

η′η′′ = η = −η′′η′,

η′′η = η′ = −ηη′′,

η2 = η′2 = η′′2 = ηη′η′′ = −1.

Quaternions form a noncommutative normed division algebra H,
i.e., for x, y ∈ H, xy �= yx in general. The conjugate of a quaternion
x is x∗ = r1 − ηrη − η′rη′ − η′′rη′′ , its norm is |x| =

√
xx∗ =q

r2
1 + r2

η + r2
η′ + r2

η′′ , and we say that x is a pure unit quaternion

if and only if (iff) x2 = −1. The involution of a quaternion x over a
pure unit quaternion ν is

x(ν) = −νxν,

and it represents the reflection of x over the plane spanned by {1, ν}.
Finally, we can introduce the Cayley-Dickson representations

x = a1 + η′′a2, x = b1 + ηb2, x = c1 + η′c2, (2)

where

a1 = r1 + ηrη,
a2 = rη′′ + ηrη′ ,

b1 = r1 + η′rη′ ,
b2 = rη + η′rη′′ ,

c1 = r1 + η′′rη′′ ,
c2 = rη′ + η′′rη,

can be seen as complex numbers in the planes spanned by {1, η},
{1, η′} and {1, η′′}, respectively.

1A particular choice of the imaginary axes is the canonical basis {i, j, k}.
However, in this paper we use the more general representation {η, η′, η′′}.
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3. PROPERNESS OF QUATERNION RANDOM VECTORS

In this section we present the main kinds of quaternion properness
(or second-order circularity) [5, 6, 7]. In particular, we show that
the formulation based on the complementary covariance matrices,
as well as the Cayley-Dickson representation in eq. (2), allows us
to obtain additional insight into the structure of proper quaternion
random vectors. Some mathematical details, which are omitted here
due to the lack of space, can be found in [8].

3.1. Complementary Covariance Matrices

Analogously to the case of complex vectors, the second-order cir-
cularity analysis of a n-dimensional quaternion random vector
x = r1 + ηrη + η′rη′ + η′′rη′′ can be based on the real vec-
tors r1, rη , rη′ and rη′′ [5, 6, 7]. However, clearer results can
be obtained by following a similar derivation to that in [6] for the
case of scalar quaternions. Thus, we define the 4n × 1 augmented

quaternion vector as x̄ =
h
xT ,x(η)T

,x(η′)T
,x(η′′)T

iT

, whose

relationship with the real vectors is given by x̄ = 2Tnrx, where

rx =
ˆ
rT
1 , rT

η , rT
η′ , rT

η′′
˜T

, and

Tn =
1

2

2
64

+1 +η +η′ +η′′

+1 +η −η′ −η′′

+1 −η +η′ −η′′

+1 −η −η′ +η′′

3
75⊗ In, (3)

is a unitary quaternion operator, i.e., TH
n Tn = I4n. Finally, we can

introduce the augmented covariance matrix

Rx̄,x̄ =

2
66664

Rx,x Rx,x(η) R
x,x(η′) R

x,x(η′′)

R
(η)

x,x(η) R
(η)
x,x R

(η)

x,x(η′′) R
(η)

x,x(η′)

R
(η′)
x,x(η′) R

(η′)
x,x(η′′) R

(η′)
x,x R

(η′)
x,x(η)

R
(η′′)
x,x(η′′) R

(η′′)
x,x(η′) R

(η′′)
x,x(η) R

(η′′)
x,x

3
77775 ,

where we can readily identify the covariance matrix Rx,x = ExxH

and three complementary covariance matrices Rx,x(η) = Exx(η)H
,

R
x,x(η′) = Exx(η′)H

and R
x,x(η′′) = Exx(η′′)H

. The relation-
ships among these matrices, the real representation in (1), and the
Cayley-Dickson representations in (2), can be obtained by means of
straightforward but tedious algebra [8], and are omitted here due to
the lack of space.

3.2. Quaternion Properness

For quaternion random vectors, there exist two main kinds of proper-
ness, which are defined as follows:

Definition 1 (Cη-Properness) A quaternion random vector x is
Cη-proper iff the complementary covariance matrices R

x,x(η′) and
R

x,x(η′′) vanish.

Definition 2 (Q-Properness) A quaternion random vector x is Q-
proper iff the three complementary covariance matrices Rx,x(η) ,
R

x,x(η′) and R
x,x(η′′) vanish.

Here, we must point out that the definition of Cη-proper vec-
tors only depends on the pure unit quaternion η, whereas the defi-
nition of Q-properness is independent of the orthogonal imaginary
basis {η, η′, η′′}, and therefore it implies Cη-properness ∀η. Fur-
thermore, it can be easily checked that the Cη-properness is invariant

under semi-widely linear transformations, which are linear transfor-
mations of the form u = FH

1 x + FH
η x(η), with F1,Fη ∈ Hn×r .

On the other hand, the Q-properness is invariant under quaternion
linear transformations, i.e., if x is a Q-proper vector, then u = FH

1 x
is also Q-proper.

Using the Cayley-Dickson representations in (2) it is easy to
prove some interesting implications of the two kinds of quaternion
properness, which are summarized as follows:

• A vector x is Cη-proper iff Ra1,a∗
1

= Ra2,a∗
2

= Ra1,a∗
2

=
0n×n. In other words, x is Cη-proper iff it can be represented
by means of two jointly-proper complex vectors2 (a1 = r1 +
ηrη and a2 = rη′′ + ηrη′ ) in the plane spanned by {1, η}.

• A quaternion vector x is Q-proper iff the covariance matrix
can be written as

Rx,x = 2
“
Ra1,a1 + η′′RH

a1,a2

”

= 2
“
Rb1,b1 + ηRH

b1,b2

”
= 2

“
Rc1,c1 + η′RH

c1,c2

”
,

or equivalently, iff the vectors in the real representation x =
r1 + ηrη + η′rη′ + η′′rη′′ satisfy

Rr1,r1 = Rrη,rη = Rrη′ ,rη′ = Rrη′′ ,rη′′ ,

RT
r1,rη

= −Rr1,rη = −Rrη′ ,rη′′ = RT
rη′ ,rη′′ ,

RT
r1,rη′ = −Rr1,rη′ = Rrη,rη′′ = −RT

rη,rη′′ ,

RT
r1,rη′′ = −Rr1,rη′′ = −Rrη,rη′ = RT

rη,rη′ .

Finally, the extension of the above definitions for two quaternion
random vectors is analogous to that in the case of complex vectors
[9]. In particular, x and y are jointly Cη (respectively Q) proper iff

the composite vector
ˆ
xT ,yT

˜T
is Cη (resp. Q) proper.

4. FULL AND SEMI-WIDELY LINEAR PROCESSING OF
QUATERNION RANDOM VECTORS

To our best knowledge, the only work dealing with widely linear pro-
cessing of quaternion random vectors is [4]. In that work, inspired
by the case of complex vectors, the authors propose to simultane-
ously operate on the quaternion vector x and its conjugate x∗. Here
we show that, unlike the complex case, there exist different kinds of
quaternion widely linear processing. The most general linear trans-
formation, which we refer to as full-widely linear processing, con-
sists in the simultaneous operation on the four involutions

u = FH
x̄ x̄ = FH

1 x + FH
η x(η) + FH

η′x(η′) + FH
η′′x(η′′),

where Fx̄ =
ˆ
FT

1 ,FT
η ,FT

η′ ,FT
η′′

˜T ∈ H4n×r is a quaternion ma-
trix. In terms of the augmented vectors x̄ and ū, the above equation
can be written as

ū = F
H
x̄ x̄, (4)

where

Fx̄ =

2
66664

F1 F
(η)
η F

(η′)
η′ F

(η′′)
η′′

Fη F
(η)
1 F

(η′)
η′′ F

(η′′)
η′

Fη′ F
(η)

η′′ F
(η′)
1 F

(η′′)
η

Fη′′ F
(η)

η′ F
(η′)
η F

(η′′)
1

3
77775

| {z }
4n×4r

2Two complex vectors a1 and a2 are jointly proper iff they are proper
and cross proper, or equivalently iff the composite vector [aT

1 aT
2 ] is proper.
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is a general full-widely linear operator. Equivalently, we can use the
real version of (4)

ru = FT
rxrx,

where rx =
ˆ
rT
1 , rT

η , rT
η′ , rT

η′′
˜T

= 1
2
TH

n x̄, ru = 1
2
TH

r ū, and

Frx ∈ R4n×4r is given by

Frx = TH
n Fx̄Tr, (5)

with Tn (and Tr) defined in (3).

4.1. Multivariate Statistical Analysis of Quaternion Vectors

Several popular multivariate statistical analysis techniques amount to
maximize the correlation between projections of two random vectors
[10]. In this subsection we focus on the general problem of maximiz-
ing the correlation between the following r-dimensional projections
of the quaternion vectors x ∈ Hn×1 and y ∈ Hm×1,

ru = FT
rxrx, rv = GT

ryry,

where Frx ∈ R4n×4r , Gry ∈ R4m×4r are real operators,3 and
r ≤ p = min(m, n). Specifically, our problem can be written as

arg max
Frx ,Gry

Tr
“
FT

rxRrx,ryGry

”
,

subject to some constraint to avoid trivial solutions. In fact, the
choice of the constraints makes the difference among the following
well-known multivariate statistical analysis techniques:

• Partial least squares (PLS): PLS maximizes the correlations
subject to the unitarity of the projectors, i.e., the constraints
are FT

rxFrx = GT
ryGry = I4r . In the particular case of y =

x, PLS reduces to the principal component analysis (PCA)
technique.

• Multivariate linear regression (MLR) [11]: For this method,
which is also known as the rank-reduced Wiener filter, half
canonical correlation analysis, or orthogonalized PLS, the
constraints are FT

rxRrx,rxFrx = GT
ryGry = I4r .

• Canonical correlation analysis (CCA) [12]: This technique
imposes the energy and orthogonality constraints on the pro-
jections ru and rv, i.e., the constraints are FT

rxRrx,rxFrx =

GT
ryRry,ryGry = I4r .

After a straightforward algebraic manipulation, the three previ-
ous problems can be rewritten as

arg max
Urx ,Vry

Tr
“
UT

rxCrx,ryVry

”
, (6)

s. t. UT
rxUrx = VT

ryVry = I4r,

where Crx,ry = S
− 1

2
rx,rxRrx,ryS

− 1
2

ry,ry , Urx = S
1
2
rx,rxFrx , Vry =

S
1
2
ry,ryGry , and the expressions for Srx,rx and Sry,ry in the three

studied cases are summarized in Table 1. Obviously, the solutions
Urx , Vry of (6) are given by the singular vectors associated to the
4r largest singular values of the matrix Crx,ry , whose singular value

decomposition (SVD) can be written as Crx,ry = UΛVT , with

U ∈ R4n×4p, V ∈ R4m×4p unitary matrices and Λ ∈ R4p×4p a

3Note that 4r-dimensional real projections are equivalent to r-
dimensional full-widely linear quaternion projections.

Srx,rx Sry,ry Sx̄,x̄ Sȳ,ȳ

PLS (and PCA) I4n I4m I4n I4m

MLR Rrx,rx I4m Rx̄,x̄ I4m

CCA Rrx,rx Rry,ry Rx̄,x̄ Rȳ,ȳ

Table 1. Values of the matrices S in the three studied cases.

diagonal matrix containing the singular values. In particular, we will
order the singular values λ1 ≥ λ2 ≥ . . . ≥ λ4p in Λ as

Λ =

2
64

Λ1 0p×p 0p×p 0p×p

0p×p Λ2 0p×p 0p×p

0p×p 0p×p Λ3 0p×p

0p×p 0p×p 0p×p Λ4

3
75 ,

with Λ1 = diag(λ1, λ5, . . . , λ4p−3), Λ2 = diag(λ2, λ6, . . . , λ4p−2),
Λ3 = diag(λ3, λ7, . . . , λ4p−1) and Λ4 = diag(λ4, λ8, . . . , λ4p).

Finally, using the relationships in (4) and (5), we can ob-
tain the solutions of the above problems in terms of the aug-
mented vectors and matrices. In particular, defining the matrix

Cx̄,ȳ = S
− 1

2
x̄,x̄Rx̄,ȳS

− H
2

ȳ,ȳ (see Table 1 for the particular values of
Sx̄,x̄ and Sȳ,ȳ), the optimal projectors are given by

Fx̄ = S
− 1

2
x̄,x̄Ux̄, Gȳ = S

− 1
2

ȳ,ȳVȳ,

where the unitary widely-linear operators Ux̄ = TnUrxT
H
r ∈

H4n×r and Vȳ = TmVryTH
r ∈ H4m×r can be directly obtained

from the decomposition

Cx̄,ȳ =
“
TnUTH

p

”
| {z }

U

“
TpΛTH

p

”
| {z }

Λ

“
TnVTH

p

”H

| {z }
V

H

, (7)

which can be seen as an extension of the singular value decompo-
sition used in [9] for the second-order circularity analysis of com-
plex vectors. In particular, it is easy to check that U ∈ H4n×4p,
V ∈ H4m×4p are unitary full-widely linear operators, and

Λ =

2
64
Σ1 Σ2 Σ3 Σ4

Σ2 Σ1 Σ4 Σ3

Σ3 Σ4 Σ1 Σ2

Σ4 Σ3 Σ2 Σ1

3
75 ,

with
2
64
Σ1

Σ2

Σ3

Σ4

3
75 =

1

4

2
64

+Ip +Ip +Ip +Ip

+Ip +Ip −Ip −Ip

+Ip −Ip +Ip −Ip

+Ip −Ip −Ip +Ip

3
75

2
64
Λ1

Λ2

Λ3

Λ4

3
75 .

4.2. Implications of Cη and Q Properness

In this subsection we point out the main implications of the two kinds
of quaternion properness on the previous multivariate statistical anal-
ysis techniques. Due to the lack of space, we skip some mathemat-
ical details (which can be found in [8]) and present the main results
as four theorems.

Theorem 1 For jointly Cη-proper vectors x and y, the optimal PLS,
MLR and CCA projections reduce to semi-widely linear processing,
i.e., they have the form

u = FH
1 x + FH

η x(η), v = GH
1 y + GH

η y(η).
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Theorem 2 Given two jointly Cη-proper vectors x and y, the sin-
gular values λ1, . . . , λ4p of Crx,ry (and Cx̄,ȳ) have multiplicity
two.

Theorem 3 For jointly Q-proper vectors x and y, the optimal PLS,
MLR and CCA projections reduce to conventional linear processing,
i.e.,

u = FH
1 x, v = GH

1 y.

Theorem 4 Given two jointly Q-proper vectors x and y, the singu-
lar values λ1, . . . , λ4p of Crx,ry (and Cx̄,ȳ) have multiplicity four.

The proofs of the theorems are based on the block diagonal
structure of the matrices (Sx̄,x̄, Sȳ,ȳ and Rx̄,ȳ) involved in the ob-
tention of Cx̄,ȳ. This diagonal structure (two diagonal blocks in
the Cη-proper case and four diagonal blocks in the Q-proper case)
is propagated to the matrices in the decomposition in eq. (7), from
which the theorems can be easily proved.

Theorem 1 constitutes a sufficient condition for the optimality
of semi-widely linear processing. In other words, we should not ex-
pect any performance advantage from full-widely (instead of semi-
widely) linear processing two jointly Cη-proper vectors. On the
other hand, Theorem 2 ensures that the augmented covariance ma-
trices of Cη-proper vectors have eigenvalues with multiplicity two.
Finally, Theorems 3 and 4 can be seen as the counterpart of Theo-
rems 1 and 2 for jointly Q-proper vectors. In particular, Theorem
3 ensures that we can not expect any gain from full or semi-widely
linear processing Q-proper vectors.

5. NUMERICAL EXAMPLE AND CONCLUSIONS

The previous ideas are illustrated here by means of a simulation ex-
ample. In particular, we consider a Q-proper Gaussian vector y of
dimension m = 2 with zero mean and covariance Ry,y = I2. From
y, we form the observation vector x ∈ H4×1 as

x = [wT , zT ]T + nT ,

where w = y + 0.8y(η) + 0.6y(η′) + 0.5y(η′′), z ∈ H2×1 is a
Q-proper Gaussian quaternion vector with zero mean and covariance
Rz,z = I2, and n ∈ H4×1 is a Q-proper Gaussian quaternion vector
with zero mean and covariance Rn,n = 10−2I4.

With these definitions, it is clear that x is improper, and there-
fore the full-widely linear processing should outperform the semi-
widely or conventional linear processing. Specifically, we apply the
MLR technique to estimate y from x, which results in a theoreti-
cal (i.e., with perfect knowledge of the second-order statistics) mean
square error (MSE) of 0.31 if we apply full-widely linear process-
ing, 0.61 for semi-widely linear processing, and 1.12 for quaternion
linear processing.

Additionally, the averaged results of 1000 Monte-Carlo simula-
tions with estimated covariance matrices from a finite set of obser-
vations are shown in Fig. 1. As can be seen, for a sufficiently large
number of observations N , the obtained results coincide with the
theoretical values. However, the figure also suggests that in some
situations such as small sample sizes, it can be advisable to use
the simpler quaternion linear (or semi-widely linear) model instead
of the theoretically optimal full-widely linear processing. In other
words, although the data can not be correctly represented by quater-
nion vectors, the simplicity of quaternion linear processing still pro-
vides some practical advantages. Future research lines include the
estimation of the optimal pure unit quaternion η for semi-widely lin-
ear processing, as well as the theoretical analysis of the gain pro-
vided by full or semi-widely linear processing.
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