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ABSTRACT

Although the raised cosine pulse shaping filter is a well-
established standard in digital communications, in many
practical systems simpler approaches are useful. In this
paper a new family of pulse shaping filters with zero in-
tersymbol interference after matched filtering is proposed.
The method, based on the spline interpolation of the symbol
data, exploits two properties of splines: that the B-spline
coefficients can be efficiently obtained via digital filtering,
and that the B-spline kernels of order n can be constructed
from the convolution of n + 1 rectangular pulses. These
two facts suggest how to decompose the filtering operations
needed to obtain any spline interpolation of odd-order into
two matched filters. The proposed architecture allows an
efficient implementation, produces optimal performance and
shows better spectral characteristics than other suboptimal
approaches.

1 INTRODUCTION

In digital communications it is important to select signal
shapes that produce zero intersymbol interference (ISI) after
the matched filtering stage when the channel is bandlimited.
In his seminal paper, Nyquist set down the necessary condi-
tions to achieve ISI-free transmission [1]. Among them, the
first Nyquist criterion, which states that the equivalent im-
pulse response of the transmitting and receiving filters should
have zero crossings at multiples of the symbol period T , is
the most used in practice. Also due to Nyquist, the vestigial
symmetry theorem allows the design of realizable filters that
satisfy the first Nyquist criterion, including the raised cosine
filter, that is used in many practical systems when ISI is a rel-
evant problem. Despite the success of the raised cosine pulse
shape, still some research is conducted in the design of filters
that satisfy the Nyquist-I constraint, searching for different
objectives such as maximizing the energy in a certain time
interval [2], or having ISI-free properties with or without
matched filtering [3, 4]. In some cases, however, due to the
computational cost associated to this optimal raised cosine
filtering, practical applications rely on much simpler shaping
filters with worse spectral characteristics, mainly rectangular
waves or cosine functions.

Although not commonly stated, the first Nyquist criterion
is equivalent to interpolating the communication symbols us-
ing a basis function with the interpolatory property [5], i.e.,
with zero crossings at the sampling points. Following this
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idea, in this paper we propose to interpolate the discrete se-
quence of symbols using splines. In this way, we construct an
ISI-free signal when sampled at the symbol rate. Although
any reconstruction technique from the communications sym-
bols that exactly goes through the symbols is a zero ISI
communications signal, splines have a number of advantages
that make them an interesting choice when spectral con-
tent as well as complexity are of concern. The main advan-
tage is that any spline interpolation model of odd-order may
be computed by filtering the sequence of symbols with two
matched filters, so it is quite simple to design an optimal re-
ceiver. Besides this advantage, spline interpolation achieves
better spectral characteristics than rectangular pulses with
a moderate increase in complexity.

The rest of the paper is organized as follows. In Section 2
we review some basic notions of spline interpolation. In Sec-
tion 3 we show how to use splines as ISI-free shaping filters.
Section 4 is concerned with implementation aspects of the
proposed spline shaping technique. Section 5 shows some
simulation results to illustrate the advantages of spline con-
formation. The paper ends with the conclusions presented
in Section 6.

2 SPLINE INTERPOLATION

In this section we review the fundamental properties of spline
interpolation; a more detailed review is carried out in [6, 7, 8].
A B-spline of order n, βn(t), is a symmetrical, bell-shaped
function that can be constructed from the convolution of
n + 1 identical rectangular pulses

β0(t) =

{
1, |t| < 1/2;

0, |t| ≥ 1/2.

Spline interpolation of a given input data signal s[k] con-
sists in determining a set of coefficients c[k] so that the con-
tinuous time signal

s(t) =
∑
k∈Z

c[k]βn

(
t

T
− k

)
(1)

goes exactly through the data points; i.e.,

s[k] = s(kT ), k ∈ Z. (2)

One of the advantages of the B-spline expansion (1) is that
the coefficients c[k] can be easily obtained by digital filtering
techniques. To clarify this idea, it is convenient to intro-
duce the discrete B-spline kernel bn[k], which is obtained by
sampling the B-spline of degree n at integer instants

bn[k] = βn(k) = βn(t)|t=k∈Z .
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Figure 1: Impulse response of the pulse shaping filter ϕn(t)
for n = 3, 5, 9 and ∞.

Using the discrete B-spline kernel, (2) may be expressed as
the convolution

s[k] =
∑
m∈Z

c[m]bn[k −m] = c[k] ∗ bn[k].

According to this equation, s[k] is obtained by filtering c[k]
with bn[k]. Hence, to obtain c[k] from s[k] it is enough to ap-
ply the filter dn[k] that verifies bn[k]∗dn[k] = δ[k]. The filter
dn[k], known as the direct filter, is all-pole and has symme-
try properties that permit to implement it as a cascade of
a causal, dn+[k], and an anticausal, dn−[k], recursive filters.
As we show in the next section, this property is crucial to
obtain a ISI-free matched filter using splines.

The overall interpolation process may be expressed as a
convolution using the discrete sequence s[k] —the communi-
cation symbols— as coefficients

s(t) =
∑
k∈Z

s[k]ηn

(
t

T
− k

)
,

where ηn(t) is the cardinal spline of degree n, which is ob-
tained as the convolution of the direct filter and the B-spline
kernel

ηn(t) =
∑
k∈Z

dn[k]βn(t− k).

If, for notational convenience, we define our zero ISI pulse-
shaping filter as

ϕn
T (t) = ηn

(
t

T

)
, (3)

the communications signal can be rewritten as

s(t) =
∑
k∈Z

s[k]ϕn
T (t− kT ).

Fig. 1 shows the impulse response of the pulse shaping
filters ϕn

T (t) of degree 3, 5, 9 and ∞. In particular, for
n = ∞, ϕn

T (t) is the ideal Nyquist filter. It is clear from the
zero crossings at the multiples of T that the proposed spline
interpolation technique produces ISI-free signals.

3 CUBIC SPLINE FILTER

In this section we discuss how to split the zero ISI cardinal
spline (3) between the transmitter and the receiver in order
to match the transmitting and receiving filters and achieve a
practical implementation. Even if we restrict our exposition
to cubic spline interpolation, all the results may be extended
to any odd-order spline.

The direct B-spline filter for the cubic spline is

d3[k] =
1− z1

1 + z1
z1
|k|,

where z1 = −2 +
√

3 is the filter pole [7]. It is easy to show
that the direct cubic B-spline filter can be factored into two
filters, one causal (d3+[k]) and one anticausal (d3−[k]), given
by

d3±[k] = (1− z1)z1
±ku[±k]. (4)

Since d3+[k] = d3−[−k], their Fourier transforms are con-
jugated and hence both filters are matched. As a pair of
matched filters we propose a transmission filter hT (t), com-
posed by the cascade connection of d3+[k] and β1(t/T ),

hT (t) =
∑
k∈Z

d3+[k]β1

(
t

T
− k

)
,

and a receiving filter hR(t), composed by the cascade of
β1(t/T ) and d3−[k]

hR(t) = hT (−t) =
∑
k∈Z

d3−[k]β1

(
− t

T
+ k

)
.

We will denote hR(t) and hT (t) as square root cubic spline
(SQRCS) filters.

Since the frequency response of the SQRCS transmitting
filter is

HT (ω) = (1− z1)
sinc2(ωT/2π)

1− z1e−jωT
,

if we assume that the symbol sequence s[k] is white with
variance σ2

S , then, the power spectral density (PSD) of the
transmitted signal sT (t) will be

ST (ω) =
σ2

S

T
|HT (ω)|2 =

3σ2
S

T

sinc4(ωT/2π)

2 + cos(ωT )
.

4 IMPLEMENTATION ASPECTS

In this section we briefly discuss some implementation as-
pects of the proposed spline pulse shaping technique. We
focus on the cubic spline conformation, but the results are
easily extended to any odd-order spline.

In principle, the major drawback of the proposed approach
is the implementation of the IIR (infinite impulse response)
digital filters d3±[k]. The causal filter d3+[k] may be imple-
mented using just one multiplication and one addition for
each input symbol

sd+ [k] = s[k] + z1sd+ [k − 1].

The anticausal filter, however, must be truncated. More-
over, to keep a matched transmission system, the causal filter
should also be truncated. In this way, both filters d3+[k] and
d3−[k] are implemented as finite impulse response (FIR) fil-
ters. The truncation procedure introduces some degradation;
however, d3+[k] and d3−[k] are both fast falling filters, and
we have found by simulation that with just three coefficients
almost optimal performance is obtained (see Fig. 2). Note
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Figure 2: BER degradation due to the truncation of the
transmitting and receiving digital filters.

that, when the input symbol sequence is binary, no multipli-
cations are necessary, only additions and subtractions. Ad-
ditionally, the discrete-time FIR transmission filtering may
be implemented in the form of a look-up table.

In the proposed system the transmitter and receiver filters
are the cascade of a triangular shaped filter with d3−[k] and
d3+[k], respectively. In a practical setting the transmitter
can be implemented using a differentiator and an integrator
based on operational amplifiers, as Fig. 3 shows. In this case,
the transmitter must perform digitally the differentiation us-
ing a two-tap filter, which can be combined with d3−[k] and
implemented through a look-up table. Note, finally, that in
this implementation the D/A converter works at the symbol
rate and it does not require an analog reconstruction filter,
as opposed to traditional schemes.
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Figure 3: Transmitter implementation.

In a digital implementation, the receiver will sample the
incoming signal at a multiple of the symbol rate. The
matched filter in this case will be a sampled triangular filter.
After this filter the signal may be decimated and then the
anticausal filter may be applied at the symbol rate. This
implementation has a computational cost lower than other
approaches where infinite length matched filters are trun-
cated and implemented through FIR filters. Besides, this
receiver needs a less restrictive antialiasing filter, and has
lower ISI than, for example, the NRZ, because its sidelobes
are lower.

5 NUMERICAL RESULTS

From a practical point of view, the main contribution of
this paper is to show how to implement an ISI-free triangle-
shaped communication system. This offers a new alterna-
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Figure 4: The three simulated systems: a) F-QPSK, b) NRZ
with 4th-order Butterworth, c) SQRCS.

tive to implement communication systems with better per-
formance than conventional NRZ based systems and with a
lower computational cost than square-root raised cosine fil-
ters. As a numerical proof of this improved performance, we
have simulated the three communication links shown in Fig.
4.

The three systems are designed to comply with a similar
spectral mask. Specifically, the first system is based on the
following shaping filter

p(t) =

{
0.5[1 + cos(πt/T )], if |t| ≤ T,

0, otherwise.

that is used in the F-PQSK modulation proposed in [9].
The lowpass reception filter is a 4th-order Butterworth filter
with a 3dB bandwidth of 0.55Rb, with Rb denoting the bi-
nary data rate. As discussed in [9], this filter, although not
matched, provides a good BER performance in a Gaussian
noise channel. The second system is a NRZ pulse-shaping fil-
ter followed by a 4th-order Butterworth lowpass filter with
a 3dB bandwidth of 0.7Rb. The same lowpass filter followed
by the NRZ pulse shaping is used in reception to match both
the transmitter and receiver. Finally, the third system is our
proposed cubic spline pulse shaping, using also two 4th-order
Butterworth lowpass filters in transmission and reception, in
this case of bandwidth 0.9Rb. The three power spectral den-
sities in the channel are shown in Fig. 5, where it can be seen
that the three structures attenuate more than 30 dB the first
sidelobe, and that our proposed cubic spline shaping has the
fastest decay in the lateral lobes.

The bit error rates for the three systems in an ideal chan-
nel with additive white Gaussian noise (AWGN) are shown in
Fig. 6. It can be seen that no degradation from optimal per-
formance is observed for the proposed spline shaping, while
the first system (denoted as Feher filter) has a degradation
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Figure 5: Transmitted power spectral density for the three
systems: NRZ, Feher filter, and the proposed SQRCS shap-
ing.
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Figure 6: BER for the three communication systems: NRZ,
Feher filter, and the proposed SQRCS shaping.

of approximately 1 dB for a bit error rate of 10−5, and for
the NRZ shaping the degradation is about 1.5 dB.

6 CONCLUSIONS

In this paper we have proposed a new family of pulse shaping
filters, which produce zero ISI after matched filtering. The
proposed pulse-shaping technique produces at the receiver
a spline interpolation of odd-order of the symbol sequence.
The fact that the spline interpolation may be implemented
as a digital filtering operation, which can be expressed as
the convolution of two matched filters, means that optimal
performance in an AWGN channel can be achieved. In the
particular case of cubic spline interpolation, the communica-
tions system is composed of two digital FIR filters operating
at the symbol rate, and two triangle-shaped filters. The re-
sulting system may be considered an improved alternative
to the NRZ conformation with a small increase in computa-
tional cost.
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