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Abstract 

In this paper we present a new algorithm to recover a sparse signal from a noisy register. The algorithm assumes a new 
prior distribution for the sparse signal that consists of a mixture of a narrow and a broad Gaussian both with zero mean. A 

penalty term which favors solutions driven from this model is added to the usual error cost function and the resultant global 
cost function is minimized by means of a gradient-type algorithm. A condition is derived for the step-size parameter in order 
to ensure convergence. In the paper we also propose a method (based on the Expectation-Maximization algorithm) to update 

the mixture parameters. The estimation of the sparse signal and the optimization of the Gaussian mixture are combined in 
the proposed algorithm: in each iteration a new signal estimate and a new model (which approximates the distribution of the 
new estimate) are obtained. In this way, the proposed method can be used without any statistical knowledge about the signal. 
Simulation experiments show that the accuracy of the proposed method is competitive with classical statistical detectors with 
a lower computational load. 

In diesem Beitrag ptisentieren wir einen neuen Algorithmus, urn ein diinnverteiltes Signal aus dem Rauschen zuriickzuge- 
winnen. Der Algorithmus nimmt eine neue urspriingliche Verteilung tiir das diinnverteilte Signal an, welches aus einer 
Mischung aus einem schmalen und einem breiten GauBverteilten Signal besteht, beide ohne Gleichanteil. Ein Strafierm, 
welcher Lijsungen begiinstigt, die von diesem Model1 abgeleitet werden, wird zu der iiblichen Fehler-Kostenfunktion 
hinzuaddiert und die resultierende globale Kostenfunktion wird mittels eines Gradienten-Algorithmus minimiert. Eine 

Bedingung fir den Schrittgr6l3en-Parameter wird hergeleitet, urn Konvergenz sicherzustellen. Im Beitrag schlagen wir such 

eine Methode vor (gegriindet auf dem Erwartungs-Maximienmgs-Algorithmus), urn die Mischungsparameter zu aktualisieren. 
Die Sch&ung des diinnverteilten Signals und die Optimierung der GauDschen Mischung sind in dem vorgeschlagenen Al- 
gorithmus verbunden: in jeder Iteration wird ein neuer SignalschLzwert und ein neues Model1 (welches die Verteilung des 

neuen Schlzwertes annghert) erhalten. Auf diesem Weg kann die vorgeschlagene Methode ohne statistisches Wissen iiber das 
Signal angewendet werden. Simulationsexperimente zeigen, da13 die Genauigkeit der vorgeschlagenen Methode vergleichbar 
ist mit klassischen statistischen Detektoren bei einer niedrigeren Rechenlast. 

Nous presentons dans cet article un algorithme nouveau pour le recouvrement d’un signal Ctalt a partir d’un registre bruit& 
L’algorithme suppose une nouvelle distribution a priori pour le signal Ctal(t sous la forme d’un mClange d’une gaussienne 
6.troite et d’une gaussienne large, toutes deux de moyenne nulle. Un terme de ptnalitk qui favorise les solutions correspondant 
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ti ce modele est addition& a la fonction de codt d’erreur habituelle et la fonction de codt globale resultante est minimiste 
a l’aide d’un algorithme de type gradient. Une condition sur le parametre de pas d’iteration est donnee pour garantir la 

convergence. Dans cet article nous proposons Cgalement une methode (basee sur l’algorithme d’EspCrance-Maximisation) 

pour la mise b jour des parametres du melange. L’estimation du signal &ale et l’optimisation du melange gaussien sont 
combinees dans l’algorithme propose: a chaque iteration une nouvelle estimee du signal et un nouveau modele (qui approxime 

la distribution de la nouvelle estimee) sont obtenus. De cette man&e, la methode proposee peut etre utilisee sans aucune 

connaissance statistique sur le signal. Des simulations montrent que la precision de la methode proposee est competitive 

vis-a-vis des detecteurs statistiques classiques tout en demandant une charge de calcul plus faible. 

Keywords: Sparse deconvolution; Gaussian mixtures; Regularization; Restoration 

1. Introduction 

The problem of removing the effects of noise and 

impulse response on a sparse signal from a data regis- 
ter has a wide variety of applications in digital signal 

processing: geophysical exploration modeling (seis- 

mic deconvolution), synthetic aperture radar design, 
ultrasonic analysis, speech coding (multipulse tech- 

niques), etc. The sparse deconvolution problem is usu- 
ally referred to as follows: given some observation 
sequence z = {zt , . . ,z~}, find the sparse signal x = 

{XI ,...,x~} such as 

z=Hx+n, (1) 

where H is an impulse response matrix, and n models 

the noise. The signal x is known to be sparse, i.e., only 
a few of its samples have nonzero values. 

The matrix H is assumed known hereafter (non- 
blind deconvolution); then, solution x that minimizes 

the squared error E* = (It - Hxlli can be easily 
found. However, it is not appropriate, since the ill- 
conditioned character of the problem avoids the ob- 

tention of the sparse solution we are looking for. A 
general way to cope with this problem consists of ap- 
plying regularization techniques by including some a 
priori knowledge on the solution, in order to select an 

acceptable one. 
In particular, many alternatives have appeared in the 

literature to force a sparse solution: some of them [6] 
combine detection and estimation tasks using an adap- 
tively contracted selection operator; this technique is 
simple and efficient, but it is very sensitive to the 
selection of the parameters involved in the method 
and, more important, sometimes misses small peaks 
in the first steps of the detection process. Other ap- 
proaches use linear programming techniques to find a 
minimum Li -norm solution; for instance, in [ 171 and 

more recently in [14], a sparse solution is found by 

minimizing an objective function which is a weighted 
sum of the L1 -norms of the estimated solution and the 

resultant error. It is well known that these Lt-norm 
minimization schemes are well suited for data driven 

from spiky distributions [ 141. However, they have two 
drawbacks: the high computational cost when the data 

set is large, and the sparse character of the resultant 
error signal, which does not agree with the usual type 

of added noise. For cases where data are very noisy 
a weighted sum of the Lt-norm of the signal and the 
&-norm of the error provides better results [ 161. 

From an alternative point of view, it is possible 

to consider a probabilistic model for the signal, and 
to regularize the problem within a Bayesian frame- 
work. Typically, the Bayesian estimator is obtained 
by maximizing the a posteriori probability distribu- 
tion. Among the prior distributions that can be used 

to model sparse sequences, a popular choice is the 

Bernoulli-Gaussian model [lo], since it permits to 
separate the amplitude estimation problem from the 
detection problem. However, this model leads to likeli- 

hood functions which are difficult to maximize; there- 
fore, the various statistical detectors presented in [lo] 

require a high computational effort. Considering the 
same prior distribution, some modifications and re- 
finements have been proposed in [7,8]; nevertheless, 
the computational load is still the main drawback. 

Finally, other approaches consist of adding a regu- 
larizing (or penalizing) term to the usual squared error 
cost function that will penalize nonsparse solutions. 
By minimizing this cost function, the solution seeks a 
tradeoff between both terms: their relative importance 
is controlled by the weighting parameter, that must be 
selected to optimize the performance. In fact, as it is 
noted in [ 1,4], under the usual assumption of white 
Gaussian noise, these regularization methods can be 
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interpreted in the context of Bayesian theory. In this 

way, there is a close relationship between considering 
a prior distribution for the input signal and adding a 
regularizing term. 

Some penalty terms, previously proposed to sim- 
plify neural network architectures (i.e., pruning), have 

been already applied to solve sparse deconvolution 

problems [3]. Nevertheless, in these methods the pa- 
rameters involved in the penalty terms and even the 

weighting parameter are fixed in advance: note that 
this is equivalent to considering a fixed prior distribu- 
tion for the signal. Therefore, the application of these 
methods requires some statistical information about 

the signal. 
To overcome some of these limitations, in this 

paper we model the sparse signal as a mixture of 
two zero-mean Gaussians with different variances. 

Following a Bayesian approach, this prior informa- 
tion is used to derive a penalty term. To consider 

a Gaussian mixture presents some advantages: first, 
the resultant cost function is convex, thus it can be 
minimized by applying a gradient-type algorithm; 
second, a procedure for updating the parameters 
of the mixture (variances and mixing proportions) 
can be included in the algorithm. Therefore, the 

proposed algorithm obtains simultaneously a partic- 
ular model (belonging to a parametrized family of 
Gaussian mixtures) and a signal driven from that 

model. 
Section 2 introduces the Gaussian mixture model 

and derives an appropriate penalty term for the sparse 
deconvolution problem. A gradient-type algorithm 

(with convergence proof) and the signal model opti- 
mization procedure are presented in Section 3. Section 
4 shows and discusses simulation results, and Section 

5 summarizes the conclusions. 

2. Gaussian mixtures for sparse deconvolution 

Gaussian mixtures have been used in a wide variety 
of problems where data can be modeled as coming 
from two or more different distributions [9]. Recently, 

Nowlan and Hinton have discussed the application 
of this model to a number of problems such as neu- 
ral network pruning [ 121, blind equalization of very 
distorted channels [ 131, or competitive learning [ 111. 
Also, Zhao et al. consider a Gaussian mixture for 

modeling non-Gaussian sources for autoregressive 

process [ 181. 
These previous works suggest the possibility of 

modeling a sparse signal by means of a Gaussian 
mixture. Specifically, let us assume that the prior 

distribution of our sparse signal can be approximated 

with a mixture of a narrow (subscript 1) and a broad 

(subscript 2) zero-mean Gaussian; the narrow Gaus- 
sian models the smaller peaks (ideally nonexistents), 

whereas the broad one models the true peaks: 

~4x1 = *e 
-X’.2C7i / 7c2 e -x’!2a; 

GE 
(2) 

where rcr and 712 are the mixing proportions and they 
are therefore constrained to sum 1. Varying the mix- 

ture parameters (variances and mixing proportions), 
different prior distributions can be approximated; in 
fact, decreasing the variance of the narrow Gaussian, 

mixture (2) can fit quite well a Bernoulli-Gaussian 
distribution. Moreover, this kind of distribution is ade- 

quate for this detection plus estimation problem: first, 
a decision must be made to assign each sample to a 
Gaussian (detection); second, its amplitude must be 
estimated (estimation). 

Given a set ofN observations x = {XI.. ,xN}, and 
denoting each component of the mixture as Gi, the de- 
tection part of the problem is related with determining 

the posterior probability p( G, IXi): the probability that 
a particular sample xi was generated by a particular 

Gaussian Gj, which is given by 

(3) 

where p,(xi) is the probability density of xi under 
Gaussian j. 

Considering now that {xi} are independent and 
identically distributed (iid) according to (2) we define 

a penalty term as the negative of the log-likelihood 
function: 

P(x) = -Cl%&P,(.uJ. (4) 
I i 

For small samples, which are better modeled by the 

narrow Gaussian, the penalty term is proportional to 
xf/2$; thus, as long as ~1 is small, they are strongly 
pushed towards zero. Conversely, the broad Gaussian 
models the larger peaks, so there will be much less 
pressure to reduce them. 
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Finally, we can define the following global cost ob- 
jective: 

J(X) = IIZ - Hxlli - NC 1% C njnipj(Xih (5) 
i j 

where a controls the tradeoff between the squared error 
and the penalty term. 

From a Bayesian point of view, this cost function 

assumes a white Gaussian noise and prior distribution 
(2), while GI establishes a tradeoff between our confi- 

dence in the signal model and the observations. 

3. The proposed algorithm 

In this section we analyze the proposed functional 

and present a gradient-type algorithm for its minimiza- 
tion. In addition, we present a method for updating 
the signal model as well as for selecting the weight- 
ing parameter. Finally, a complete description of the 

algorithm will be presented. 

3.1. A descent procedure for minimizing the cost 
function 

It is straightforward to show that, if the matrix H 
has full rank, then J(x) is a strictly convex functional 
of x and therefore it has only one minimum point 

[15]. On the other hand, setting aJ(X)/aXi = 0, for 
i = O,..., N - 1, it can be shown that the minimum 
point satisfies the following relation: 

0, i=O,l,..., N-l, (6) 

where s = 2HT(Hx - z) (the superscript T denoting 

transpose). 
The above results suggest applying the following 

iterative procedure to minimize J(X): 

xk+l = xk - DCk, (7) 

where D is a diagonal matrix given by 

D = diag&, ~2,. . . , PN- I 1 (8) 

and ck is an N x 1 column vector that can be written as 

ck = Sk + aqk, (9) 

where 

Sk = 2HT(Hx,+ - 2) (10) 

is the correction due to the Lz-norm of the error, and 
the components of vector qk are given by 

qi,k = Xi,k (11) 

and they correspond to the correction due to the 

penalty term. In (11) Xi,k is sample i at iteration k. 
On the other hand, for c( = 0, the values of /Li in 

(8) must be less than the inverse of the maximum 

eigenvalue of HTH, Amax, in order to guarantee con- 

vergence; otherwise, convergence depends as well on 
both c( and the mixture parameters. Therefore, our ob- 
jective is now to find what conditions should be im- 

posed on the step-size parameters pi in order to ensure 
convergence. We present the following theorem. 

Theorem 1. The iterative algorithm described by (7) 
converges to a minimum point of J(x) if, at any iter- 
ation, the step-size parameters pi in (8) are selected 
according to the following conditions: 

(l) cli = 0 if Xi,k = 0, 

(2) p_li < min 
1 

~ i,,:z,2a: ’ xt? 1 if %,kCi,k > 0, 

c3) pi < & if Xi,kCi,k < 0. 

Proof. See Appendix A. 

Note that condition ( 1) states that no correction will 
be made for samples which have been already pushed 
to zero. On the other hand, condition (2) considers the 

case whenXi,kci,k > 0, which means that samplexi will 
decrease due to the correction term: in this case, the 
possibility of a change of sign is avoided by including 
the condition /li < Xi,k/ci,k. 

The behaviour of the algorithm depends on the 

Gaussian mixture parameters as well as on the weight- 
ing parameter u.. The mixture parameters can be 
grouped in the vector 8 = (rci,cri,rr~, a2). This set 
of parameters that defines the prior distribution of 
the sparse signal is known as hyperparameters [7]. 
In the next subsection we present a procedure to get 
them while the algorithm proceeds. Subsequently, we 
will propose a method to choose the weighting para- 
meter CI. 
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3.2. Signal model optimization 

The most obvious procedure consists of fixing the 
mixture parameters according to some a priori knowl- 

edge of the problem; for instance, in a seismic decon- 

volution problem, we usually know in advance that 

the solution can be modeled by a Bernoulli-Gaussian 
distribution, for which the signal follows a Gaussian 

distribution with variance 0,’ with probability L, and 
its value is zero with probability I - A. If estimates of 

these parameters are available, we could choose the 
mixture parameters in the following way: nl = 1 - i., 

7r2 = L, ai = CJ~, and a small value for 0:. This pro- 

cedure achieves good results if we dispose of an ap- 

propriate statistical knowledge of the problem. 
When the set of hyperparameters 8 is unknown, the 

problem is to find estimates for both x and 0. In this 
case, it is more appropriate to denote functional (5) as 

J(x, 0). Specifically, to estimate 0 we propose to apply 
the Expectation-Maximization (EM) algorithm [5]. To 

develop this idea, let us start by defining the observed 
incomplete data as the signal obtained from (7) after 

iteration k: xk. On the other hand, the unobserved data 
is given by x = (dl,dz), where dj, j = 1,2, is a set 
of Bernoulli random variables selecting the Gaussian 

associated to each sample, i.e., 

if xi E Gj, 
if Xi 6 Gj. (12) 

Using this particular choice for the complete data, 
(xk, dl , dz), and denoting the current estimate of 19 after 
k iterations of the EM algorithm as 6$, it is easy to 

see that the E-step of the next iteration is given by [9] 

E [di.j\Xk,ok] = rj(xl,k), (13) 

where E [.] denotes expectation; then, the E-step is 
equivalent to recompute the posterior probabilities. 

Once ?"j(Xi,k) is known, in the M-step we reestimate 

the mixture parameters according to 

tl k+l = argmax J(xk+l, 6). (14) 
0 

Taking the derivative of J(x, 6) with respect to 0 and 
equating it to zero gives the following mixture param- 
eters: 

ci$krj(xi,k) 
g;k_+, = ’ 

ci cj(Xi,k) ’ 
(15) 

1 
nj.k+l = - 

N 
rj(xi.k). (16) 

It is known that the convergence rate of the EM 

algorithm may be slow. To avoid this problem, in the 

present paper we propose the following modification: 

after each new xk is obtained, only one iteration of the 
EM algorithm is carried out to obtain a new estimate 

of the hyperparameters. 
On the other hand, note that each new estimate of 0 

changes the cost function; therefore, to avoid stability 
problems, it is important to force a slow change in the 

hyperparameters. For this reason, we choose to use 

the following updating procedure: 

)ci x:krjh,k 1 

Ci rj(xi,k) ’ 

2 
‘j, k+ I = y& + (1 - 1’ 

rj,k+l = Ynj,k + (1 - 1 

(17) 

(18) 

;’ being a constant near to 1. 
We conclude this subsection by noting that although 

the convergence conditions given by Theorem 1 were 
obtained assuming a fixed set of hyperparameters, the 
result is still valid if we consider in each iteration the 

current estimates given by the EM iteration. 

3.3. A methodfor choosing the weighting parameter 

A complete application of the proposed algorithm 
requires a method for choosing the weighting para- 
meter CC, which establishes a tradeoff between the 

quadratic error and the penalty term. In general, opti- 
mum c( depends on the noise variance a2, as well as 
on matrix H and on the original signal itself; among 

them, usually the most important is a2. 
Without an estimate of a2, the only procedure is to 

fix (x heuristically. This can be done in practice be- 
cause the obtained solutions are not usually critical 
with respect to a. On the other hand, if an estimate 
of the noise variance 8’ is available, we can use this 
knowledge to adaptively obtain the optimum weight- 
ing parameter. In particular, the idea of the proposed 
method is to select a value of 01 which leads to a so- 
lution f satisfying 

&2 - & < kllb - Hf(j; < cf2 +&, (19) 
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Fig. 1. Flowchart of the proposed method to select the optimum weighting parameter. 

where the use of E is prompted by statistical consid- 
erations. 

The method that we propose starts selecting an ini- 

tial guess for the weighting parameter, aa; then, the 
solution and the variance of the associated residual 
(that will be denoted as N2 = (l/N)llz - Hill;) are 

obtained. Next, if N2 is higher than c?~ (thus mean- 

ing that a solution with few peaks has been obtained), 
a is reduced a fixed value aa; otherwise CI is in- 

creased. This procedure continues until (19) is ful- 
filled. A complete description of the method is shown 

in Fig. 1. 
This approach achieves better results than con- 

sidering a fixed weighting parameter, but obviously 
the computational cost is also higher, since we must 
obtain a solution for each evaluated CL This last over- 

load can be reduced if, for each new LX, we initialize 
the iteration (7) with the obtained solution for the 
previous u. 

3.4. The overall algorithm 

Finally, the proposed algorithm can be summarized 
in the following steps: 

1. Initialize the mixture parameters x~,o, aj,o, j = 1,2; 
and the weighting parameter a = ~0; 

2. x0 = ojjlx,. 

3. Fork = 0 to (ml - l), 

xk+l = xk + 2pHT(z - Hxk); 
end. 

4. Fork=ml to(ml +mz), 
4.1. COmpUte rj(Xi,k), for i = 0, . . ..N - 1; 
4.2. compute vector qk; 
4.3. select matrix D = diag&, . . . , p~-~ ) 

according to Theorem 1; 
4.4. obtain new signal estimate: 

xk+l = xk - D [2HT(HXk - Z) + a&]; 

4.5. recompute rj(xi,k), 

for i = 0,. . . ,N - 1 (E-step); 

4.6. update the signal model according to 
(17) and (18) (modified M-step); 

end. 

5. if 8’ - & < $ I/Z - Hxk+lIIi < e2 f & then 

solution: f = xk+l; 

else 

obtain new cc; 

return to 2; 

end. 
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Let us expose some comments about the pre- 

sented algorithm. First, we have introduced a mi- 
nor modification consisting of using iteration (7) 
without penalty term, i.e., r = 0, for a small num- 
ber of steps. This modification is necessary since 

the proposed method must start with a nonzero 
signal (recall that pi = 0 if xi = 0); in addi- 

tion, a small number of iterations is enough in 

order to take away the signal from its starting 
point. 

Second, we need to consider the issue of initializing 
the mixture parameters. A reasonable mixture initial- 

ization could be ret = 712 = 0.5 and gi > of, with 0: 

being a small fraction of the observations variance 0:. 

As long as the algorithm proceeds, the broad Gaus- 
sian becomes even broader, i.e., gi increases and g: 
becomes smaller. On the other hand, 7r2 and ret drive 
toward the mean number of samples modeled by each 

Gaussian. 
When rri approaches zero too closely, the algo- 

rithm may become unstable. In [ 121 this problem is 
solved working with a set of auxiliary variables of 

the form oJ’ = e;‘l, where the value of yj is unre- 

stricted. In this way, U: is not allowed to approach 
zero. Nevertheless, this alternative can be avoided 

in our problem since we are interested in decreas- 
ing 0: as much as possible, because in this way 
the useless samples approach zero. For this reason, 
we have chosen to work directly with c$ (instead 
of yi) in the following way: iteration (7) is car- 

ried out until a maximum number of iterations rn2 
is reached or a constraint of the form $ < 6 is 

satisfied, where 6 is an empirical constant close to 
zero which prevent us from arriving to unstabil- 

ity. 
Finally, a brief discussion about how the re- 

sponsibility factors rj(xl) evolve while the algo- 
rithm proceeds. As we pointed out previously, 
when the narrow Gaussian models a small sam- 
ple, it is pushed towards zero, thus increasing its 
posterior probability it even more; the same 
happens for the broad Gaussian and the larger 
samples. Therefore, if over time a sample is bet- 

ter modeled by a particular Gaussian, its posterior 
probability under that Gaussian approaches 1; oth- 
erwise it approaches 0. Consequently, the posterior 
probabilities rj(Xi) can be viewed like soft detec- 

tors. 

4. Simulation results 

We have selected two computer experiments with 
different sparse signals: the first uses a deterministic 
signal and illustrates the application of the proposed 
method; the second uses Bernoulli-Gaussian sparse 

signals and it serves to compare the performance of 

the proposed method with a statistical detector based 

on that model [lo]. 

4. I. E.xpriment I 

In this example, we consider a llO-point length 

sparse signal having nonzero values at points x20 = 8, 

~2~ = 6.845, x47 = -5.4, x71 = 4 and.x95 = -3.6. The 
impulse response corresponds to the first 20 points of 
an ARMA filter having one zero at z -= 0.6 and two 

poles atz = 0.8 exp(&j5n/12) (note that H(m, n) cor- 
responds to the values h,_,, of the impulse response). 

The SNR used in this example is 4dB, and it is de- 
fined as the power of Hx with respect to the power of 
n, n being a zero mean Gaussian noise. 

To apply the proposed method we initialize the mix- 

ture parameters with the following values: 711 = 7r2 = 
0.5, U: = cz and 0: = az/2, where 0: is the vari- 
ance of the observations. We use iteration (7) without 

penalty term until ~20 and then we apply the proposed 
method with a fixed value r = 2. 

Figs. 2(a)-(d) show the initial noisy register, and 
the obtained signal using the proposed method after 
iteration 10, 30 and 50 (final result), respectively. It is 
interesting to note that we obtain an accurate solution 

very quickly. Also, we can remark once again how 
the narrow Gaussian pulls the false peaks to zero (see 
Fig. 2(d)), thus avoiding the need of applying a final 

threshold. 
Figs. 3(at(c) illustrate the evolution of the mix- 

ture parameters versus the number of iterations k: the 
decrease in 0: and the increase in 02 indicate a good 
behavior of the algorithm. 

To complete the summary of results for this exam- 
ple, in Figs. 4(a) and (b) we represent the posterior 
probability for the broad Gaussian after 10 iterations 

and its final value, respectively. Considering our de- 
tection plus estimation problem, YZ(X~) solves the de- 
tection part: if a sample x; is captured by the broad 
Gaussian then rz(xi) = 1, and this implies that at po- 
sition i there is a peak. As we can see in Fig. 4(a), 
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(cl (4 

Fig. 2. (a) Convolved signal plus noise (SNR = 4dB); (b) solution after IO iterations with penalty term (circles depict true event 

amplitudes); (c) after 30 iterations; (d) after 50 iterations (final solution). 

during the first iterations YZ(X~) has a value between 0 1: rci = 7~2 = 0.5, cri = 0: and 0: = 0212, where ai 
and 1 for the doubtful peaks, thus establishing a soft- is the variance of the observations. We have used a 
detection procedure. value c( = 0.15, which has been selected to fulfill (19). 

4.2. Experiment 2 

In this example we evaluate the performance of our 
algorithm using synthetic signals generated according 
to the Bernoulli-Gaussian model (this distribution is 
often used for seismic deconvolution cases). Also, we 
present a comparison with the Single Most Likely Re- 
placement (SMLR) detector [lo]: a statistical detector 

based on the Bernoulli-Gaussian model. 
We generated a Bernoulli-Gaussian sequence of 500 

points with ;1 = 0.05 (percentage of nonzero samples) 
and 0,’ = 10 (variance of the Gaussian distribution), 
and then we convolved this sequence with the impulse 
response described in Example 1. Finally, a zero-mean 
Gaussian noise was added to the result to produce a 
SNR= 10 dB. 

Fig. 5(a) shows the result obtained with the pro- 
posed method (circles depict true event amplitudes): 

there are six missed detections and no false alarms; 
while Fig. 5(b) shows the result obtained with the 

SMLR detector: in this case, there are five missed de- 
tections and one false alarm. These results are con- 

firmed in Table 1, which shows the averaged results 
of 50 simulations for different SNRs. In particular, 
Table 1 shows the average detection percentage, and 

(in parentheses) the false alarm percentage. The 95% 
confidence interval is about f2% for the detection 
percentage and i 0.1% for the false alarm percentage. 

To apply the proposed method we initialize the mix- 
ture parameters with the same values used in Example 

From these results it can be concluded that the per- 
formance of both methods is fairly equivalent: the 
SMLR detector achieves a higher detection probabil- 
ity than the proposed method, but the false alarm per- 
centage is also higher. On the other hand, the com- 
putational cost of the proposed method is very low: 
between 25 and 75 iterations were enough for all the 
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Fig. 3. Evolution of the Gaussian mixture parameters versus num- 

ber of iterations (k): (a) variance of the broad Gaussian; (b) 

variance of the narrow Gaussian; (c) mixing proportions. 

performed simulations; while the SMLR detector re- 
quires at least the inversion of an N x N matrix, where 
N is the register length. In order to give an approxi- 
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Fig. 4. Posterior probability for the samples under the broad 

Gaussian: (a) after iteration 10; (b) after convergence. 

mate idea about the gain in speed achieved using the 
proposed method we have compared the overall run- 
time of both approaches: using programs written in 

MATLAB and running on a PC ( 100 MHz), the SMLR 
detector takes several minutes in order to deconvolve 
a register of 500 points, while the proposed method 
takes only a few seconds. Furthermore, the SMLR de- 
tector only solves the detection part of the sparse de- 
convolution problem; usually, the amplitude estimates 

are obtained by using a minimum variance deconvolu- 

tion filter, and the model parameters are estimated in a 
previous step. The proposed method, however, is able 
to solve the whole problem: it detects the nonzero po- 
sitions and estimates their amplitudes; besides, it also 
estimates the model parameters. 
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Fig. 5. (a) Proposed algorithm estimates (circles depict true event 

amplitudes); (b) SMLR detector estimates. 

Table 1 

Comparison of the results from the algorithms: (A. 1) proposed 

method; (A.2) SMLR detector. The table shows the average de- 

tection percentage and (in parentheses) the false alarm percentage 

4 dB 6 dB 8 dB 10 dB 

A.1 64.8 (0.7) 70.9 (0.6) 73.6 (0.2) 79.4 (0.1) 

A.2 74.4 (1.2) 80.3 (1.2) 84.2 (1.0) 87.5 (1.0) 

5. Conclusions 

We have presented a new algorithm to recover 
a sparse signal from a noisy register. Consider- 

ing a Gaussian mixture for modeling the sparse 

signal, we have derived a penalty term that can 

be used to regularize the usual quadratic error 

cost function. The convex character of the re- 
sultant functional allows to find the minimum 

by using simple gradient-techniques. The pro- 

posed algorithm includes a method (based on the 
EM algorithm) for optimizing the mixture pa- 

rameters over time; therefore, our procedure can 
be used without any statistical knowledge about 
the signal: this establishes one of the main dif- 

ferences with other related approaches. A proce- 
dure for selecting the regularization or weight- 
ing parameter completes the description of our 

algorithm. 

Simulations show that the proposed method obtains 
results competitive with other statistical detectors, but 
with a much lower computational cost. 

Notation 

2 

x 

;i 

xk 

ck 

Sk 

qk 

Xi 

xi, k 

pi 

H 

Gj 

rj(Xi 1 

3 wmx 

CI 

3, 

observations vector 

sparse signal vector 

noise vector 

impulse response matrix 

estimate of x at iteration k 

correction vector at iteration k 

correction due to the L2-norm of the error 

(iteration k) 

correction due to the penalty term 

(iteration k) 

ith component of vector x 

estimate of xi at iteration k 

step-size parameter corresponding to the ith 

component 

variance and proportion of the narrow 

Gaussian 

variance and proportion of the broad 

Gaussian 

set of hyperparameters 
mixture components 

posterior probability of component xi under 

Gaussian Gj 
maximum eigenvalue of matrix HTH 

regularization (weighting) parameter 

sparseness parameter for the Bernoulli- 
Gaussian model 
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Appendix A 

Proof of Theorem 1. The proof of Theorem 1 is 
based on a well-known result from optimization the- 

ory, which can be written as follows. 

Theorem 2. Let J(x) be a convex functional in RN; 
$x0,x,,... ,xk are generated by iteration (7), and 
J(Xk+l) < J(xk) for any k, then the sequence has a 
limit point x, which is a minimum point for J(x). 

Proof. See [2]. 

Then, to ensure convergence, we must impose the 

condition 

J(XL+I > - J(xk) < 0, b’k. (20) 

Before doing that, note that J(x) can be rewritten as 

J(X) = XTAX - xTb - HE log C rCjpj(x;), (21) 

where we have discarded the constant term / 1 z 1 Ii, A = 
HTH and b = 2HTz. 

Now, evaluating the difference between J(xk+l ) and 

J(xk ), we obtain 

J(xr+l ) - J(Q) 
q = c,TDADq - c,TDsk 

Cj njPj(Xi,k - /&i.k ) 

Cj nj P,jtxi.k 1 . (22) 

Using the definition of the posterior probabilities, it 
is not difficult to see that the last term in (22) can be 
rewritten as 

= 1 log Cj njPjhi,k - PiCi,k) 

I Cj “jP,(Xi,k) 
I 

(-&:k + %C,,k%,k) 
= r,(xi,k)exp 

2a; 

(23) 

Additionally, we impose the condition 

if X,,kCi,k > 0. (24) 

This condition only avoids a change of sign in sample 
i due to the correction term. 

Taking into account (24) and since 0 6 rj(x;,k ) 6 1, 

the following bound holds: 

The proof of (25) is based on the following inequali- 
ties: 

log(A + B)> log(A) + log(B) for 0 < A,B < 1; 

(26) 

log(AB)<Alog(B) for 0 < A,B < 1. (27) 

Now, let us define the following diagonal matrix: 

,.... c (28) 
i 

Using (28) and the definition of vector qk given by 
(1 l), the right term of (25) can be written as 

(-&fk + 2/hxi,kCi,k) 

= -c,TDRDck $ C,T&k. (29) 

After substitution into (22) the following inequality 
is obtained: 

J(xk+r ) - J(Q) 

<c,TD(A + ctR)Dck - @(Sk + aqk); (30) 

recalling that ek = Sk +a&, we obtain the convergence 
condition 

c;D(A + rR)DCk - C,TDCk < 0. (31) 

A sufficient condition to fulfill (3 1) is obtained if, for 
each pi, we impose 

/ifC; (A + aR) ck - /d,c,Tck < 0. (32) 

Denoting B = A + xR, this last inequality reduces to 

C; (I - /LiB) Ck > 0, (33) 

where Z is the identity matrix. This condition implies 
that Z - PiB must be positive definite; therefore, since 
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all eigenvalues of matrix B are positive, the iterative 

algorithm converges if 

(34) 

where b,,, is the maximum eigenvalue of B. 
Now, recalling that O<rJxi,k),C 1 and that CJ~ < 

oi, the following bound holds: 

(35) 

where 3 bmax is the maximum eigenvalue of A = HTH, 
a is the weighting parameter and 0: is the variance of 

the narrow Gaussian. Hence, we get the final result 

o-C/&< 
1 

Amax + a/24. 
(36) 

This completes the proof of Theorem 1. 0 
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