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Abstract

In this paper a new regularized digital 3ltering technique for the simultaneous approximation of a function and its derivatives
is proposed. First, a simple and local method is presented that interpolates the speci3ed sample values exactly. The solution
obtained by this method belongs to the space of spline functions, and can be implemented using 3lter banks. Unfortunately,
like most of the methods used to solve interpolation problems using derivatives, it is very sensitive to noise. To overcome
this drawback we extend the interpolation method to function approximation by de3ning a regularized functional, which
includes a term forcing the smoothness of the solution. The minimization of this functional is performed by solving a simple
linear system of equations or using gradient descent based techniques. The method has been implemented in 1D and 2D
input spaces. Some examples show the improved performance of this technique in noisy environments.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The general problem of reconstructing a function,
f(x), from a set of its values, y[n]=f(x[n]), is a very
common problem which has received a great attention
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in the mathematical literature [21,5], as well as in the
signal processing literature [18,6,13].
There exist a number of applications where in ad-

dition to a suitable reconstruction of the function it
is also necessary to get a close approximation of its
derivatives. For instance, the nonlinear modeling of
microwave transistors to predict the intermodulation
behavior is an example of this problem. In this case,
it is necessary to approximate not only the nonlin-
ear current to voltage (I=V ) characteristic, but also its
derivatives up to the same order of the intermodula-
tion products to be considered [2,11]. Therefore, to
predict up to the third order of the intermodulation dis-
tortion, which is typical for ampli3ers and mixers in
applications of communications [12], it is necessary
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to approximate up to the third order derivatives of the
I=V characteristic.
Moreover, there exist another kind of applications,

such as telemetry or simulation of control of aerial
traIc, where the derivatives of the function are easily
available and they can be used in the process of func-
tion reconstruction. In this case, the information of the
derivatives can help to reduce the necessary sampling
frequency or to obtain some additional advantages, for
example, to improve the immunity against noise.
In all these cases, it is necessary to develop mod-

els able to approximate a function and its derivatives
from a set of measurements. Several approaches have
been proposed in the literature to solve this problem.
For example, when the signal is known to be bandlim-
ited, it is possible to use an extension of the Shannon
sampling theorem [9,10], which includes the samples
of the derivatives in the reconstruction of the function,
or the iterative method proposed in [16] for irregu-
lar sampling. Recently, a method using perfect recon-
struction (PR) 3lter banks has been proposed [3]. The
reconstructed signal belongs to multiresolution spaces
and is not bandlimited. An example of this space is
the space of spline functions. All these approaches,
however, present the drawback of a high sensitivity to
noise.
To overcome this drawback, in this paper we pro-

pose a new regularized interpolation technique to carry
out the simultaneous approximation of a function and
its derivatives. The initial interpolation solution be-
longs to the space of spline functions, and it can be
implemented by means of a digital 3lter bank. Like
most of the methods employed to solve interpolation
problems using the derivatives, this technique is very
sensitive to noise. Therefore, to overcome this draw-
back, we propose to extend this model to function ap-
proximation relaxing the interpolation constraint and
imposing additional constraints forcing the smooth-
ness of the solution. This regularized method can help
to reduce the degradation in the reconstruction process
introduced by the noise in the samples.
The paper is organized as follows. In Section 2

we present the proposed interpolation technique in
a 1D input space. In Section 3 the regularized ex-
tension of this interpolation technique is presented.
The extension of both methods to 2D input spaces is
stated in Section 4. Section 5 shows some results ob-
tained with the proposed methods. In Section 6 the

regularized method is applied to the large-signal mod-
eling of a MESFET transistor. Finally, in Section 7
the main conclusions are exposed.

2. Local interpolation model (LIM) in 1D input
spaces

The general problem we are facing can be stated as
follows: given a set of N samples of a function and
its 3rst D derivatives

yd)[n] = fd)(x[n]); n= {0; 1; : : : ; N − 1};
d= {0; 1; : : : ; D}; (1)

to reconstruct a function f(x), which ful3lls the
interpolation conditions (1). For the sake of simplic-
ity, uniform sampling, with sampling period T , is
considered, i.e. x[n] = nT ; however, as we will see,
the method can be easily extended to nonuniform
sampling. Also for simplicity, we will consider here
the interpolation problem using only samples of the
function and its 3rst derivative (D = 1). Moreover,
in the sequel the superindex d = 0 will be under-
stood.
In this particular case, the goal is to obtain a function

in the space of splines of order D + 1 (i.e., quadratic
splines for D=1) that ful3lls the interpolation condi-
tions (1). This quadratic spline, in a 1D input space,
can be obtained through a set of synthesis functions
obtained using perfect reconstruction 3lter bank the-
ory [3,20]. Here we describe an alternative formula-
tion, more convenient to the further extension of this
interpolation method to a regularized technique for
function approximation.
The main idea of the method is to obtain a so-

lution where the derivative is piecewise linear, the
interpolation conditions are satis3ed, and continuity
is assured for both function and derivative. To satisfy
these continuity and interpolation constraints, some
degrees of freedom must be introduced in the system.
An option to introduce them is to add a breakpoint
between each two consecutive sampling instants.
In this way, the original sequences of samples of
the function and its derivative yd)[n] (d = 0; 1),
can be interpolated by 2 to obtain the interpolated
sequences

yd)i [n]; d= {0; 1}; n= {0; 1; : : : ; 2N − 2}; (2)
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where the sampling instants associated with these in-
terpolated sequences are now

xi[n] =
nT
2
; n= {0; 1; : : : ; 2N − 2}: (3)

Taking into account the continuity and interpolation
constraints, and assuming that the derivative is piece-
wise linear between the interpolation sampling in-
stants, it is possible to obtain the values of function
and derivative in the inserted breakpoints. In partic-
ular, the interpolated sequences take the following
values:

yd)i [2n] = yd)[n]; d= {0; 1}; (4)

y1)i [2n+ 1] =
2(y[n+ 1]− y[n])

T

− y1)[n] + y1)[n+ 1]
2

; (5)

yi[2n+ 1] =
y[n] + y[n+ 1]

2

+T
(y1)[n]− y1)[n+ 1])

8
; (6)

where index n in (4) runs from 0 to N − 1, whereas
in (5) and (6) runs from 0 to N − 2.
Since we know the derivative (the piecewise linear

function de3ned by y1)i [n]), once the interpolated se-
quences have been obtained, the value of the function
can be obtained by integration. Therefore, the recon-
structed function f̂(x) at any instant situated between
the samples n and n+ 1 of the interpolated sequence,
i.e., xi[n]6 x¡xi[n+ 1], can be evaluated as

f̂(x) = yi[n] + y
1)
i [n]Lx

+
y1)i [n+ 1]− y1)i [n]

T
(Lx)2 (7)

where Lx= x− xi[n]. Let us note that the reconstruc-
tion process is completely local: the value of the inter-
polated sequences in the inserted breakpoints depends
on the value of the two samples surrounding it, and
the 3nal reconstruction using (7) depends only on the
value of the sequences in the extremes of the interval.
The advantage of this fact is two-fold: in one hand, a
low computational burden to carry out the reconstruc-
tion and, in the other hand, the method can be imme-
diately extended to nonuniform sampling. Because of
this locality we have called this method the local in-
terpolation method (LIM).

Fig. 1. MIMO 3lter bank representation of LMI for D = 1.

In order to facilitate the notation for the extension
to a 2D input space, we will use the following notation
to denote the 1D reconstruction procedure of the LIM:

f̂(x) = LIM1D(y[n]; y1)[n]): (8)

2.1. Filter bank representation of the interpolation
procedure

The interpolation procedure described above admits
a representation by means of a multiple input multiple
output (MIMO) digital 3lter bank, followed by a set
of analog 3lters for the reconstruction. Fig. 1 shows
this 3lter bank representation for D = 1.
The MIMO digital 3lter bank performs the inter-

polation of the sequences of samples by means of
polyphase 3lters. We have denoted yd)ij [n] as the jth
polyphase component of the interpolated sequence
yd)i [n]. From these polyphase components, the inter-
polated sequences yi[n] and y

1)
i [n] are obtained. Each

interpolated sequence is then 3ltered by an analog
reconstruction 3lter and both outputs are added to
obtain the reconstructed function f̂(x).
The response of the MIMO polyphase 3lters can be

easily obtained from expressions (4)–(6)

H11(z) =H32(z) = 1; H12(z) = H31(z) = 0;

H21(z) =
z + 1
2
; H41(z) =

2z − 2
T

;

H22(z) =
1− z
8

T; H42(z) =− z + 1
2
: (9)
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The continuous-time reconstruction 3lters have the
following impulsive responses:

h0(x) = 1− |x|
Ti
; for |x|6Ti (10)

and

h1(x) =
x
2

(
1− |x|

Ti

)
; for |x|6Ti; (11)

where Ti is the sampling period associated to the in-
terpolated sequences yd)i [n], i.e, Ti = T=2.

The corresponding frequency responses are

H0(�) = Ti sinc
2
(
�Ti
2�

)
; (12)

and

H1(�) =− 2j
�3Ti

(
2 sin2

(
�Ti
2

)

−�Ti cos
(
�Ti
2

)
sin
(
�Ti
2

))
: (13)

It can be seen that this method uses only FIR 3lters,
which makes possible to obtain a local reconstruc-
tion, as opposed to the conventional spline techniques,
based on IIR 3ltering [19].
The extension of this model to D derivatives is

based on the same idea expressed for D = 1. In this
case, it is necessary to insert D new breakpoints be-
tween consecutive sampling instants in each sequence
of samples and the derivative of order D is assumed
piecewise linear. Therefore, the initial sequences are
interpolated by a factor D + 1, and the correspond-
ing solution belongs to the space of splines of degree
D+1. For example, for 2 derivatives, the solution be-
longs to the space of cubic splines. The expressions
of the polyphase and analog reconstruction 3lters for
2 derivatives can be found in Appendix A, and an ex-
tension to 3 derivatives can be found in [7].

2.2. Noise sensitivity analysis

In this section we analyze the degradation caused by
the measurement noise in the interpolation procedure.
We assume that the noise in the function and its deriva-
tives can be modeled as a zero-mean white Gaussian
noise with variances �20 and �21, respectively. Then,
taking into account Eq. (4)–(7), it is easy to obtain the

noise variance at any point of the reconstructed sig-
nals. Speci3cally, for 06 x6T=2, the noise variance
in the reconstructed function �20r(x) and its derivative
�21r(x) are given by

�20r(x) = �
2
0

[(
1− 2x2

T 2

)2
+

4x4

T 4

]

+ �21

[(
1− 3x2

2T

)2
+
x4

4T 2

]
; (14)

�21r(x) = �
2
1

[(
1− 3x

T

)2
+
x2

T 2

]
+

32x2

T 4 �20 : (15)

The interesting point is that the noise variance for
the derivative, �21r(x), varies as 32�20x

2=T 4. For in-
stance, at x = T=2, the noise variance in the recon-
structed derivative depends on 8�20=T

2. This points
out the noise sensitivity of this method, mainly when
the signals are oversampled. This noise sensitivity is
shared by all the methods usually employed to solve
this interpolation problem, and it is the main reason
to search for a regularization procedure.

3. Local regularized model

When the measurements are corrupted with noise,
instead of requiring an exact interpolation, a more con-
venient alternative is to relax the interpolation con-
straints and to force some degree of smoothness in the
solution. This can be achieved by minimizing a regu-
larization functional as

J (yd)r ) =
D∑
d=0

(
�d

N−1∑
n=0

(yd)r [n]− yd)[n])2
)

+ �rJr(yd)r [n]); (16)

where yd)r [n] are the sequences of regularized samples,
which now do not ful3ll the interpolation conditions,
i.e., now in general yd)r [n] �= fd)(x[n]). The 3rst term
measures the error of the solution with respect to the
measurements, and the second one is a regularization
term that measures the smoothness of the solution.
The parameters �d y �r weight the contribution of the
error of the dth order derivative and the regularization
term, respectively.
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Here we will use a usual measure of smoothness,
which is the squared second derivative of the solu-
tion. For the particular case we are dealing with (func-
tion+3rst derivative, i.e., D = 1), it takes the value

Jr =
2N−3∑
n=0

(y1)i [n]− y1)i [n+ 1])2: (17)

where the sequence y1)i [n] is again the interpolated se-
quence of the derivative. Similarly to (4) and (5), this
sequence can be written as a function of the regular-
ized sequences as

y1)i [2n] = y
1)
r [n]; n= 0; : : : ; N − 1; (18)

and

y1)i [2n+ 1] =
2(yr[n+ 1]− yr[n])

T

− y1)r [n] + y
1)
r [n+ 1]

2
; (19)

where n=0; 1; : : : ; N −2. Therefore, substituting (18)
and (19) into (17), we see that the functional (16)
only depends on the regularized sequences yd)r [n]. To
obtain the minimum of this functional we evaluate
its derivatives with respect to the components of the
regularized sequences yd)r [n]

9J
9yr[n]

= 2�0(yr[n]− y[n]) + �r 9Jr
9yr[n]

; (20)

9J
9y1)r [n]

= 2�1(y1)r [n]− y1)[n]) + �r
9Jr

9y1)r [n]
: (21)

Taking into account (17)–(19) it can be seen that
for n= 0

9Jr
9yr[n]

=
16
T 2 (yr[n]− yr[n+ 1])

+
8
T
(y1)r [n] + y

1)
r [n+ 1]);

9Jr
9y1)r [n]

=
8
T
(yr[n]− yr[n+ 1])

+5y1)r [n] + 3y1)r [n+ 1]; (22)

whereas for 0¡n¡N − 1
9Jr
9yr[n]

=
16
T 2 (2yr[n]− yr[n− 1]− yr[n+ 1])

+
8
T
(y1)r [n+ 1]− y1)r [n− 1]);

9Jr
9y1)r [n]

=
8
T
(2yr[n− 1]− yr[n+ 1]) + 10y1)r [n]

+ 3y1)r [n+ 1] + 3y1)r [n− 1]); (23)

and, 3nally, for n= N − 1
9Jr
9yr[n]

=
16
T 2 (yr[n]− yr[n− 1])

− 8
T
(y1)r [n] + y

1)
r [n− 1]);

9Jr
9y1)r [n]

=
8
T
(yr[n− 1]− yr[n])

+ 5y1)r [n] + 3y1)r [n− 1]: (24)

Equating the derivatives (20) and (21) to zero, we
obtain a linear system of equations, which can be ex-
pressed as

b= Ax; (25)

where

b= [�0(x[0]; : : : ; x[N − 1]);

�1(x1)[0]; : : : ; x1)[N − 1])]T; (26)

x = [xr[0]; : : : ; xr[N − 1];

x1)r [0]; : : : ; x
1)
r [N − 1]]T; (27)

andA is a (2N×2N ) matrix. Typically rank (A)=2N ,
and therefore the solution can be obtained as

x = A−1b: (28)

Eq. (28) provides the regularized solution; however
matrix inversion can be computationally expensive
when the number of samples N is high. In this
case, the problem can be solved more eIciently by
using an iterative gradient-based algorithm. It is im-
portant to notice the local behavior of expressions
(22)–(24), which makes the computational burden
of the gradient-based approach to grow only linearly
with N .
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Once the regularized sequences have been obtained,
the function is reconstructed by using the interpolation
model described in Section 2

f̂(x) = LIM1D(yr[n]; y1)r [n]): (29)

The extension to D derivatives follows the same idea.
The corresponding expressions can be found in [7].

3.1. Selection of regularization parameters

A very important aspect of this regularization
method is the selection of the weight parameters
�d (d = 0; 1; : : : ; D) and the regularization parameter
�r . There exist several alternatives for this selec-
tion. If there is not any knowledge about the noise
power in the samples of the function, (�20), and of the
derivatives, (�2d), we should 3x the values of �d and
then select �r employing cross-validation techniques
[15,17]. To estimate the values of �d we propose to
select �0 = 1, and then select the rest of values to
consider the energy of the diOerent derivatives with
respect to the function.
When it is possible to estimate the noise variances,

a simple alternative that provides suitable results is to
3x �0 = 1 and then select

�d =
�20
�2d

(30)

and

�r =
P0
P2
1

�20
T 2 ; (31)

where P0 and P1 are the power of the function and
the derivative, respectively, which can be easily es-
timated. We want to remark that this expression is
generic, valid for any value of D.

4. Extension to 2D input spaces

In this section we present the extension of the LIM
and LRM models to 2D input spaces.

4.1. Local interpolation model

The problem can be stated as follows: given a set of
samples of a function, f(x1; x2), and of its derivatives

Fig. 2. 2D reconstruction scheme.

up to the order D as

yd1 ;d2)x1 ;x2 [n1; n2]

=
9(d1+d2)f(x1; x2)

9xd11 9x
d2
2

∣∣∣∣∣
x1=x1[n1];x2=x2[n2]

; (32)

with d1 = 0; : : : ; D, and d2 = 0; : : : ; D, and where

x[nk ] = nkTk ; k = 1; 2; nk = 0; : : : ; Nk − 1; (33)

being Tk the sampling period in the kth direction of
the input space, the objective is to 3nd a function,
f̂(x1; x2), which interpolates the samples (32) of the
function f(x1; x2) and its derivatives.

The problem is restricted to the particular case of
uniform sampling over a grid of N1 × N2 sampling
instants. Again, for the sake of simplicity, we consider
the case D = 1. In this case, to simplify the notation,
the superindexes will be understood in (32). We have
a set of samples of the function, y[n1; n2], of its 3rst
derivatives with respect to x1 and x2, yx1 [n1; n2] and
yx2 [n1; n2], and of the crossed derivative with respect
to both variables, yx1 ;x2 [n1; n2].
The proposed interpolation method is based on the

1D model presented in Section 2. The reconstruction
process is illustrated in Fig. 2.
A direction of reconstruction, x1 in this case (hori-

zontal lines), is selected and then the LIM1D model is
applied in this direction to carry out the function recon-
struction. The reconstruction is performed in terms of
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the function and the derivative with respect to the re-
construction direction, x1. Therefore, we need to know
the value of these two functions in the sampling in-
stants x1[n] for any x2 (vertical lines in the 3gure).
Speci3cally, from the knowledge of

f̂(x1[n1]; x2); (34)

and

f̂ x1 (x1[n1]; x2); (35)

the reconstruction of f̂(x1; x2), for any value of x2, is
reduced to a 1D problem in the direction x1.
To reconstruct (34) and (35) the LIM1D model, in

the direction of x2, is employed. In this case, each
function and its derivative with respect to x2 are the
arguments of the model

f̂(x1[n1]; x2) = LIM1D(y[n1; n]; yx2 [n1; n]); (36)

and

f̂ x1 (x1[n1]; x2) = LIM1D(yx1 [n1; n]; yx1 ;x2 [n1; n]): (37)

Finally, the function is reconstructed by using the
LIM1D model in the direction x1

f̂(x1; x2) = LIM1D(f̂(x1[n1]; x2); f̂ x1 (x1[n1]; x2)):(38)

The obtained solution is independent of the selected
direction of reconstruction: the same result is obtained
if we select x2 to carry out the reconstruction.

4.2. Regularized model

Again, as in the 1D case, the interpolation model
presents high-noise sensitivity. Therefore, it is conve-
nient to regularize the samples in order to reduce this
sensitivity. In this case, the following 2D regulariza-
tion functional is employed:

Jr =
∫
R



(
92f̂(x1; x2)

9x21

)2
+ 2

(
92f̂(x1; x2)
9x19x2

)2

+

(
92f̂(x1; x2)

9x22

)2 dx1 dx2; (39)

where R is the integration domain. In this case, it is
the rectangle de3ned by the sampling instants. Like
in the 1D case, the whole regularization functional, J ,
consists of a weighted sum of the quadratic errors in

the samples of the function and its derivatives and the
term of regularization Jr . For D= 1 this functional is

J = �0
N1−1∑
n1=0

N2−1∑
n2=0

(yr[n1; n2]− y[n1; n2])2

+ �1
N1−1∑
n1=0

N2−1∑
n2=0

(yx1r[n1; n2]− yx1 [n1; n2])2

+ �2
N1−1∑
n1=0

N2−1∑
n2=0

(yx2r[n1; n2]− yx2 [n1; n2])2

+ �1;2
N1−1∑
n1=0

N2−1∑
n2=0

(yx1 ;x2r[n1; n2]− yx1 ;x2 [n1; n2])2

+ �rJr; (40)

where yr[n1; n2], yx1r[n1; n2], yx2r[n1; n2] and
yx1 ;x2r[n1; n2], are the regularized samples of the func-
tion, derivative with respect to x1, derivative, with
respect to x2, and the crossed derivative, respectively.
Taking the derivative of J with respect to the regu-

larized samples and equating to zero the correspond-
ing equations, a matrix system, similar to (25), is
obtained. The regularized samples are applied to
the interpolation model to perform the reconstruction.
The regularization parameters �d are obtained as in

the 1D case by (30). The �r is obtained as the mean
value obtained after applying (31) independently for
the 3rst derivatives with respect to x1 and x2.

5. Results

Preliminary results for 1D input spaces are available
in [8]. In this section, we provide new results obtained
in 1D input spaces, and results for 2D input spaces.

5.1. Results in a 1D input space

In this case, the test functions are bandlimited sig-
nals generated as a linear combination of 100 sinu-
soids with random amplitudes, variances and phases.
Fig. 3 compares the reconstruction of a signal lim-

ited to the band of 0:1 Hz, with a sampling period
T =1, carried out with the LIM and the LRM models
for D=2 derivatives. The signal-to-error ratio (SNR)
of the samples of function and derivatives is 20 dB.
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Fig. 3. Reconstruction of a bandlimited signal with the LIM and
LRM models. (a) Reconstruction of the function. (b) Reconstruc-
tion of the derivative.

It can be seen that the reconstruction using the LRM
is considerably better than that obtained with the LIM,
specially in the reconstruction of the derivative. This
case corresponds to a highly oversampled signal, when
the noise sensitivity of the LIM is high.
Now we compare the performance of the LRM, for

D = 2, with the LIM and with the extension of the
Shannon Sampling Theorem to the sampling of the
derivatives [9,10]. Fig. 4 shows the results obtained
in the reconstruction of a function of unity bandwidth,
with a SNR in the samples of function and derivatives
of 10 dB, as a function of the sampling period. The
results of 1000 experiments have been averaged.

Fig. 4. Reconstruction of function with bandwith 1, with a SNR
of 10 dB in the samples of the function and of the derivatives as
a function of the sampling rate.

The LRM provides better results than the LIM and
the Shannon method, specially in the reconstruction
of the derivatives. We can see that, when T decreases,
the interpolation methods suOer a high degradation in
the reconstruction of the derivatives, while the LRM
does not present such a degradation.

5.2. Results in a 2D input space

For the 2D input space, we have selected as test
functions the set of 8 functions used in [1] to perform
a comparison of several adaptive methods for function
estimation. These functions are presented in Table 1.
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Table 1
Functions used to generate the 2D data sets

Name Function Domain

Fun 1 y = sin(x1x2) [− 2; 2]

Fun 2 y = exp(x1sin(�x2)) [− 1; 1]

Fun 3 y = 40 exp(8((x1−0:5)2+(x2−0:5)2))
exp(8((x1−0:2)2+(x2−0:7)2))+ exp(8((x1−0:72)+(x2−0:2)2))

[0,1]

Fun 4 y = (1 + sin(2x1 + 3x2))=(3:5 + sin(x1 − x2)) [− 2; 2]

Fun 5 y = 42:659(0:1 + x1(0:05 + x41 − 10x21x
2
2 + 5x42)) [− 0:5; 0:5]

Fun 6 y = 1:3356[1:5(1− x1) + exp(2x1 − 1) sin(3�(x1 − 0:6)2) [0,1]
+ exp(3(x2 − 0:5)) sin(4�(x2 − 0:9)2)]

Fun 7 y = 1:9[1:35 + exp(x1) sin(13(x1 − 0:6)2) [0,1]
+ exp(3(x2 − 0:5)) sin(4�(x2 − 0:9)2)]

Fun 8 y = sin(2�
√
x21 + x

2
2) [− 1; 1]

Table 2
Results (SER in dB) of the approximation for the diOerent test functions and its derivatives with the LIM and LRM models taking 15
equidistant sampling points in each axis of the input space. Results are provided individually for each of the 8 test functions (columns
“Fun 1” to “Fun 8”) and the mean value over the 8 test functions (column “Mean”). For the 3rst and second order derivatives, the mean
SER value of the derivatives with respect to each direction of the input space is presented

Fun 1 Fun 2 Fun 3 Fun 4 Fun 5 Fun 6 Fun 7 Fun 8 Mean

Approximation of the function
LIM 21.7 21.5 21.6 21.6 19.9 21.5 21.7 21.4 21.3
LRM 32.2 29.5 35.3 20.9 31.7 27.5 30.2 27.1 29.3

Approximation of the 3rst-order derivatives
LIM 7.1 6.5 3.5 12.1 9.4 8.9 9.4 11.4 8.5
LRM 24.8 23.0 21.3 18.9 24.7 22.3 20.9 18.9 21.9

Approximation of the second-order derivatives
LIM −12:3 −18:3 −17:1 −3:3 −8:1 −5:7 −5:6 −3:4 −9:2
LRM 9.2 − 1:5 1.6 8.8 14.7 16.4 7.5 7.0 8.0

In this case, the behavior is similar to the 1D case.
Table 2 compares the results, expressed by the SER
in dB, obtained reconstructing the test functions with
the LIM and the LRM. In this case, a grid of 15× 15
equidistant sampling instants have been used, obtain-
ing 225 sampling instants. The results presented for
the 3rst and second order derivatives correspond to
the mean value of the derivatives with respect to both
directions of the input space. It can be seen that the
regularized solution provides better results than the

interpolated one. Again, the LRM avoids the high
degradation in the reconstruction of the derivatives
that the interpolation method exhibits.

6. Large-signal modeling of a MESFET transistor

As it was said in the introduction, the modeling
of microwave transistors is an example of applica-
tion where the reconstruction of the derivatives is
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Fig. 5. I=V characteristic and its derivatives vs. the approximation obtained with the LMR model. Measurements (a), (c) and (e) vs.
approximation (b), (d) and (f).

relevant, specially when the intermodulation distortion
must be taken into account. Here, we propose to use
the LRM to obtain a large-signal model of a MESFET,
for a given bias point (Vds0; Vgs0), from a set of mea-
surements of the drain to source current, Ids, and its

derivatives for diOerent values of the dynamic voltages
vds and vgs. It is known that the large-signal behavior
of a MESFET transistor is governed by the dynamic
pulsed I=V characteristic that depends on the quiescent
bias point [4]. The approximation of the derivatives
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Table 3
Results of the reconstruction of Ids and its derivatives for a MES-
FET NE72084

Ids
9Ids
9vds

9Ids
9vgs

92Ids
9vdsvgs

30:2 dB 21:3 dB 23:5 dB 15:9 dB

of this characteristic can improve the reproduction of
the whole behavior of the device.
In this case, we have used the LRM of degree 2

to model a MESFET NE72084. The set of measure-
ments has been obtained from an analytic model of
this transistor [14].
Fig. 5 compares the measurements and the approxi-

mation provided by the LRM for the bias point Vds0 =
4 V ans Vgs0 = −1 V. A set of 25 measurements (in
a grid of 5 × 5 equidistant sampling instants) of Ids
and its derivatives with respect to vds, to vgs and the
crossed derivative with respect to the both variables
has been used, giving a complete set of 100 measures
for bias point. A SNR of 30 dB has been considered
for all measures.
It can be seen that the LRM model provides a suit-

able approximation of the set of measures. Table 3
shows the SER of the reconstruction of Ids and its
derivatives.

7. Conclusions

In this paper a new interpolation technique for
the simultaneous reconstruction of a function and its
derivatives has been presented. The reconstruction
process can be implemented by means of an FIR 3lter
bank. In a 1D input space, this approach provides the
same solution that that proposed in [3,20]. Here, the
method has been extended to 2D input spaces.
Because of the noise sensitivity of the interpolation

approach, a regularized solution has been proposed.
This approach improves the performance of the recon-
struction process in noisy environments. The sensitiv-
ity is more important as the sampling rate increases
and, therefore, the improvement of the regularized so-
lution is higher in this case.
Experimental results have shown the advantage

of regularization in noisy environments, both in 1D

Fig. 6. MIMO 3lter bank representation of LMI for D = 2.

and 2D input spaces. Moreover, the proposed regu-
larization technique has been applied to the nonlinear
modeling of a MESFET transistor.

Appendix A

This appendix shows the expressions of the
polyphase and analog reconstruction 3lters for 2
derivatives.

A.1. Polyphase :lters for 2 derivatives

The MIMO 3lter bank for 2 derivatives is shown in
Fig. 6.
In this case, the following polyphase 3lters are

necessary:

Hxy;

with x = 1; : : : ; 9 and y = 1; : : : ; 3. These 3lters take
the following values:

H11(z) = H42(z) = H73 = 1;

H12(z) =H13(z) = H41(z) = H43(z)

=H71(z) = H72(z) = 0;

H21(z) =
5 + z
6

; H31(z) =
1 + 5z

6
;

H51(z) =
z − 1
2Ti

; H61(z) =
z − 1
2Ti

;
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H81(z) =
z − 1
T 2
i

; H91(z) =
1− z
T 2
i

;

H22(z) =
4− z
6
Ti; H32(z) =

1− 4z
6

Ti;

H52(z) =− z
2
; H62(z) =−1

2
;

H82(z) =−2 + z
Ti

; H92(z) =
1 + 2z
Ti

;

H23(z) =
2z + 7
36

T 2
i ; H33(z) =

2 + 7z
36

T 2
i ;

H53(z) =
1 + 2z
12

Ti; H63(z) =−2 + z
12

Ti;

H83(z) =
2z − 5

6
; H93(z) =

2− 5z
6

;

A.2. Analog reconstruction :lters

Filters h0(x) and h1(x) are given again by (10) and
(11), respectively.

h2(x) =
x2

4
− |x|3

6Ti
− |x|

12
Ti para |x|6Ti:

H2(�) =
(
2− �2T 2

i =6
�4Ti

cos(�Ti) +
1
�3 sin(�Ti)

− 2− �2T 2
i =6

�4Ti

)
:
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