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ABSTRACT

The combination of orthogonal frequency-division multi-
plexing (OFDM) and space-time or space-frequency block
coding (STBC or SFBC) has been shown to be a sim-
ple and efficient means to exploit the spatial diversity in
frequency-selective fading channels. From a general broad-
band multiple-input-multiple-output (MIMO) channel model,
we derive a tight analytical approximation for the outage ca-
pacity of such systems assuming that the channel is known at
the receiver and unknown at the transmitter. This expression
is a simple function of the channel and system parameters.
Numerical results are provided to demonstrate the excellent
accuracy of the derived approximation in all cases.

1. INTRODUCTION

The straightforward application of space-time and space-
frequency block coding (STBC and SFBC) into orthogonal
frequency-division multiplexing (OFDM) systems is a sim-
ple way to exploit the inherent spatial diversity of multiple-
input-multiple-output (MIMO) systems in broadband chan-
nels [1], [2], [3]. In OFDM-STBC the orthogonal code
is applied across a number of consecutive OFDM symbols
whereas in OFDM-SFBC the orthogonal code is applied
across a number of neighbouring OFDM tones. Unlike other
more complex space-time-frequency coding techniques, the
referred OFDM-STBC and OFDM-SFBC are not able to ex-
ploit the multi-path diversity of the channel [4], but on the
other hand, the receiver is significantly simpler.

OFDM-STBC and OFDM-SFBC configurations can be
concatenated with outer codes providing frequency diversity
and enhancing the system performance [5]. In this context,
the channel capacity is a crucial performance measure to in-
vestigate the capacity-approaching capabilities of the over-
all system. The capacity of OFDM-based spatial multiplex-
ing MIMO systems was analyzed in [6]. This work focuses
on the capacity of OFDM-STBC and OFDM-SFBC systems
when the channel is unknown at the transmitter and known
at the receiver.

From a general broadband MIMO channel model we de-
rive tight and simple approximations for the mean and vari-
ance of the mutual information (also called instantaneous
capacity). Assuming that the mutual information is Gaus-
sian distributed, we obtain a simple closed-form expression
for outage capacity of OFDM-STBC and OFDM-SFBC sys-
tems. The fact that the mutual information can be well ap-
proximated by a Gaussian distribution was observed in [7]

This work has been supported by MEC (Spanish Ministry of Education
and Science) under project TEC2004-06451-C05-02.

and [8] for general MIMO narrowband channels, and in [9]
for MIMO-STBC narrowband channels. Here we show that
this approximation is excellent also for OFDM-STBC and
OFDM-SFBC systems, even for low number of antennas and
channel taps. To the author’s best knowledge, this is the first
time that a closed-form expression for the outage capacity of
OFDM-STBC and OFDM-SFBC systems is proposed.

In general, the closed-form expressions are useful in two
ways. They can be used to generate performance curves (in
this case outage capacity curves) without resorting to time-
consuming Monte Carlo simulations. Second and more im-
portant, they can reveal the influence of the channel and sys-
tem parameters on the system performance. Based on the de-
rived expression we can easily analyze the dependence of the
outage capacity on the spatial correlation, power delay pro-
file (PDP), number of antennas, signal-to-noise ratio (SNR),
code rate and number of OFDM tones.

2. BROADBAND MIMO CHANNEL MODEL

Consider a MIMO channel with nT transmit antennas and
nR receive antennas. The MIMO channel transfer function
(frequency response) is given by

H

(

e j2πθ
)

=
L−1

∑
n=0

Fn exp(− j2πnθ ) , 0 ≤ θ < 1, (1)

where Fn is a nR × nT matrix denoting the n-th tap of
the discrete-time MIMO fading channel impulse response,
and L is the number of channel taps. The entries of each
matrix Fn are assumed to be circular symmetric complex
Gaussian random variables. In general, they are spatially
correlated according to a specific covariance matrix Rn =
E

[

vec(Fn) vecH (Fn)
]

, whose entries are given by

ρ i j,ks
n = E

[

f i j
n

(

f ks
n

)∗]
, i,k = 1,...,nR, j,s = 1,...,nT (2)

where f i j
n is the entry of Fn corresponding to the jth transmit

and the ith receive antennas. Note that the diagonal terms of
the covariance matrices determine the PDP’s of the channel.
The nth term of the discrete-time PDP between the jth trans-
mit and the ith receive antennas is given by pi j

n = ρ i j,i j
n . In

general, there will be different PDP’s for the different pairs of
transmit-receive antennas. We assume, without loss of gen-
erality, that the channel is normalized so

nR

∑
i=1

nT

∑
j=1

L−1

∑
n=0

pi j
n =

L−1

∑
n=0

Tr(Rn) = nRnT . (3)



Since the Fn are zero-mean Gaussian matrices, the power
correlation between the elements of Fn can be expressed as
follows [10]
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We assume that the matrices Fn at different taps are un-
correlated. Therefore

E
[

f i j
n f ks

m

]

= 0, n 6= m. (5)

Although the above assumption is not exact due to the fi-
nite bandwidth of the receiver, this is commonly accepted in
discrete-time broadband channel models [5], [6], [11]. Since
the f i j

n are Gaussian, they are independent. Then

E

[

∣

∣ f i j
n

∣

∣

2
∣

∣

∣
f ks
m

∣

∣

∣

2
]

= ρ i j,i j
n ρks,ks

m , n 6= m. (6)

Considering (1), the channel frequency response at the
OFDM subcarriers will be

Hk = H

(

e j2πk/K
)

k = 0, . . . ,K −1, (7)

where K is the number of OFDM tones. Let γk denotes the
squared Frobenius norm of the channel response at the kth
tone: γk = ‖Hk‖2

F . Considering (7) and (5), it is straightfor-
ward to show that the γk’s are identically distributed. From
(7), considering (6), (4) and (2), we obtain the following ex-
pressions for the mean, and covariance of the γk’s

µγ = E [γk] =
L−1

∑
n=0

Tr(Rn) = nRnT , (8)

σ k,s
γ =

L−1

∑
n=0

L−1

∑
m=0

Tr
(

RnR
H
m

)

e− j2π(k−s) (n−m)/K . (9)

In particular, setting k = s, the variance of the γk’s is given by

σ2
γ = var [γk] =

L−1

∑
n=0

L−1

∑
m=0

Tr(RnRm) = ‖RS‖2
F , (10)

where RS = ∑L−1
n=0 Rn is the sum of the correlation matrices

at the channel taps.

3. OUTAGE CAPACITY

Since the channel is unknown at the transmitter, the total
available power is allocated uniformly across all the transmit
antennas and the OFDM subchannels. We assume that the
OFDM uses a cyclic prefix with adequate length. In OFDM-
STBC the orthogonal space-time code is applied across a
number of consecutive OFDM symbols [1], [3]. If the chan-
nel remains constant during the transmission of the OFDM
symbols involved in each STBC block, the MIMO-OFDM
channel can be decomposed into a set of K effective unclou-
pled scalar channels with signal-to-noise ratio (SNR) given
by

SNRk =
Esγk

σ2
n nT R

, (11)

where R is the code rate, Es is the total transmitted energy
per symbol time, and σ 2

n is the power of the additive white
Gaussian noise at the receive antennas. Under the channel
normalization of (3), the average signal-to-noise ratio (SNR)
at the receive antennas will be ρ = Es/σ 2

n .
In OFDM-SFBC the orthogonal space-frequency code is

applied across a number of neighbouring OFDM tones [2]. If
the channel response at these tones is identical, the MIMO-
OFDM channel can be decomposed into a set of K effec-
tive scalar channels with SNR also given by (11). Then, the
instantaneous capacity of both OFDM-STBC and OFDM-
SFBC systems can be expressed as follows

C =
K−1

∑
k=0

Ck =
R
K

K−1

∑
k=0

log2

(

1+
ρ γk

nT R

)

. (12)

The transmission of the cyclic prefix symbols results in a
penalty in the transmission rate and in the SNR (a fraction of
the available energy at the transmitter have to be expended on
the cyclic prefix symbols). Since the number of information
symbols is usually significantly higher than the number of
cyclic prefix symbols, these penalties are neglected here.

Since the wireless channel is random, the γk’s are random
and the instantaneous capacity of (12) is a random variable.
Assuming quasi-static fading channels, the random process
of the channel is non-ergodic. In this case, the outage capac-
ity is used as performance measure [12].

Since the γk’s are identically distributed, the Ck’s will
be identically distributed. To derive a closed-form approx-
imation for the average mutual information we consider a
second-order Taylor series expansion of Ck(γk) about γK =
µγ . Then, from (12)

Ck ≈ R
K

log2

(

1+
ρµγ

RnT

)

+
Rρ log2 e

K
(

nT R+ρµγ
) (13)

×
(

γk −µγ
)

− ρ2R log2 e

2K
(

RnT +ρµγ
)2

(

γk −µγ
)2

,

where e is the neper’s number. Applying the expectation op-
erator to (13) and considering (8) and (10) we obtain the fol-
lowing approximation for the average mutual information

µC ≈ R log2

(

1+
ρ nR

R

)

− Rρ2 log2 e

2n2
T (R+ρnR)2 ‖RS‖2

F . (14)

Note that µC is independent on the number of OFDM tones.
In ‖RS‖2

F we can distinguish two contributions. First, a fixed
contribution due to the diagonal terms, which equals nR nT
because of the channel normalization of (3). The second con-
tribution comes from the non-diagonal terms of RS which,
in general, will be significant when the channel taps are spa-
tially correlated. But, since the Rn are complex, high spa-
tial correlation at the individual channel taps does not always
leads to low µC.

Since the mutual information is a non-linear function of
the γk’s, its variance can be approximated, as a function of
the covariances of the γk’s, as follows [13]

σ2
C ≈

K−1

∑
k=0

K−1

∑
s=0

∂C
∂γk

∂C
∂γs

σ k,s
γ ,



where the partial derivatives are calculated at µγ . Consider-
ing (12) and (9), and assuming that K ≥ L, the variance can
be written as follows

σ2
C ≈

(

Rρ log2 e
nT (R+ρnR)

)2 L−1

∑
n=0

‖Rn‖2
F . (15)

Therefore, according to this approximation, σ 2
C does not de-

pend on the number of OFDM tones. Unlike the average mu-
tual information, high spatial correlation at the channel taps
always leads to high values of σ 2

C.
From (14) and (15) we obtain a Gaussian approximation

of the cumulative distribution function (CDF) of the mutual
information FC(x). The q%-outage capacity (Cq) is defined
as the transmission rate that is guaranteed for 1− q/100 of
the channel realizations. Then the q% outage capacity can be
approximated as follows

Cq = F−1
C (q) ≈ µC +σC

√
2 erfc−1

(

2− q
50

)

, (16)

where erfc(x) is the complementary error function. Since
erfc−1(x) is negative for x > 1, the second term in (16) is al-
ways negative. Therefore, the higher variance of C, the lower
outage capacity. According to (16), the outage capacity does
not depend on the number of OFDM tones.

3.1 Channel with a common correlation matrix

In the case of spatially balanced channels with identical cor-
relation matrix for all the taps: Rn = pnR, where R is the
common spatial correlation matrix with unit entries in its
main diagonal. This situation tipically arises when the an-
tennas are very close at the transmit and/or receive array, and
when the transmitter and/or receiver are surrounded by local
scatterers, so the angular spectrums are omnidirectional for
any tap. In this case,

‖RS‖2
F = ‖R‖2

F ,
L−1

∑
n=0

‖Rn‖2
F = ‖R‖2

F

L−1

∑
n=0

p2
n.

Note that the spatially uncorrelated channel can be viewed as
a particular case where R is a diagonal matrix. In this case
‖R‖2

F = nRnT because of the channel normalization. In gen-
eral, ‖R‖2

F ≥ nRnT , therefore µC will be always lower than in
the corresponding uncorrelated channel. On the contrary, σ 2

C
will be higher than in the corresponding uncorrelated chan-
nel. Therefore, as it is expected, the spatial selectivity im-
proves the outage capacity.

In the case of uniform PDP’s, the variance reduces to

σ2
C ≈

(

Rρ log2 e
nT (R+ρnR)

)2

‖R‖2
F

1
L

. (17)

This is the lower variance for all the possible PDP’s of length
L. The variance for a two-rays PDP is obtained by setting L =
2, regardless the delay between the two taps. By setting L = 1
we obtain the variance for a one-ray PDP which corresponds
to a channel with frequency flat response. In this case, the σ 2

C
coincides with the variance of the instantaneous capacity in
narrowband spatially correlated MIMO-STBC channels with
Rayleigh fading [9].

3.2 One-side spatially correlated channels

We first focus on channels spatially correlated in reception
and uncorrelated in transmission. This situation usually
arises in the uplink of a typical NLOS urban outdoor channel
when the transmitter is surrounded by local scatterers and the
receiver is not obstructed by local scatterers. Assuming that
the correlation at the receiver array does not depend on the
transmit antenna, the correlation matrices at the channel taps

Rn = RT
T
n ⊗RRn = I⊗RRn,

where ⊗ denotes the Kronecker product, the superscript (·)T

denotes the matrix transpose operator, RRn is the nR × nR
receive correlation matrix for the n-th tap and RTn is the
nT ×nT transmit correlation matrix for the n-th tap which, in
this case, equals the identity matrix I. Now,

‖RS‖2
F = nT ‖RRS‖2

F ,
L−1

∑
n=0

‖Rn‖2
F = nT

L−1

∑
n=0

‖RRn‖2
F ,

(18)
where RRS = ∑L−1

n=0 RRn is the sum of the correlation ma-
trices in reception. Substituting (18) in (14) and (15) we ob-
tain the corresponding expressions for the mean and variance
of the instantaneous capacity. Analogous expression are ob-
tained when the channel is spatially uncorrelated in reception
and correlated in transmission.

4. SIMULATION RESULTS

Now, to show the tightness of our approximation, we com-
pare the analytical predictions of (16) with Monte Carlo sim-
ulations for a variety of channel conditions and system pa-
rameters. In all cases the analytical predictions are repre-
sented by solid lines and the Monte Carlo values are repre-
sented by markers. In every simulation, 20000 independent
Monte Carlo runs have been performed.

Figure 1 shows the outage capacity for different MIMO
configurations as a function of the delay between the channel
taps, assuming an equal-gain two-rays channel. The channel
is spatially uncorrelated. The average SNR at the receiver
antennas is ρ = 10 dB in all cases. The number of OFDM
tones is K = 512. It can be observed that the outage capac-
ity is insensitive to the tap spacing. The graph shows that
the analytical approximation (solid lines) closely matches the
outage capacity (markers). The maximum relative approxi-
mation error is lower than 2.5% in all cases.

La figure 2 shows results of outage capacity versus out-
age probability for a 3 × 3 MIMO channel with K = 64
OFDM tones. The code rate is R = 3/4. The different curves
corresponds to uniform PDP’s with different lengths (L), as-
suming that the average SNR is ρ = 10 dB in all cases. There
is common correlation matrix (R) for all taps. It was ob-
tained from the Jakes correlation model [14] as a function of
the antenna spacing in the transmit and receive arrays. This
model assumes uniform angular spectrum at both the trans-
mitter and the receiver for all the channel taps. Also, it is
assumed that the antennas are identical and single-polarized,
at each array. According to this model the entries of R are
given by

ρ i j,ks = J0 (2πsik)J0 (2πs js) ,

where J0 (x) is the zero-order Bessel function of the first kind
and sik and s js are the distances (in wavelengths) between the
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Fig. 1. Outage capacity as a function of the delay between
the channel taps for different MIMO configurations and code
rates.
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Fig. 2. Outage capacity of a 3× 3 OFDM-STBC system,
as a function of the outage probability, for different channel
lengths.

corresponding antennas in the receive and transmit arrays,
respectively. In the simulations we assume linear arrays with
uniform antenna separations equal to λ/5 in both arrays. The
figure shows that the proposed approximation is quite tight
for any channel length and outage probability. The relative
maximum approximation errors were 2.8%, 1.1% and 0.24%
for the the cases L = 2, L = 4 and L = 8, respectively. The
curves also show the dependency of the outage capacity with
the channel length. Note that the variance of the capacity is
inversely proportional to L, as (17) shows.

Now, we consider channels spatially correlated in recep-
tion and uncorrelated in transmission, where the spatial cor-
relation matrix is different at the channel taps. We consider
the channel model used in [6] [11]. This model is suitable for
the uplink of a typical cellular suburban channel where the
transmitter is surrounded by local scatterers and the receiver
is not obstructed by local scatterers. The model assumes that
each channel tap is due to the waves arriving from a scat-
terer cluster, where the waves from a given cluster experi-
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Fig. 3. 1%-Outage capacity of different OFDM-STBC sys-
tems as a function of the spacing between the receive anten-
nas.

ence the same delay. The model also assumes a linear array
at the receiver with identical single-polarized antennas. For
each cluster/tap the angle of arrival of the incoming waves
(with respect the array axis) are Gaussian distributed around
a mean value (θ̄n) with standard deviation σ θ

n . In practice,
this standard deviation depends on the scattering radius of the
cluster and its distance to the receiver. Under these assump-
tions and for small angular spreads, the entries of the receive
correlation matrices RRn can be expressed as follows [6],
[11]

ρ i,k
R n ≈ pn exp

[

− j2πsik cos θ̄n −2
(

πsik σθ
n sin θ̄n

)2
]

. (19)

Note that, unlike in previous results, there are different cor-
relation matrices for each channel path. Figure 3 shows re-
sults of 1% - outage capacity as function of the spacing be-
tween the receive antennas for different OFDM-STBC sys-
tems with two transmit antennas and variable number of
receive antennas. The code rate is R = 1, the number of
OFDM tones is K = 128 and the average SNR at the re-
ceiver branches is ρ = 15 dB, in all cases. We consider
L = 6 taps /clusters with mean angles of arrival given by
(n+6)π/16, n = 0, . . . , L− 1. That is the clusters are uni-
formly distributed around an arc of 5π/16 radians. We also
assume uniform PDP and identical angular standard devia-
tion for all the clusters: σ θ

n = (π/36). The mean and vari-
ance of the outage capacity are obtained considering (19) and
(18). Once again, the analytical approximation (solid lines)
closely matches the outage capacity (markers), with an rela-
tive approximation error lower than 2.8% in all cases.

In figure 4 we shows the 2%-Outage capacity versus the
SNR at the receiver branches (ρ) when the spacing between
adjacent receive antennas is sik = λ . The rest of channel and
system parameters is identical than in the previous case (fig-
ure 3). In this case, the maximum relative approximation
error is 2.7%.

5. CONCLUSIONS

In this work we have derived a tigth closed-form approxi-
mation for the outage capacity of OFDM-STBC and OFDM-
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Fig. 4. 2%-Outage capacity for different correlated MIMO
channels as a function of the average SNR at the receiver
branches.

SFBC systems. The derived expression only depends on the
spatial covariance matrices of the MIMO channel at the chan-
nel taps and on the system parameters. The accuracy of the
expression reveals that these covariance matrices are the only
channel statistics needed for a tight estimation of the outage
capacity. The expression is quite accurate for any spatial cor-
relation conditions, power delay profiles, SNR and system
parameters. It clearly shows the dependency of the outage
capacity on the system and channel parameters.
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