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A new suboptimal algorithm for detection of constant modulus signals

in multiple-input multiple-output channels is presented. The deviation

of the solution from the desired constant modulus property is used as a

penalty or regularisation term in the conventional least squares cost

function, and an iterative reweighted least squares procedure is used to

minimise the regularised function.

Introduction: The maximum likelihood (ML) detector is the optimal

algorithm in the sense of minimum probability of error for multiple-

input multiple-output (MIMO) systems, but tends to be computation-

ally intensive and impractical for many applications. This is true even

for the sphere decoding (SD) algorithm of Fincke and Pohst [1], for

which the expected complexity is polynomial over a wide range of

signal-to-noise ratios (SNRs) and number of antennas [2]. Therefore,

there is a strong demand for computationally efficient but suboptimal

detection algorithms. Among them, probably the most popular is the

vertical Bell Labs layered space time (V-BLAST) detector, which is a

nulling-and-cancelling (NC) minimum mean-squared error (MMSE)

detector with optimal ordering [3].

In this Letter, we present a new MIMO detection algorithm for

constant modulus (CM) (e.g. binary=quadrature phase shift keying)

signals. The deviation of the solution from the desired constant

modulus property is used as a penalty or regularisation term in the

conventional least squares cost function. Specifically, the penalty term

uses an E-insensitive quadratic loss function and, in this way, the

problem turns out to be similar to a support vector regression

(SVR) problem [4]. This loss function has been shown to have desirable

properties (for instance, improved generalisation) for regression

problems [4], and has been previously applied to blind equalisation

with succesful results in [5] and [6]. To reduce the computational

burden, the regularised cost function is minimised using an iterative

reweighted least squares (IRWLS) procedure, which converges to the

support vector machine solution. Some simulation results show that, for

moderate or large-size problems, the proposed method provides better

performance than the nulling-and-cancelling MMSE detector with

much lower complexity than the sphere decoding algorithm.

Review of MIMO detection schemes: We consider a flat fading

Rayleigh MIMO channel with nT transmit antennas and nR� nT
receive antennas. This leads to the well-known baseband model

x ¼ Hsþ n ð1Þ

where x is the nR� 1 received vector, s is the nT �1 transmitted vector,

n is the nR �1 noise vector and H is the nR� nT MIMO channel matrix.

The channel H is perfectly known at the receiver and its entries are

independent and identically distributed (i.i.d.) zero-mean complex

Gaussian random variables with unit variance. On the other hand, the

components of n are i.i.d. zero-mean, circularly symmetric complex

Gaussian random variables with variance s2. Model (1) also encom-

passes frequency-selective MIMO channels as well as MIMO systems

that use linear-dispersion codes; in these situations we have an N�M

MIMO channel matrix with N, M >> nR.

The optimal ML detector is the solution of the following integer least

squares problem:

ŝML ¼ argmin
s2D

kx�Hsk22 ð2Þ

where D denotes the set of all possible transmitted data vectors. This

problem is known to be NP-hard and its computational complexity

grows exponentially with the number of transmitting antennas nT. To

avoid the high computational cost of ML detection, several suboptimal

procedures have been proposed. A simple detector consists in finding

the MMSE estimate followed by a hard decision

ŝMMSE ¼ Q½ðHHH þ s2IÞ�1HHx� ð3Þ

where Q[ � ] denotes componentwise quantisation according to the

symbol constellation used. Better results are obtained by the

nulling-and-cancelling MMSE detector (denoted here as NC-MMSE),

for which the initial MMSE symbol estimates are sorted according to

the received SNR and the symbols are detected one by one. The

contribution of each detected symbol is subtracted from the observa-

tions to reduce the interference.

MIMO detection of CM signals: In this Letter, we assume that the

transmitted signal belongs to a constant modulus (CM) constellation

jsij
2
¼ 1. This additional information can be exploited to regularise the

unconstrained least squares cost function as follows:

J ðsÞ ¼
1

2
kx�Hsk22 þ C

PnT
i¼1

LEðuiÞ ð4Þ

where C is a regularisation parameter, LE( � ) is a loss function that

penalises the deviations from the desired CM property, and ui¼ jeij,

where ei¼ 1� jsij
2. Specifically, we use the following quadratic

E-insensitive loss function, which only penalises deviations larger

than E and has been successfully used in support vector regression

problems [4–6]

LEðuiÞ ¼
0; ui � E
ðui � EÞ2; ui > E

�
ð5Þ

Since the penalty term is a function of the modulus of the solution, the

resulting regularised cost function is not convex and, therefore, an

iterative procedure is needed to minimise (4). To this end, we first

decompose ei as ei¼ 1� (si
k�1)*si, where si

k�1 is the soft estimate of the

ith layer in the previous iteration. In this way, by considering now that

si
k�1 is fixed the minimisation of (4) becomes a quadratic programming

(QP) problem [5]. To reduce the computational cost further, the QP

problem is solved using an iterative reweighted least squares (IRWLS)

procedure [6]. In particular, after the (k� 1)th iteration a quadratic

approximation of (4) is constructed as follows (a detailed derivation can

be found in [6]):

J 0ðsÞ ¼
1

2
kx�Hsk22 þ

1

2

PnT
i¼1

ðaie
�
i eiÞ þ CTE ð6Þ

where CTE group constant terms that do not depend on s and the

weights ai are given by

ai ¼
C

uk�1
i

dLeðuiÞ

dui

����
u k�1
i

¼

0; ui � E
2Cðuk�1

i � EÞ
uk�1
i

; ui > E

8<
:

Now, taking the derivative of (6) with respect to s and equating to zero,

the following linear system of equations is obtained:

½HHH þ 2DaDjsk�1 j2 �s ¼ HHxþ 2Das
k�1 ð7Þ

where Da¼ diag(a1, . . . , anT) and Djsk�1
j
2
¼ diag(js1

k�1
j
2, . . . ,

jsnT
k�1

j
2).

Similarly to [5, 6], to improve the convergence of the method the

solution is smoothed as sk¼ lsk�1
þ (1� l)s*, where s* is the new

solution of the system of equations and l is a positive constant close to

one. The procedure can be initialised using the soft estimate given by

the unconstrained MMSE detector. To check the convergence of the

procedure we evaluate the average modulus error (AME), which is

defined as AME(k)¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=nT Þ

PnT
i¼1ðjs

k
i j � 1Þ2

q
: Finally, the proposed

procedure is summarised in the following algorithm:

1. Initialise C, E, d and l.
2. Obtain the initial MMSE solution: s0¼ sMMSE.

3. WHILE convergence criterion not true.

a. Calculate Da and Djsk�1j2 and obtain s* by solving (7).

b. sk¼ lsk�1
þ (1� l)s*.

c. Check convergence criterion: jAME(k)�AME(k� 1)j � d.

4. ŝ¼Q[sk].

Simulation results: We compare the bit error rate (BER) and the

computational complexity of the MMSE detector, the NC-MMSE

detector, the sphere decoding (SD) algorithm and the proposed

detector (labelled in Figs. 1a and 1b as SVR-MMSE). For the
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SVR-MMSE detector we choose C¼ 7, E¼ 0.001, l¼ 0.5 and

d¼ 1e� 5. Fig. 1a shows the BER for a 15� 15 MIMO system

and an 8-PSK constellation. For the same scenario Table 1 compares

the average execution time in milliseconds of the four algorithms

programmed in Matlab and running on a PC Pentium IV (2.8 GHz). In

comparison to the NC-MMSE, the proposed scheme saves up to 2 dB

of Eb=N0 with only a moderate increase in computational cost, which

is still much lower than that of the SD algorithm. Fig. 1b shows

the BER for a 45� 45 MIMO channel with an 8-PSK constellation.

For this example the results of the SD algorithm are not given due

to its high computational cost. Now, the improvement over the

NC-MMSE is close to 4 dB of Eb=N0.

Fig. 1 BER against Eb=N0

a 15� 15 MIMO channel
b 45� 45 MIMO channel

Table 1: Computational cost (average execution time in milli-
seconds) for SD, MMSE, NC-MMSE and SVR-MMSE
detector for 15� 15 MIMO channel

Eb=N0 (dB) 5 10 13 16 19

MMSE 0.47 0.41 0.46 0.47 0.47

NC-MMSE 3.90 3.41 3.71 3.72 3.71

SVR-MMSE 23.44 22.00 20.07 18.64 17.28

SD 107 000 3799.90 558.31 221.76 167.06

Conclusions: We have developed a suboptimal method for detection

of CM signals in MIMO systems. The method efficiently exploits the

additional information provided by the CM alphabet property. In

terms of BER and computational cost the proposed detector provides

intermediate results between the NC-MMSE detector and the sphere

decoding algorithm, mainly for MIMO systems of large or moderate

size.
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