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Ignacio Santamar'(aa ;∗, Rafael Gonz'aleza, Carlos Pantale'ona, Jos'e C. Principeb

aDICOM, ETSII y Telecomunicacion, Univ. of Cantabria, Santander 39005, Spain
bComputational NeuroEngineering Laboratory, Univ. of Florida, Gainesville, USA

Received 31 May 2002; received in revised form 15 November 2002

Abstract

In this paper we apply the structural risk minimization principle as an appropriate criterion to train decision feedback and
transversal equalizers. We consider both linear discriminant (optimal hyperplane) and nonlinear discriminant (support vector
machine) classi6ers as an alternative to the linear minimum mean-square error (MMSE) equalizer and radial basis function
(RBF) networks, respectively. A fast and simple adaptive algorithm called the Adatron is applied to obtain the linear or
nonlinear classi6er. In this way we avoid the high computational cost of quadratic programming. Moreover, the use of soft
margin (regularized) classi6ers is proposed as a simple way to consider “noisy” channel states: this alternative improves the
bit error rate, mainly at low SNR’s. Furthermore, an adaptive implementation is discussed. Some simulation examples show
the advantages of the proposed linear and nonlinear equalizers: a better performance in comparison to the linear MMSE and
a simpler structure in comparison to the RBF (Bayesian).
? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Digital communication receivers are often impaired
by intersymbol interference when the transmitted sym-
bol sequence goes through a band-limited channel. An
equalizer is then used to obtain a reliable data trans-
mission. In the literature, the transversal (see Fig. 1)
and the decision feedback structure (see Fig. 2) are
the most popular equalizers [24,19]. Both structures
can perform a linear or nonlinear 6ltering of the ob-
servations (using a linear or nonlinear discriminant
function as shown in Figs. 1 and 2, respectively).
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In particular, the optimal nonlinear (Bayesian) equal-
izer has been developed for transversal and decision
feedback structures in [6,9], showing that, for both
structures, it can be implemented as a radial basis func-
tion (RBF) network.
From a classi6cation point of view, the FIR- and

RBF-based equalizers separate the channel states
using, respectively, a linear and nonlinear discrim-
inant function, and they both utilize the minimum
mean-square error (MMSE) criterion in choosing the
optimal weights.
However, it is well known that, in general, the

MMSE design does not yield the minimum bit error
rate (BER) solution. A more appropriate criterion
would be to formulate the problem as a classi6ca-
tion task and design a maximum margin classi6er by
applying the structural risk minimization (SRM)
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Fig. 1. Schematic diagram of a generic transversal equalizer using a linear or nonlinear discriminant function.

Fig. 2. Schematic diagram of a generic decision feedback equalizer using a linear or nonlinear discriminant function.

principle [27]. The maximum margin classi6er can
be applied in the input space, providing a linear dis-
criminator that we call the optimal hyperplane (OH),
or in feature space implementing a support vector
machine (SVM). The architecture of the equalizer is
now given in terms of a reduced set of critical training
samples known as support vectors (SV).
Recently, some research has been conducted to

study the application of SV machines in equalization
problems. For instance, in [2,4], the OH was obtained
for a DFE showing its potential improvement over the
linear MMSE-DFE solution. In [25] an SVM using a
polynomial kernel was applied for nonlinear equaliza-
tion achieving a performance similar to that of neural
network-based equalizers. Similar results have been
recently found using an SVM with Gaussian kernel
[17]. Also, in [7] it is shown that, for high SNR’s, the
optimal nonlinear discriminant can be approximated
using a piecewise linear boundary. This result has

been extended to M-ary pulse amplitude modulation
(PAM) signals in [3]. The set of hyperplanes de6ning
the boundary is then obtained by applying the SRM
principle.
In this paper we extend these previous works in the

following directions: 6rstly, we systematize the com-
parisons between the MMSE and the SRM criteria for
linear and nonlinear classi6ers. Secondly, we consider
the application of soft margin SV machines as a way
to include a priori information about the noise vari-
ance. Finally, to avoid the high computational cost
of training SV machines by solving a quadratic opti-
mization problem, we use a fast and simple procedure
known as the Adatron algorithm [1,12]. It obtains ex-
actly the SVM solution, but with an exponential rate
of convergence in the number of iterations.
By means of some simulation examples we show

that the soft margin OH outperforms its MMSE coun-
terpart. On the other hand, if the kernel function to
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map the input space into the feature space is chosen
as the Gaussian kernel, we have a topology similar to
the RBF network, that diLers only on the criterion for
optimization. The advantage of SVM over RBF equal-
izers is that an SVM provides a pruned structure since
only those training samples or channel states that are
important for classi6cation become support vectors. In
this way, an SVM equalizer allows the user a tradeoL
between complexity and performance.

2. Linear and nonlinear equalization using
transversal and decision feedback-structures

In this section we brieGy review a general frame-
work to study transversal and decision feedback equal-
ization structures from a classi6cation point of view.
The received signal at the input of the equalizer can

be expressed as

y(k) =
n∑

i=0

his(k − i) + e(k); (1)

where the transmitted symbol sequence s(k) is
assumed to be an equiprobable binary sequence
{+1;−1}, hi are the channel coeNcients, and the mea-
surement noise e(k) can be modelled as a zero-mean
Gaussian with variance 	2

n.
The transversal equalizer (TE) shown in Fig. 1

is probably the most popular equalization structure:
it estimates the value of a transmitted symbol as
a (linear or nonlinear) combination of the channel
observations, i.e.,

ŝ(k − d) = sgn(g(y(k))); (2)

where g(:) is the linear or nonlinear discriminant func-
tion, y(k)= [y(k); : : : ; y(k −m+1)]T is the vector of
observations and d is the equalizer delay.
As it was 6rstly pointed out in [13], the equalization

of a digital communications channel can be viewed as
a classi6cation problem. To further clarify this idea,
let us note that the noiseless vector of channel obser-
vations can be expressed using matrix notation as

r(k) =Hs(k); (3)

where s(k)=[s(k); : : : ; s(k−m−n+1)]T is the vector of
transmitted symbols and H is an m× (m+n) Toeplitz

channel matrix given by

H =




h0 · · · hnc 0 · · · 0

0 h0 · · · hnc
. . . 0

...
. . .

. . .
. . .

. . .
...

0 · · · 0 h0 · · · hn




(4)

For a channel with n+1 taps and a TE with m coeN-
cients there are N = 2(m+n) diLerent channel states ri,
which can be obtained as R= {ri =Hsi; i=1; : : : ; N},
where si represents the 2(m+n) possible input se-
quences. For a binary digital signal, R can be parti-
tioned into the following two subsets:

R(±1) = {ri ; s(k − d) =±1}: (5)

Then, an equalizer must 6nd a classi6cation bound-
ary between R(+1) and R(−1). In particular, the opti-
mal symbol-by-symbol Bayesian equalizer de6nes a
nonlinear boundary g(r(k)) = 0, which is given by

g(r(k)) =
∑

ri∈R(+1)

�i exp
(
−‖r(k)− ri‖22

2	2
n

)

−
∑

ri∈R(−1)

�i exp
(
−‖r(k)− ri‖22

2	2
n

)
; (6)

where �i is the probability of appearance of each chan-
nel state, which under the equiprobability assumption
is �i =1=N , since all the channel states have the same
probability. On the other hand, the conventional linear
transversal equalizer (LTE) de6nes a linear boundary
through a hyperplane

g(r(k)) = wTr(k): (7)

The use of a transversal structure for equalization has
several drawbacks: the linear separability of the chan-
nel states is not guaranteed [13] and, besides, the LTE
suLers from noise enhancement when the channel has
zeros close to the unit circle. On the other hand, if
we implement a nonlinear boundary through (6), the
number of channel states grows as 2m+n and, even for
moderate channel lengths, the optimal Bayesian equal-
izer becomes unfeasible.
To mitigate these problems we can employ deci-

sion feedback. The equalization structure in this case
is depicted in Fig. 2. For the DFE, the channel obser-
vations (3) can be partitioned as

y(k) =H1sf(k) +H2sb(k); (8)
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where H1 and H2 are composed of the 6rst m
columns and the last n columns of the channel
matrix H. That is, using Matlab notation, H1 =
H(:; 1 : m) and H2 =H(:; m+ 1 : m+ nc). This par-
titioning of the channel matrix corresponds to a DFE
with feedforward order m, feedback order n (equal to
the channel order), and equalizer delay d = m − 1:
these values are often chosen in conventional DFE’s
[9]. Now, assuming that the past decisions are correct,
the vector of channel states for the DFE (denoted
again as r(k)) can be expressed as

r(k) = y(k)−H2sb(k) (9)

and then, as it was shown in [5], the conventional lin-
ear DFE is equivalent to a 6ltering of the “translated”
channel states. Again, this 6ltering can be nonlinear
as in (6) or linear as in (7). The main advantages of
using a DFE structure are that the number of channel
states grows only as 2m and that now the two classes
are always linearly separable [5].
Regardless the use of a transversal or decision

feedback equalization structure, typically an MMSE
criterion is used to obtain the weights de6ning the
linear or nonlinear discriminant. On the other hand, as
it is shown in [6,9,10] the Bayesian detector (6) can
be implemented using an RBF network by placing a
Gaussian RBF unit at each channel state. Some tech-
niques to reduce the number of relevant channel states
via clustering have been recently proposed [14,15].

3. Maximum margin equalizers

3.1. OH and SVM equalizers

In recent years, SV machines have been success-
fully applied to several classi6cation and pattern
recognition problems. As it was described in the pre-
vious section, equalization is actually a classi6cation
problem. This suggests the interest in training the
equalizer using the SRM principle, which allows one
to obtain an OH separating two sets of points in the
input space or in the feature space, yielding a linear
or nonlinear equalizer, respectively.
In non-blind equalization, there are two approaches

to use the information provided by the training se-
quence: we can use a direct approach by training the
equalizer directly from the channel observations [25],

or we can follow an indirect approach which uses the
training sequence to estimate the channel and then ob-
tain the channel states through (3) for a transversal
equalizer or (9) for a DFE. As we will see later, the
algorithms used to obtain the OH are memory inten-
sive. For this reason we feel that the indirect approach
is more adequate in this context, since the channel
states are, in fact, the centers of the channel observa-
tion clusters, thus providing somehow a reduction of
the training set.
As we have discussed in the previous section, we

can formulate our equalization problem as follows:
given the training set I={(ri ; si); i=1; : : : ; N}, where ri
are the channel states and si ∈{+1;−1} are the desired
symbols; obtain the classi6er that minimizes the BER.
The nonlinear equalizer that minimizes the BER is the
Bayesian one (6), which becomes unfeasible when the
number of channel states is large. On the other hand,
LTE’s and DFE’s that minimize the BER have been
also proposed [5,8,18,28]. In these works, the cost
function is directly the BER, which is derived and then
minimized using gradient descent techniques. Since
the BER computation involves all the channel states,
some approximation must be made in order to make
this approach practical, either by reducing the number
of channel states or by estimating the pdf at the output
of the equalizer using the Parzen windowing method.
In this work we consider the OH and SVM equal-

izers as linear or nonlinear approximations to the true
minimum BER equalizer. Let us 6rst assume that the
channel states are linearly separable (this is always
true for a DFE if the feedback order is equal to the
channel order, and it also holds true for a LTE if
its order and delay are large enough), a reasonable
approximation to the minimum BER solution can be
obtained by constructing an OH that maximizes the
distance between the closest vectors to the hyperplane
(i.e., the margin). In [27], it is shown that the weight
vector w and the threshold b of the maximum margin
hyperplane can be obtained by minimizing

J (w; b) = 1
2‖w‖22; (10)

subject to si(riw+b)¿ 1, i=1; : : : ; N . This problem is
equivalent to maximize the following quadratic form:

W (�) =
N∑
i=1

�i − 1
2

N∑
i=1

N∑
j=1

�i�jsisj〈ri ; rj〉; (11)

subject to the constraints: �i¿ 0, and
∑N

i=1 �isi = 0.
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Using matrix notation we can rewrite (11) as

W (") = "T1− 1
2"

TD"; (12)

where 1 is an N -dimensional unit vector, " is a vector
with elements �i, and D is an N × N matrix with
elements given by Dij = sisj〈ri ; rj〉.

The solution of this optimization problem can be
expanded in terms of the input patterns and the coef-
6cients �i as w =

∑
i �isiri, [27,11]. Only the train-

ing patterns which lie closest to the hyperplane have
�i ¿ 0 and are called support vectors; all others have
�i = 0.
Finally, the decision function for the OH equalizer

is given by

f(r) = sgn

(∑
i

�isi〈ri ; r〉+ b

)
: (13)

For this particular problem, due to the symmetry of
the classes, we know that the border passes through
the origin, so that b= 0.
The linear classi6er can be easily extended to im-

plement a nonlinear decision boundary by replacing
the inner product in (11) and (13) by a nonlinear
kernel function K(ri ; rj) that satis6es the Mercer
condition [27]. For an equalization problem, a suitable
nonlinear kernel is a Gaussian RBF

K(ri ; rj) = exp
(−‖ri − rj‖22

	2

)
; (14)

where 	2 is a given parameter. In this case, the SVM
takes the form of an RBF equalizer

f(r) = sgn

(∑
i

�isiK(ri ; r)

)
: (15)

Nevertheless, in a conventional RBF equalizer the
units are located at each channel state (or a subset of
them [14]), while the SVM selects only those channel
states that maximize the margin in the feature space
and therefore are relevant for classi6cation purposes.
This approach usually leads to a simpler structure.

3.2. Soft margin OH’s

The channel states, which are used as support vec-
tors, do not take into account the noise information.
Actually, the pdf of the channel observations is a set
of Gaussians centered at each of the channel states. In
this way, the solution provided by solving (12) can

be considered optimal only for the asymptotic case of
SNR → ∞.
The MMSE solution, on the other hand, takes into

account the noise variance through the autocorrelation
matrix of the channel observations. When the noise
variance increases, the MMSE hyperplane tends to
rotate. This diLerence explains the observation that, at
low SNR’s, the MMSE solution can achieve a better
BER that the OH solution (at least for some channels).
In the following we discuss an alternative to han-

dle these high-noise situations. A 6rst possibility to
incorporate the noise into our classi6cation problem
could be to train the SV machine directly using the
channel observations, yi, instead of the channel states,
ri [25,23]. However, this approach would yield a SV
machine with a larger number of support vectors.
An alternative solution consists of constructing a

soft margin hyperplane by minimizing the following
regularized functional:

J (w; b) =
1
2
‖w‖22 + C

N∑
i=1

(�i)�; (16)

subject to the constraints si(riw + b)¿ 1 − �i and
�i¿ 0.
Typically, this soft margin alternative is used to

handle situations where all the patterns cannot be
correctly classi6ed. Here we use it to improve the
performance of the classi6er in high-noise situations.
If we consider �= 2 in (16), the second term min-

imizes the least-squares errors (LSE). In this case the
optimization problem is still quadratic [11]

W (") = "T1− 1
2

(
"TD"+

1
C
"T"

)
; (17)

subject to the constraints: "¿ 0, and
∑

i �isi = 0.
From (17) we see that the LSE soft margin reduces

to regularize the kernel matrix D by adding 1=C to the
elements of the main diagonal. The similarity with
the regularization performed in the MMSE solution
suggests to select the regularization parameter as
1=C ˙ 	2

n. After an extensive number of simulations,
we have found that the optimal value is 1=Copt =2m	2

n
(m being the length of the feedforward 6lter for both
the transversal and decision feedback structures).
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4. The Adatron algorithm

The computational cost associated to the quadratic
programming problems (12) or (17) is one the main
drawbacks in applying either the OH or the SVM
to practical equalization problems. Several alterna-
tive techniques have been proposed in the literature
to solve this problem; for instance we could apply an
iterated reweighted least square (IRWLS) learning al-
gorithm as proposed in [22,23], or the Adatron algo-
rithm [1,12]. The IRWLS technique requires a matrix
inversion at each iteration. Then, even for a problem
with a moderate number of channel states, the com-
putational burden of the procedure is high.
In this paper, we use the Adatron algorithm, which

unlike the IRWLS is an LMS-like adaptive algorithm.
Speci6cally, at each iteration the Adatron chooses a
pattern from the training set and updates the corre-
sponding Lagrange multiplier according to

�i = �i +max{−�i;  (1− sif(ri))}; (18)

where f(ri) is the output of the SV machine and  is
the learning rate. The updates of the Lagrange multi-
pliers are made in accordance with the errors for each
pattern presented to the SV machine. Following the
convention in the neural networks literature, one com-
plete presentation of the entire training set is called an
epoch. Unlike the backpropagation algorithm, how-
ever, here we have a quadratic programming problem
with a unique global minimum. Therefore, the order
of presentation of the input patterns from epoch to
epoch plays no special role.
In [1], it was proved that the Adatron converges to

a maximum margin solution; that is, the minimum of
(12) is a 6xed point of the adaptive algorithm. More-
over, its convergence rate is exponential with the num-
ber of iterations. Finally, it is interesting to remark that
the soft margin alternative is still a quadratic program-
ming problem, and that the regularized kernel matrix
remains positive de6nite, therefore the Adatron algo-
rithm can be also used to 6nd the solution in this case.
After each epoch of the Adatron algorithm the mar-

gin can be recomputed as

Mk = min
i∈{1;:::;N}

sif(ri); (19)

where k denotes the epoch. This value can be used to
check the convergence of the Adatron algorithm, for

instance we have used the following criterion:∣∣∣∣∣∣Mk − 1
5

5∑
j=1

Mk−j

∣∣∣∣∣∣6 10−5: (20)

The main advantages of the Adatron algorithm are its
conceptual and implementation simplicity. However,
it is a memory intensive algorithm, since all the kernel
products, K(ri ; rj), must be precomputed and stored
(in D). When the number of channel states is large
(mainly for transversal equalizers) we should also
incorporate a “chunking” technique to handle in an
eNcient way a large number of training patterns [20].
Finally, using the Adatron algorithm we can pro-

pose the following adaptive implementation for the
OH or SVM equalizers (valid for transversal or deci-
sion feedback implementations):

(1) Use a training sequence to estimate the channel
impulse response ĥ, and the noise variance 	̂2

n.
(2) Using ĥ estimate the channel states as (3) for

a transversal structure or (9) if we use decision
feedback.

(3) Initialize �i = 0, i = 1; : : : ; N , and the learning
rate  .

(4) While convergence criterion (20) not true.
For i = 1; : : : ; N .
(4.1). Calculate update as "i =  (1− sif(ri)).
(4.2). If (�i+"i)¿ 0 then �i=�i+"i, else �i=0.
End.

(5) Calculate the new margin as (19).
(6) End while.

Note that if the kernel correlation matrix D is precom-
puted and stored, f(rj) can be eNciently obtained as

f(rj) = 〈�⊗ s;Dj〉; (21)

where ⊗ denotes elementwise multiplication, and Dj

represents the jth row of matrix D. Furthermore, to
consider a soft margin SV machine we just have to
regularize the kernel matrix as D+ (1=C)I.

5. Results

The aim of the 6rst example is to compare the
performance of the linear MMSE-DFE with the OH
using diLerent values of the regularization parameter
1=C. We send binary symbols through the channel
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Fig. 3. MMSE versus OH for channel H (z) = 0:2052 −
0:5131z−1 + 0:7183z−2 + 0:3695z−3 + 0:2052z−4 using a DFE
with m=4 (feedforward order), n=4 (feedback order) and d = 3
(delay).

H (z)=0:2052−0:5131z−1+0:7183z−2+0:3695z−3+
0:2052z−4. The structure of the DFE is m = 4 (feed-
forward order), n = 4 (feedback order) and d = 3
(delay); then, the total number of channel states is 16.
To train the OH we use the Adatron algorithm with a
learning rate  = 0:05. Fig. 3 shows the BER curve
for the MMSE-DFE and the soft margin OH. At low
SNR’s the non-regularized solution provides worse
results than the MMSE. On the other hand, the soft
margin solution with an optimal regularization
parameter, 1=Copt =2m	2

n, is able to rotate the separat-
ing hyperplane according to the SNR, thus providing
the best results.
In our second example, we use the following mul-

tipath channel: H (z) = 0:4 + 0:7z−3 + z−6 + 0:6z−11,
and a DFE with m=8, d=7 and n=11. In this case,
we have 28 = 256 channel states. Fig. 4 shows the
results obtained with the linear MMSE-DFE, the OH
with 1=C=0, the soft margin OH with 1=Copt =2m	2

n,
the SVM using a Gaussian kernel with 	2 = 2 and
the optimal Bayesian equalizer, which is implemented
through an RBF.
For this example the total number of the channel

states is 256, from which 92 and 152 become SV’s for
the OH and the SVM, respectively. On the other hand,

Fig. 4. MMSE, OH, SVM and Bayesian for channel
H (z) = 0:4 + 0:7z−3 + z−6 + 0:6z−11 using a DFE with m = 8
(feedforward order), n = 11 (feedback order) and d = 7 (delay).

Fig. 5. Number of support vectors vs 	2n for the soft margin OH.
The channel is H (z) = 0:4 + 0:7z−3 + z−6 + 0:6z−11 and we use
a DFE with m = 8 (feedforward order), n = 11 (feedback order)
and d = 7 (delay).

the number of SV’s for the soft margin OH varies
with the SNR, since the regularization parameter is
chosen as 1=Copt = 2m	2

n (Fig. 5 shows the number
of SV’s for the OH with respect to 	2

n). Finally, the



600 I. Santamar,-a et al. / Signal Processing 83 (2003) 593–602

Fig. 6. Evolution of the margin with the number of epochs for
the Adatron algorithm.

Bayesian equalizer uses the total number of channel
states.
The performance of the SVM depends on the

Gaussian kernel size, 	2, in the following way: if the
kernel size is chosen as the noise variance, all the
channel states become support vectors and the SVM
coincides with the Bayesian equalizer. As long as the
kernel size decreases, the number of support vector
(as well as the performance and the computational
cost) also decrease. In the limit, when a very large
kernel size is used, the border between classes become
almost linear and the SVM reduces to the OH without
regularization term. In this way, by using SVM’s with
diLerent values of 	2, we can tradeoL complexity for
performance. In particular, for the chosen kernel size
	2 = 2, the performance of the SVM is similar to the
Bayesian equalizer with approximately half the com-
plexity: 152 Gaussian kernels for the SVM instead of
256 for the Bayesian equalizer. Finally, an example
of the convergence of the Adatron algorithm for this
channel is depicted in Fig. 6.
Similar results have been found for transver-

sal equalizers: for instance, Fig. 7 shows the
results obtained when we equalize the channel
H (z)=0:6+z−1+0:5z−2+0:2z−3 using a transversal
structure with m = 7 (feedforward order) and d = 4
(delay). The poor performance of the conventional

Fig. 7. MMSE, OH and SVM for channel H (z) = 0:6 +
z−1 + 0:5z−2 + 0:2z−3 using a LTE with m = 7 (feedforward
order) and d = 4 (delay).

OH at low SNR’s is more noticeable in this exam-
ple. As in the previous examples the soft margin OH
solves this problem.
In all the previous examples the equalizer has

been trained using the true noiseless channel states.
In a practical situation, of course, the channel states
must be estimated using a training sequence. To
illustrate this point, in our 6nal example we com-
pare the performance of the adaptive versions of the
linear MMSE-DFE and the OH. We use a diLer-
ent channel: H (z) = 0:35 + 0:8z−1 + z−2 + 0:8z−3,
and the structure of the DFE is m = 4, n = 3 and
d = 3. The channel states and the noise variance
are estimated using a training sequence of 150 sym-
bols. For this particular channel, due to the loca-
tion of the channel states, the performance of the
OH-DFE is not critical with respect to 1=C. Fig. 8
shows the values obtained for the OH-DFE with Copt:
its performance is clearly better than the MMSE-
DFE.

6. Conclusions

Taking into account that equalization is in fact a
classi6cation problem, we have applied the struc-
tural risk minimization (SRM) principle to obtain
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Fig. 8. MMSE versus OH for channel H (z) = 0:35 +
0:8z−1 + z−2 + 0:8z−3 using a DFE with m=4, n=3 and d=3.
(Dashed lines) Estimated channel states using 150 training sym-
bols. (Solid lines) Noiseless channel states.

maximum margin classi6ers for transversal as well as
decision feedback equalizers. Instead of quadratic
programming, we train the optimal hyperplane (OH)
and support vector machine (SVM) equalizers us-
ing an iterative algorithm called the Adatron. We
have shown that, for some channels the OH solution
can achieve a large improvement over the mini-
mum mean-square error equalizers. When we train
the equalizer by classifying the channel states it is
important to include somehow in the training pro-
cess information about the noise variance. For linear
maximum margin equalizers, we have shown that
this information can be easily taken into account by
considering a (regularized) soft margin OH. On the
other hand, in comparison with the optimal Bayesian
equalizers (implemented through an radial basis func-
tion network), the SVM uses only those channel
states that are closest to the maximum margin hy-
perplane in the feature space, and then it yields a
reduced structure with only a slight degradation in
performance.
The extension of SRM-based equalizers to

multilevel modulation (thus yielding a multiclass
classi6cation problem [26,3]) is an interesting line for
further research. Another avenue for research aims at

6nding a true sample-by-sample (on-line) training of
SVM-based equalizers: some ideas in this direction
have been recently proposed in [21,16].
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