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Abstract—This work addresses the problem of deciding whether
a set of realizations of a vector-valued time series with unknown
temporal correlation are spatially correlated or not. For wide sense
stationary (WSS) Gaussian processes, this is a problem of deciding
between two different power spectral density matrices, one of
them diagonal. Specifically, we show that for arbitrary Gaussian
processes (not necessarily WSS) the generalized likelihood ratio
test (GLRT) is given by the quotient between the determinant of
the sample space–time covariance matrix and the determinant
of its block-diagonal version. Furthermore, for WSS processes,
we present an asymptotic frequency-domain approximation of
the GLRT which is given by a function of the Hadamard ratio
(quotient between the determinant of a matrix and the product
of the elements of the main diagonal) of the estimated power
spectral density matrix. The Hadamard ratio is known to be
the GLRT detector for vector-valued random variables and,
therefore, what this paper shows is how frequency-dependent
Hadamard ratios must be merged into a single test statistic when
the vector-valued random variable is replaced by a vector-valued
time series with temporal correlation. For bivariate time series,
the derived frequency domain detector can be rewritten as a
function of the well-known magnitude squared coherence (MSC)
spectrum, which suggests a straightforward extension of the MSC
spectrum to the general case of multivariate time series. Finally,
the performance of the proposed method is illustrated by means
of simulations.

Index Terms—Coherence spectrum, generalized likelihood ratio
test (GLRT), Hadamard ratio, multiple-channel signal detection,
power spectral density matrix.

I. INTRODUCTION

T HE multiple-channel signal detection problem appears in
many applications, such as sensor networks [1], cooper-

ative networks with multiple relays using the amplify-and-for-
ward (AF) scheme [2]–[4], or radar detection with multiple an-
tennas [5]. It is also an important problem in cognitive radio,
when a secondary (non-licensed) user equipped with multiple
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antennas needs to sense the channel to detect whether a spe-
cific frequency sub-band is occupied or not [6]–[9]. To solve the
multiple-channel signal detection problem in its most general
formulation, we should exploit the fact that, under the null hy-
pothesis, the signal is spatially uncorrelated. In the case of com-
plex circular Gaussian processes, the general detection problem
consists in deciding whether the space–time covariance matrix
(a matrix which contains all space–time second order statistics
of the vector-valued time series) is block diagonal (null cross
second order statistics) or not. However, in the particular case of
wide sense stationary processes, the problem can be seen as that
of deciding between two different power spectral density (PSD)
matrices,1 one of them (representing the null hypothesis) diag-
onal.

The problem of multiple-channel signal detection has been
addressed in [10] and [11] for vector-valued random variables,
where the authors proposed a new measure called the gener-
alized coherence (GC). The derivation of the GC is based on
a geometrical interpretation of the correlation coefficient be-
tween two random variables, which can readily be generalized
to random vectors. In [12] and [13], Leshem and van der Veen
have derived the generalized likelihood ratio test (GLRT) for de-
tecting the presence of an unknown white Gaussian signal ac-
quired by a set of sensors. In fact, for Gaussian random vectors
the GC and the GLRT result in the same detector, which is given
by the Hadamard ratio of the estimated covariance matrix, i.e.,
by the quotient between its determinant and the product of its
diagonal elements.

In this paper, we extend these works to the case of time-cor-
related signals, and derive the GLRT in the time and frequency
domains. Interestingly, for wide sense stationary (WSS) pro-
cesses we show that the frequency-domain detector asymptoti-
cally converges to the integrated logarithm of the frequency de-
pendent Hadamard ratios, which nicely extends the results in
[10]–[13] to the case of time-correlated signals.

In the case of bivariate signals, the proposed test is just a func-
tion of the estimated magnitude squared coherence (MSC) spec-
trum [14]. This suggests that the proposed frequency-domain
detector can be seen as an extension of the MSC spectrum for
more than two signals. Moreover, it admits a straightforward
information-theoretic interpretation as the measure of the mu-
tual information among more than two time-series. Finally, the
proposed detector is compared with the GC by means of some
numerical simulations and its application to cognitive radio is
presented. As expected, exploiting the time structure of the spa-
tially distributed signals notably improves the receiver operating
characteristic (ROC) curve of the detector.

1The PSD matrix of a vector-valued time series is a matrix which contains
all pairwise cross-spectra between each component of the vector-valued time
series.

1053-587X/$26.00 © 2010 IEEE



RAMÍREZ et al.: DETECTION OF SPATIALLY CORRELATED GAUSSIAN TIME SERIES 5007

The paper is organized as follows. Section II presents the
problem of multiple-channel signal detection. The GLRT in the
time domain is obtained in Section III. A frequency domain rep-
resentation of the GLRT and an approximation for WSS pro-
cesses are presented in Section IV. Section V shows the rela-
tionship among the frequency domain detector, the coherence
spectrum, the mutual information and the latent signal model,
and also provides a practical approximation of the detector in
the low-correlation regime. Finally, the performance of the pro-
posed detector is illustrated by means of numerical simulations
in Section VI, and the main conclusions are summarized in
Section VII.

II. PRELIMINARIES

Notation

In this paper, we use bold-faced upper case letters to de-
note matrices, with elements ; bold-faced lower case let-
ters for column vectors, and light-face lower case letters for
scalar quantities. The superscripts and denote trans-
pose and Hermitian, respectively. The superscript will de-
note estimated matrices, vectors or scalars. The determinant,
trace and Frobenius norm of a matrix will be denoted, re-
spectively, as , and . The notation

will be used to denote that is a com-
plex (real) matrix of dimension . For vectors, the notation

denotes that is a complex (real) vector of
dimension . indicates that is a complex cir-
cular Gaussian random vector of mean and covariance matrix

. The expectation operator will be denoted as , is
the column-wise vectorization of , is the Kronecker product
and denotes the convolution operator. is the identity matrix
of size and denotes the zero vector or the zero matrix
(depending on the context) of sizes and , respec-
tively. Finally, is the Hermitian square root ma-
trix of the Hermitian matrix and
is the operator that forms a block-diagonal matrix from the ma-
trices .

A. Problem Formulation

In this paper, we address the problem of testing for the co-
variance structure of the vector-valued time series

, where is a vector of
measurements at time , or equivalently, is the time se-
ries at sensor . In order to proceed, we need the probability
distribution of , which we take to be circular complex
Gaussian. We shall proceed by constructing the data matrix

...
...

. . .
...

...

where the th row, , contains
-samples of the th time series , and the th column

is the th sample of the vector-valued time series . The

vector stacks the columns of , and its covari-
ance matrix is

...
...

. . .
...

where and the covariance matrix
captures all space–time second-order

information within and without the random vectors .
We consider the two following hypotheses:

where , are two unknown covariance ma-
trices, is the set of covariance matrices with no particular
temporal or spatial structure (i.e., they are only constrained to
be positive definite) and is the set of block-diagonal covari-
ance matrices, i.e., . Therefore, under the null
hypothesis, the spatially uncorrelated vector-valued time series
may be temporally correlated.

III. DERIVATION OF THE GLRT

The first result we shall discuss is an extension to multivariate
time series of a standard result in multivariate normal theory,
wherein a GLRT is used to test model versus . To this
end, we shall assume an experiment producing independent
copies of the data matrix , or equivalently its vectorized ver-
sion (see Fig. 1). The joint probability density
function (pdf) for these measurements is the product of the pdfs
for , and is given by

Here, is the sample covariance matrix

...
...

. . .
...

and is the th block of , which is the
sample cross-covariance matrix between the -sample win-
dows of the th and th time series.

To solve our hypothesis testing problem, we will use the gen-
eralized likelihood ratio test (GLRT). Although it is known that
the GLRT is not optimal in the Neyman-Pearson sense, it pro-
vides good performance [15]; and as we will see, it results in a
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Fig. 1. Observations consist of� space–time snapshots of dimensions ��� , each one representing the signals acquired by� sensors during � time instants.

simple detector with several interesting properties. The GLRT
for versus is based on the general-
ized likelihood ratio (GLR) [15]

where and are the maximum likelihood estimates of
under hypotheses and , respectively.

As previously pointed out, under the covariance matrix
is block-diagonal, therefore, is the set of matrices

, with the only constraint that
is Hermitian positive definite. That is, we force spatial un-

correlatedness but do not force any temporal structure.
Now, we will obtain the ML estimates of the covariance ma-

trices under both hypotheses, for which we need to assume
. Taking this into account, it is easy to show that the ML es-

timate of is , [16]. As previ-
ously pointed out, we take to be the set of matrices , with
no temporal or spatial structure imposed, with the only con-
straint being that is an Hermitian positive definite matrix.
Then, the ML estimate of is given by , [16] and
the GLRT becomes

(1)

where and the matrix

is a coherence matrix, sometimes
also called a signal-to-noise ratio matrix when may be
considered as a noise-only hypothesis. The GLRT in (1) is a
special case of a general result in [15] and, interestingly, it is a
generalized Hadamard ratio.2 Interestingly, it has been recently
shown in [9] that the GLRT given by (1) is also related with

2We use the term generalized to point out that the denominator is given by
the determinant of the block-diagonal (instead of the diagonal) version of R.

the geodesic distance between and on the manifold of
positive definite matrices.

Finally, we present the following property of the statistic.
Lemma 1: The GLRT in (1) is invariant to linear transforma-

tions of each time-series , which includes as a particular
case any independent arbitrary scaling or filtering.

Proof: Defining the transformed time series as ,
where is any invertible matrix, it is easy to obtain

and , where
and and are, respec-

tively, the sample covariance matrices of the transformed
signals and the original ones. The proof concludes by substi-
tuting these matrices into (1).

IV. GLRT IN THE FREQUENCY DOMAIN

In this section, we derive a frequency-domain version of the
GLRT by exploiting its invariance to linear transformations. We
also present an approximation of the proposed detector which,
for WSS processes, asymptotically converges to the frequency-
domain version of the GLRT.

We shall start by considering the signals ,
where is the Fourier matrix with entries given by

. Then, taking into account Lemma
1, the GLRT is equal for both sets of signals, and

, and is given by

where is the estimated coherence matrix defined in the
previous section. Now, introducing a simple permutation of
the rows and columns of the matrix inside the determinant, the
GLRT can be rewritten as

where3

...
. . .

...

3For notational simplicity we will use �� �� � as a shorthand for
�� �� � � �.
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is the global coherence matrix in the frequency domain,
. The elements of the coherence matrices in the frequency

domain are given by

and is the Fourier vector at angular frequency .
We shall continue by decomposing as

where and

. Thus, taking the logarithm, the GLRT can be
rewritten as

where and .
Now, let us consider the case in which the time series are

jointly WSS. In this situation the covariance matrices are
Toeplitz and, therefore, the elements of the matrix
can be seen as estimates of the pairwise coherence spectra.
Moreover, we have the asymptotic result

where is a quadratic esti-
mator (averaged over realizations) of the power spectral den-
sity matrix [17], [18], and are the elements of the main
diagonal of . In addition, the term will approach
zero,4 which allows us to see it as a measure of the contribution
to the test statistic of the non-stationary part of the time series.
Therefore, the limiting form ( fixed and ) of the
GLRT statistic is

(2)

Here, we must note that this asymptotic version of the GLRT
in the frequency domain is not the true GLRT for WSS pro-
cesses. The reason is that the ML estimates of the covariance
matrices should take into account their Toeplitz structure, which
is a problem that, to the best of our knowledge, does not have
a closed form solution [21], [22]. However, as we will see in
the simulations section, the finite version of (2) presents better
performance than (1). In addition, it is computationally efficient
and has very nice properties, as we will see in the next section.

4These two results are easily proven taking into account the Szegö’s Theorem
for sequences of Toeplitz matrices [19] and its extension to Block-Toeplitz ma-
trices, see for instance [20].

V. PROPERTIES AND FURTHER DISCUSSION

In this section we show some interesting relationships be-
tween the frequency-domain approximation of the GLRT, given
by (2), and other statistical measures such as the coherence spec-
trum or the mutual information among WSS Gaussian pro-
cesses. In addition, we present an approximation of (2) in the
low correlation regime (i.e., when the pairwise cross-spectra
are low in comparison to the power spectral densities), which
can be useful to avoid some of the difficulties posed by the es-
timation of (2). Finally, we discuss the relationship between the
problem addressed in this paper and the spatially reduced-rank
signal-plus-noise model. All the results of this section specifi-
cally consider WSS processes.

A. Relationship With the Magnitude Squared Coherence
Spectrum

Let us start by particularizing the approximation of the GLRT
in (2) for processes

where is an
estimate of the MSC spectrum. Therefore, for this particular
case the term inside the logarithm in (2) is a simple function of
the MSC, which is a frequency-dependent measure of the linear
relationship between two processes. Taking this into account,
we propose the following generalization of the MSC spectrum
for random processes

(3)

where is the theoretical power spectral density matrix of
the vector-valued time series. It is easy to show that this gener-
alization has the following interesting properties:

1) Property 1: The generalized MSC in (3) is bounded be-
tween 0 and 1.

Proof: This is a direct consequence of the fact that the
Hadamard ratio is always bounded between 0 and 1, which re-
sults from a majorization result that shows that the product of
eigenvalues of is less than or equal to the product of its
diagonal elements [23].

2) Property 2: The generalized MSC in (3) attains its max-
imum when the time series admit a low-rank representation,
i.e., when they can be represented as a linear combination of

processes.
Proof: The low-rank vector-valued time series admit the

following representation

where denotes the convolution operation between
and , is a filtering matrix and
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is a time series of dimension whose matrix-valued co-
variance sequence is given by .
The power spectral density matrix of is given by

Obviously, is rank-deficient and, therefore,

which yields .
3) Property 3: The generalized MSC in (3) is invariant to

independent linear filtering of the signals. This means that if we
consider the following filtered signals

where is a diagonal matrix containing the impulse re-
sponses of stable discrete-time filters along its main diag-
onal. Moreover, the Fourier transforms of the filters,

, must satisfy .

Then is equal for the signals and .
Proof: The power spectral density matrix of the filtered

time series can be rewritten as

therefore, the determinant of is given by

Finally, substituting into the definition, we ob-
tain

i.e., the proposed generalization of the coherence spectrum of
the original and filtered signals are identical, which concludes
the proof.

B. Relationship With the Mutual Information

The mutual information among stochastic processes is de-
fined as [24]

where the two terms in the right-hand side of the above equa-
tion are, respectively, the marginal and joint entropy rates of the

random processes , [24]. For the case of
complex circular univariate Gaussian jointly wide sense sta-

tionary processes, the mutual information can be expressed in
terms of the pairwise cross-power spectra of the processes sim-
ilar to [25] and [26] for ,5

Therefore, the proposed test statistic in the frequency domain
given by (2) is an estimate of the mutual information among
Gaussian processes, i.e., .

C. Low Correlation Regime Approximation

In this subsection, following the ideas of [12], [13], we
present an approximation of (2) in the low correlation regime.
This is an interesting scenario in cognitive radio [6], where the
signal-to-noise ratio is usually very low, which is equivalent to
a very low correlation among signals. Let us consider again the
coherence matrix

...
...

. . .
...

where ,
and

is an estimate of the complex coherence spectrum [14] between
the th and th signals. Thus, (2) can be alternatively written as

(4)

In the low correlation regime , i.e.,

is approximately equal to the identity matrix. Therefore,
its eigenvalues may be approximated as

where and , since

. Then, the logdet of the pairwise coher-
ence matrix is

5This result is a direct application of the Szegö’s theorem for sequences of
Toeplitz matrices [19], [27] and its extension to sequences of Block-Toeplitz
matrices [20].
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which, using the Taylor series expansion of up to the
second order, can be approximated by

Finally, the test (2) can be approximated by

(5)

which generalizes the result of [12], [13] to vector-valued time
series. The Frobenius norm in (5) is, in general, easier to es-
timate than the determinant in (2). Thus, in addition to being
a good approximation of (4) in the low correlation regime (or,
equivalently, in the low signal-to-noise ratio regime), the Frobe-
nius norm approximation (5) is a more robust test statistic than
the logdet detector (2) when the number of available samples is
small and, in consequence, is poorly estimated.

Finally, we must point out that other approximations are
also valid, depending on the number of dominant eigenvalues

. Some interesting cases are those based on the largest
and the smallest eigenvalue [28], [29]. However, they will not
be considered in this work.

D. Latent Signal Model and Structured Matrices

A particular problem that fits within the general signal
model presented in Section II-B is the following binary hy-
potheses testing problem, which is commonly encountered in
multi-sensor array processing:

where is an unknown and deterministic mul-
tiple-input multiple-output channel, is an spatially
and temporally uncorrelated signal transmitted at the th time
instant, is the additive spatially uncorrelated noise (though
it might be correlated in time) and is usually smaller than or
equal to , i.e., . In signal processing and communica-
tions this is the conventional signal-plus-noise model, whereas
in other fields such as statistics or econometrics it is referred to
as the latent signal model.

It is important to remark that during our derivation of the test
we did not impose any constraint on the estimate of the covari-
ance matrix (apart from its block-diagonal structure under ).
However, if known, the test should exploit the structure induced
by the spatially rank-reduced model. Here, we analyze the effect
of the order on the ML estimates. To this end, we rewrite the
estimated power spectral density matrix (under hypothesis )
as

(6)

where is the compact sin-
gular value decomposition of the estimated Fourier transform
of the channel, is the estimated power spectral density
matrix of the noise and, without loss of generality, we assume
a spatially and temporally white excitation of the matrix-valued
filter , i.e., . In general, the
sample covariance matrix in (6) can not be matched by the spa-
tially low-rank model. To be more precise, we use dimension
counting arguments to derive a necessary condition on the value
of that allows us to determine the cases in which the detector
is given by (2). To find these values of , we have to count the
number of equations and the number of independent parameters
(or degrees of freedom).

The number of equations is easily found by taking into ac-
count the structure of the sample covariance matrix, which is
Hermitian. So, we have complex equations above
the diagonal plus real equations in the diagonal, which sums
(real equations) to

The determination of the degrees of freedom is more in-
volved [30]: there are non-zero singular values in the
decomposition of and real elements in the diagonal
matrix , whereas, the number of real parameters in

is . However, not all the parameters in
are independent. The eigenvectors should have unit norm,
which reduces the degrees of freedom in , and should be
mutually orthogonal which reduces the number of independent
parameters in . Summarizing, the
number of free parameters is

Thus, we can easily see that if the following condition is satisfied

(7)

then we have at least as many degrees of freedom as equations,
and therefore there might exist a solution6 , ,

exactly satisfying (6), which implies that the GLRT is
given by (2). Finally, let us mention that for white Gaussian pro-
cesses this rank- model has been analyzed in [13], obtaining
an equivalent result.

VI. NUMERICAL RESULTS

A. Non-Stationary Processes

In this subsection, we evaluate the performance of the pro-
posed detectors, that is, the GLRT given by (1) and the fre-
quency domain detector given by (2). The observations are gen-
erated as follows:

where , is a spatially and
temporally white process distributed as

6The solution must satisfy that ���� �� �� � � � �� � � � � � , and
�	� �� �� � � � �� � � � � �, are real and positive.
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Fig. 2. ROC for � � �, SNR = - 5 dB, � � ��, � � ���, � � ���,
� � ���� .

and . Notice that the observations correspond to a
non-stationary signal where the degree of non-stationarity varies
with and . Moreover, we consider and, therefore, it is
not possible to find a reduced-rank representation which could
improve the performance of the detector.

Each coefficient of the channel matrix is generated as follows:

(8)

and the additive noises at each sensor are independent
zero-mean and complex white Gaussian processes with un-
known but common variance , colored through unknown
finite impulse response (FIR) filters of random coefficients
generated as

The signal-to-noise ratio (SNR) for each sensor is defined as
SNR(dB) , and we have considered
and .

In this first example, we compare the receiver operating char-
acteristic (ROC) curves of the following detectors:

• the GLRT in the time domain given by (1) (denoted as
GLRT in the figures);

• the frequency-domain approximation of the GLRT given
by (2) (denoted as Integrated logdet);

• the time domain detector which imposes a Toeplitz struc-
ture on the covariance matrix using the least squares (LS)
estimator [22], i.e., averaging the sample covariance ma-
trices along diagonals (denoted as GLRT-LS).

1) Example 1: In this example, we have considered ,
SNR = - 5 dB, , , and .
The results are shown in Fig. 2, where we can see that the GLRT
detector presents poor results and it is clearly outperformed
by the frequency-domain detector even for these non-stationary
signals. The main reason for this poor performance is that the de-
terminant estimates in the GLRT are very sensitive to the finite
sample effect due to the large size of the estimated covariance
matrices. The GLRT-LS detector presents better performance

Fig. 3. ROC for � � �, SNR = - 8 dB, � � ��, � � �	�.

than the GLRT (although worse than the integrated logdet) be-
cause it is based on a simpler model, with a reduced number of
parameters (the correlation values) to be estimated.

B. Stationary Processes

In this subsection, we consider the case of wide sense sta-
tionary signals; analyze in more depth the frequency domain
detector (2) and its approximation (5); and compare them with
the generalized coherence detector [10]. The observations are
generated as in the previous subsection but, in order to obtain a
stationary signal, we have selected .

The ROC curves of the following detectors are compared:
• the frequency-domain approximation of the GLRT (de-

noted as Integrated logdet);
• the detector based on the Frobenius norm of the power

spectral density matrix (denoted as Integrated Frob. norm);
• the generalized coherence detector proposed by Cochran

[10] (denoted as GC in the figures), which anticipates the
detector of [12] and [13] and is given by

where

• the time domain detector which imposes a Toeplitz struc-
ture to the covariance matrix using the least squares (LS)
estimator [22] (denoted as GLRT-LS).

1) Example 2: In this example, we have considered ,
SNR = - 8 dB, and . The results are shown
in Fig. 3, where we can see that the proposed frequency domain
detector and its approximation provide the best results. This ex-
ample also serves to validate the Frobenius norm approximation
of the optimal logdet detector for this low correlation scenario
(i.e., low SNR). Obviously, the GC performs poorly because
it was designed for temporally white processes, and never in-
tended for correlated time series. Finally, the difference in per-
formance between the logdet detector and GLRT-LS detector is
greater than in the previous example, mainly, due to the smaller
number of realizations .
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Fig. 4. ROC for � � �, SNR = - 13 dB, � � ��,� � ���.

Fig. 5. Theoretical values of the logdet and Frobenius norm of the pairwise
coherence spectra matrix under � .

2) Example 3: In the third example, the parameters are
, SNR = - 13 dB, , . Fig. 4 shows the results

for this example, from which similar conclusions are drawn.
3) Example 4: This example illustrates the robustness of

the Frobenius norm based detector to finite size effects. In
particular, we compare the performance of the detectors of (2)
and (5) as a function of in the low and high correlation
cases for a fixed channel and noise spectral densities, i.e.,
and are fixed. Concretely, the probability of missed
detection for a fixed false alarm probability
is compared as a function of the number of available sam-
ples in two different scenarios, highly correlated signals
SNR = 20 dB and low correlated signals SNR = 5 dB .

Fig. 5 shows the theoretical values of the proposed general-
ization of the magnitude squared coherence spectrum and its
approximation based on the Frobenius norm, where we can see
that they are approximately equal for low correlated signals
and different for highly correlated signals. The number of
signals for this example is . As can be seen in Fig. 6, the
performance of both detectors is the same in the low correlation
regime. However, in the high correlation regime (Fig. 7), the
performance of the logdet detector is worse for small , and
it is obviously better for a sufficiently large number of samples.

4) Example 5: This example illustrates the effect of the
choice of and . The value of determines the spectral
resolution (bias) whereas determines the quality of the
estimate, i.e., its variance. Therefore, for a fixed value of
there is a bias-variance trade-off. This is a classical problem in
the field of spectral estimation and statistics, and therefore, we

Fig. 6. Probability of missed detection for � � �� as a function of ��
for the low correlation scenario.

Fig. 7. Probability of missed detection for � � �� as a function of ��
for the high correlation scenario.

will not analyze its effects on the estimate of .
Instead, we present some simulations showing how it affects
the performance of the detector. Fig. 8 shows the probability
of missed detection of the logdet detector for
two different values of (two different spectral resolutions)
for the high correlated case of Example 4. In this figure, we
can see that for a small number of samples, i.e., small,
it is advisable to sacrifice some spectral resolution in order to
reduce the variance of the estimate. On the other hand, when
the number of realizations increases, the spectral resolution
becomes more important.

C. Application to Cognitive Radio

In this subsection, we present the application of the proposed
detector to cognitive radio (CR) [6]. CR is a new paradigm in
communications in which the users make an opportunistic ac-
cess to the wireless channel when it is free. The basic idea is that
there are some primary (or licensed) users which have assigned
a frequency band, and there are some secondary users who can
access that frequency band if no primary user is transmitting.
Therefore, any CR system must rely on a spectrum sensing de-
vice (see [7] and references therein for a description of pre-
viously proposed detectors). If the primary users and the CR
node are equipped with multiple antennas, and making the as-
sumption that the noise processes at different antennas are un-
correlated, the detection problem in CR is equivalent to the hy-
pothesis test described in Section V-D. Then, defining as the
number of antennas of the primary user, as the number of an-
tennas at the CR node and assuming that (7) is satisfied and that
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Fig. 8. Probability of missed detection for � � �� as a function of ��
for high correlation scenario and two different resolutions.

Fig. 9. ROC for � � �, SNR = 0 dB, � � ���,� � ��.

the pdf of the primary signal is Gaussian, the detector given by
(2) and also its approximation in (5) can be directly applied to
detection of primary users in CR [31].

1) Example 6: In this final example, we present some simula-
tion results to illustrate the application of the proposed detector
in CR. In addition, we have compared its performance with that
of the following CR detectors:

• the generalized coherence detector (denoted as GC);
• a modification of the detector proposed in [32] to handle

noises with different powers at each antenna; the detector
is based on the ratio of largest to smallest eigenvalues of
the spatial coherence matrix in the time domain

and is a diagonal matrix formed from the main
diagonal of . This detector will be denoted as

;
• the energy detector (denoted as ED) using samples

per realization (the total number of samples is therefore
).

For the simulation, we have used OFDM-modulated DVB-T
signals7 with a bandwidth of 7.61 MHz. We have considered
a 3 3 spatially uncorrelated frequency-selective Rayleigh
fading channel with unit power and an exponential power delay
profile with delay spread of 0.779 s [33] .
The additive noises at each antenna are generated by fil-
tering independent zero-mean and complex white Gaussian

78K mode, 64-QAM, guard interval ��� and inner code rate ���.

processes with common variance with FIR filters with 4
i.i.d. random taps distributed as

, and the common SNR for all antennas
is SNR(dB) 0 dB. Finally, for the detec-
tion process, there are available realizations of length

. Fig. 9 shows the results for this example, where
we can see that the best results are obtained by the proposed
detector.

VII. CONCLUSION

In this work, we have derived the generalized likelihood ratio
test (GLRT) for deciding whether complex circular Gaussian
signals with unknown arbitrary covariance matrices are spatially
correlated or not. This is an interesting problem since it appears
in a wide variety of applications, such as detection in sensor
networks, or in multiple-input multiple-output (MIMO) radar.
The most interesting findings are provided by the GLRT in the
frequency domain, since it is closely related to other statistical
measures such as the coherence spectrum or the mutual informa-
tion. Specifically, we present an interesting frequency domain
approximation of the GLRT given by the integral of the loga-
rithm of the Hadamard ratio of the estimated cross power spec-
tral density matrix. In the case of signals, this test is
given by a function of the well-known magnitude squared co-
herence (MSC) spectrum. This fact has prompted us to propose
a generalization of the MSC spectrum for more than two signals
which is essentially defined as the determinant of a matrix con-
taining all the pairwise complex coherence spectra. This gener-
alizes Cochran’s multi-channel coherence from random vari-
ables to time series. In addition, we have presented an approx-
imation of the integrated logdet for low SNR scenarios, which
provides good results and is robust under small sets of data. The
derivation of detectors for more structured detection problems
(e.g., the reduced-rank latent signal model) is an interesting fu-
ture research line.
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