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Abstract — The paper describes hardware solutions for the IEEE 

802.11 MAC (Medium Access Control) layer and IEEE 802.11a 

digital baseband in an RF-MIMO WLAN transceiver that 

performs the signal combining in the analogue domain. 

Architecture and implementation details of the MAC processor 

including a hardware accelerator and a 16-bit MAC-PHY 

interface are presented. The proposed hardware solution is 

tested and verified using a PHY link emulator. Architecture, 

design, implementation, and test of a reconfigurable digital 

baseband processor are described too. Description includes the 

baseband algorithms (the main blocks being MIMO channel 

estimation and Tx-Rx analog beamforming), their FPGA-based 

implementation, baseband printed-circuit-board, and real-time 

tests. 

 
Index Terms — Baseband, MAC, MIMO, processor 
  

I. INTRODUCTION 

Current multiple-input multiple-output (MIMO) wireless 

systems perform the combining and processing of the complex 

antenna signal in the digital baseband. Since complete 

transmitter and receiver are required for each path, the 

resulting power consumption and costs of the conventional 

MIMO approaches [1] limit applications for ubiquitous 

networks. A low-power and low-cost RF-MIMO (MIMAX) 

system for maximum reliability and performance (Figure 1) 

compliant to the IEEE Standard 802.11a [2] has recently been 

proposed [2], [4]. It significantly decreases the hardware 

complexity by performing the adaptive weighting and 

combining of the antenna signals in the RF front-end [5]-[8]. 

Multiple antennas are used to increase the transmission 

reliability through spatial diversity. Redesigns have mostly 

been done in the physical medium dependent (PMD) layer. 

They demand for changes in the physical layer convergence 

(PLC) and medium access control (MAC) protocols to 

optimally exploit the benefits of the new RF front-end [9]-[14]. 
The PLCP pursues mapping MAC protocol data units in PMD 

layer compliant frame formats. This task is common for all 

communication schemes defined by the IEEE Standard 802.11. 

Furthermore, the spatial diversity must be exploited, possible 

impairments in the RF spatial processing have to be compen-

sated and the MIMO channel has to be estimated. Particularly, 

these tasks are not needed in the IEEE802.11a scheme, which 

is specified for SISO communication. 

There are several differences between the MIMAX 

approach and the full multiplexing MIMO approach. In 

MIMAX, the same weight is used for all subcarriers in OFDM 

transmissions whereas it is possible to weight each subcarrier 

independently from the others in the full MIMO transmission 

scheme. 
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Figure 1: MIMAX transmitter and receiver 



Integrating the signal processing in analogue circuits is 

limited in the maximum achievable resolution because of 

noise processes, process variations or nonlinear behavior of 

the devices. Therefore, the signal processing has to be calibra-

ted by the baseband to adapt to the RF impairments. This 

mainly considers the correlation between real and imaginary 

parts of the vector modulator approach. Compensation is 

achieved by a calibration performed by the RF control unit in 

Figure 1. The characteristics of the vector modulator are 

analyzed by this module and stored in an internal memory. 

The weights provided by the baseband are then transferred 

into corresponding values of the vector modulator using the 

previously determined relationship and these new weights 

control the vector modulator. Integrating additional calibration 

options in the RF front-end and the RF control unit allow an 

internal adaptation to impairments of the fabrication process 

and a feedback to the baseband processing. These techniques 

are based on look-up tables or neural network approaches. The 

vector modulator is connected to the RF control unit by a 

serial peripheral interface (SPI). 

The RF-MIMO analogue front-end needs new algorithms 

to exploit the available spatial diversity of the MIMO channel. 

Several challenges are addressed in the physical layer 

convergence protocol. First, the impairments of the RF front-

end are considered in the baseband processor. The algorithms 

must operate reliably and robustly with respect to the limited 

resolution of the RF front-end. Moreover, these algorithms 

must determine the optimal complex weights to be applied at 

each antenna (implemented by means of vector modulators). 

The MIMO beamforming algorithms need channel state 

information at both sides of the link, which is obtained by a 

specific training procedure. Different optimization goals can 

be used when determining the optimal Tx/Rx weights [6]. 

Because of its simplicity, the maximization of the signal-to-

noise-ratio (SNR) is the criterion chosen for implementation. 

In order to test the modifications in the IEEE802.11 MAC 

layer [2], a simulation model of the IEEE802.11 WLAN has 

been developed in the Specification and Description Language 

(SDL) [15]. It is composed of simplified models for the 5 GHz 

OFDM physical layer (PHY), and a detailed model for the 

medium access control (MAC) layer. The model is used to 

verify the functional correctness of the MAC design and to 

investigate the performance. 

The MAC processor architecture is presented in Section II. 

The hardware accelerator that performs the most time critical 

MAC functions is described in Section III. The baseband 

architecture is presented in Section IV. Functional modules of 

the baseband processor are described in Section V, VI, and 

VII. The implementation details are presented in Section VIII 

and test details in Section IX. The conclusions are drawn in 

Section X. 

II. MAC ARCHITECTURE 

The MAC protocol complies with the IEEE Standard 

802.11 and accounts for the following extra requirements due 

to RF-MIMO technology:  

1. Maintenance of a database of active and available 

users (MAC address, number of antennas at the user, 

last optimum weights, etc.). 

2. Configuration of the transceiver’s MIMO front end, 

i.e. the antenna weight coefficients, before sending or 

receiving WLAN frames. 

3. Measurement of the channel parameters to determine 

the optimal weights for every WLAN connection.  

Using the SDL simulation results, a sophisticated 

hardware/software partitioning of the MAC layer design is 

carried out to eliminate performance bottlenecks. Finally, the 

functionalities of transmitting and receiving paths (Figure 2) 

are assigned to a MAC processor that consists of a general 

purpose processor (MAC software) and an additional 

hardware accelerator (MAC hardware). 

 
Figure 2. Hardware/software partitioning of the MAC layer 

In order to develop a universal RF-MIMO WLAN board 

independent of any host computer system, we have 

implemented the complete IEEE 802.11 compliant MAC 

protocol on the WLAN module. No parts of the MAC need to 

be integrated into the host driver, which greatly relaxes timing 

demands within the host computer’s operating system. The 

MAC layer is implemented as hardware/ software co-design 

for a 32-bit general purpose processor and the RF-MIMO 

specific hardware accelerator.  

The software part of the MAC layer generally covers all 

functionality which is not timing critical or which benefits 

from great flexibility. This includes maintaining the queue of 

frames to be transmitted, deferring frame transmissions to 

stations in power-save mode, frame fragmentation in the 

transmitter (if desired) as well as de-fragmentation and 

duplicate detection at the receiver. Also, all the MAC 

management procedures like scanning, joining, authentication, 

association, etc. have been programmed in software.  

The hardware accelerator functionality for the transmit 

direction includes a buffer for the next frame, the generation 

of cyclic redundancy checks (CRC) and an encrypt option. 

After having sent off the frame, the hardware accelerator waits 



for the acknowledgement and signals the success or failure 

(timeout) of the frame transfer to the software. In the receive 

direction, a CRC checker, a frame address filter, the gene-

ration of acknowledgements and CTS frames and a decryption 

module are integrated in hardware. Tracking channel state 

(busy/idle) including back-off for sending frames, 6 timers (32 

bit, timer tick 1 µs) and the system time (64 bit) are also 

provided as hardware modules. 

A simplified functional architecture diagram of the MAC 

processor is shown in Figure 3. The blocks shown in the left 

part represent the MAC functions executed in software on a 

32-bit General Purpose Processor (GPP). The right part 

sketches the functional scope of the hardware accelerator 

including an interface between the MAC and PHY layers 

called MIPP interface [15]. This parallel port interface is a 

combination of a 16-bit parallel bidirectional data bus and 

some control and handshake signals. 

 
Figure 3. Functional block diagram of the MAC processor 

The general purpose processor (Figure 4) is based on a 

MIPS32 4KEp core with instruction and data caches. All 

external interfaces including the MAC hardware accelerator 

are attached to the MIPS processor’s memory bus as memory-

mapped I/O components. The processor interfaces comprise a 

CardBus interface to a host PC, a serial RS232 interface for 

firmware download, an EJTAG interface with Test Access 

Port (TAP) acting as a hardware debugger, and general 

purpose I/Os (GPIO). 

 
Figure 4. Hardware architecture of the general purpose processor 

III. MAC HARDWARE ACCELERATOR 

Figure 5 represents architecture of hardware accelerator 

itself. The MAC interface consists of data bus, address buss 

and some control signals. There is set of instructions for the 

hardware accelerator implemented in MAC software. Access 

to specific modules is provided by the address decoder. The 

status register collects any relevant information about 

processes in other modules and thus allows communication 

with MAC software. The transmitter module provides 

functionality for the transmit direction and collision avoid-

ance. The receiver fulfils its natural functionality described 

earlier. The control component is a broker between MAC and 

PHY. 

All components accessing PHY via the MIPP interface are 

under the authority of an arbiter block. In order to increase the 

attainable system throughput, the authors have replaced the 

standard 8-bit EPP interface with a 16-bit interface. 

 
Figure 5. Block diagram of the hardware accelerator 

This section describes details of the most time critical 

MAC functions and their implementation in hardware. The 

functionality of the hardware accelerator is defined and 

verified by simulation within the MAC SDL model. Finally, 

the hardware accelerator is designed in VHDL and impleme-

nted on an FPGA. 

The transmitter tracks the channel state (idle or busy). It 

buffers the next frame and sends it after performing the back-

off procedure. In parallel, it generates the cyclic redundancy 

checks (CRC). For frames, for which an acknowledgement is 

expected, it sets a respective timeout and checks for successful 

delivery. The transmitter block also contains a unit managing 

the IEEE802.11 Network Allocation Vector (NAV) which is a 

mechanism for channel time reservation in the case of frame 

fragmentation or to solve the hidden node problem in 

conjunction with RTS/CTS frames.  

As a MIMO extension, the transmitter contains a table of 

antenna weight coefficients for distinct connections. It 

transfers the respective weight coefficient to the PHY layer 

before sending a frame. When a frame exchange sequence is 

finished, it sets some configurable default weight coefficients 

which should be good enough to receive a short RTS frame 

from any station. From the source address contained in the 

RTS frame, the optimal weight coefficients for that conne-

ction can be deduced and set in the PHY layer before recei-

ving the (possibly long) frame itself.  



The receiver comprises a CRC checker, a frame address 

filter, and the generation of acknowledgements and CTS 

frames. The control component, as a broker between MAC 

and PHY, sets and reads the PHY parameters, controls the 

timers for handshake of the MIPP interface, and stores the 

received data from PHY after any set/write command from 

MAC. 

The arbiter controls the MIPP handshake and the access to 

bi-directional data bus. A special priority mechanism has been 

developed to prevent undesired delays in the data flow and 

raise the data reliability. The priority mechanism is imple-

mented as a state machine driven by signals responsible for: 

• reset, 

• sending the frame data, 

• sending and receiving the control data, and 

• receiving the frame data. 

Transmitted data have the highest priority. Then the 

control data come. After writing to the MIPP interface, the 

arbiter automatically will read one word from PHY. This 

atomic set of instructions prevents from unexpected data loss. 

Reading of the frame data from PHY has the lowest priority. 

Of course, when the reset occurs the state machine will stop 

for given number of clock cycles and go to idle state. 

IV. BASEBAND ARCHITECTURE 

The architecture of the baseband processor is shown in 

Figure 6. It is composed of two main parts: the baseband 

processor implementing the IEEE Standard 802.11a and new 

MIMAX baseband modules implementing new functionalities 

required by the MIMAX RF front-end architecture.  

The new functionalities are grouped into two main 

modules: channel estimator and MIMAX RF weights (or 

beamforming) block. These MIMAX modules will be active 

only when a MIMAX training frame is detected by the Tx/Rx 

control block, which transfers the MIMAX signal field data to 

the MIMAX control block in order to start the procedure (i.e. 

the MIMAX channel estimation and beamforming). 

More precisely, the architecture of the baseband processor 

integrates the following modules: 

• MIMAX channel estimation: This module estimates the 

nTnR MIMO channel. The estimation is based on the FFT 

analysis of the nTnR training OFDM symbols of the 

received training frame. The nT and nR parameters denote 

the numbers of transmit and receive antennas. It works in 

the frequency domain taking the FFT signal provided by 

the IEEE802.11a processor as input and uses a least 

squares estimation method (Section V). 

• MIMAX RF weights: It takes the estimated MIMO 

channel as input and computes the optimal Tx/Rx 

beamforming weights using the Max-SNR algorithm 

described in Section VI. It is the most important block in 

terms of complexity and FPGA resources. 

• Frequency offset estimation: Due to the residual frequen-

cy error at the output of the conventional IEEE802.11a 

synchronizer, it might be necessary to include a freque-

ncy offset estimator working in parallel with the MIMAX 

channel estimation and RF weights modules (Section 

VII). To estimate the frequency offset, it is necessary to 

transmit an additional training symbol, resulting in a tra-

ining frame of nTnR+1 training symbols. 

• Weight correction: This module multiplies the weights by 

a unitary (e.g. rotation) matrix in order to compensate the 

effects of the residual frequency offset and specific 

Tx/Rx beamformers used during training. 
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Figure 6. Architecture of the MIMAX baseband processor 

• Weight delivery: It transfers the calculated optimal 

weights to the MAC processor (the weight updating). In 

addition, it allows applying (from the baseband) the 

predefined set of weights during training (the weight 

setting) and transferring (from MAC) the optimal or 

default weights during data transmission or reception (the 

weight uploading). 

• MIMAX control: This module controls the signal and 

data flow among all MIMAX blocks. It receives from the 

Tx/Rx control block information included in the training 

frame signal field (the number of Tx/Rx antennas, the 

number of training symbols), as well as some activation 

and synchronization signals.  

• RF control unit: This is a control interface between the 

baseband processor and analogue front-end (AFE). It is 

an integrated part of the baseband processor. 

All the MIMAX blocks are activated only when a training 

frame is received. Therefore they can be powered down while 

either processing conventional data frames or transmitting 

training frames. Only the MIMAX control block, the weight 

delivery block, and the RF control unit remain active at any 

time because it must transfer and set the weights from the 

MAC processor to the RF control unit. 



The complete baseband processor was initially designed 

using a Matlab model that uses floating-point operations to 

implement all processing stages. This floating-point model is 

useful to obtain an upper bound on the expected performance 

of the baseband processor, but cannot be used for FPGA 

implementation. A fixed-point Matlab model was then deve-

loped that allowed us to take design decisions with regard to 

the required precision (e.g., number of bits, number of 

iterations to be applied in the algorithms, etc.)  

V. CHANNEL ESTIMATION 

The MIMAX channel estimator uses the nTnR training 

OFDM symbols included in a training frame. Each training 

symbol is affected by a specific pair of Tx and Rx beam-

formers. A conventional least squares algorithm is used to 

estimate the nTnR equivalent SISO channels at the 52 active 

subcarriers. 

Some design decisions has been taken in order to simplify 

the implementation of the MIMAX channel estimator. First, 

the identity matrix has been selected for the Tx and Rx 

beamforming matrices used during the training stage. Second, 

the MIMAX training symbols will be the same as the 

IEEE802.11a long training symbols composed of 52 sub-

carriers modulated by BPSK values. 

As Figure 7 shows, the MIMAX channel estimator works 

in the frequency domain (i.e., after FFT) and could include an 

optional post filtering procedure to smooth the resulting 

frequency responses. From an implementation point of view, 

the LS estimator requires very few FPGA resources (just sign 

inverters and control logic), but the post filtering process 

could be expensive in terms of memory and MACs (while 

providing marginal BER improvement). For this reason, we 

have initially designed only the LS version of the MIMAX 

channel estimator block. 

 

Figure 7. MIMAX channel estimation 

VI. BEAMFORMING WEIGHTS CALCULATION AND DELIVERY 

We have focused on the implementation of the Max-SNR 

beamforming algorithm. This initial algorithm has been 

chosen because other criteria proposed in [6] use the Max-

SNR solution as a starting point.  

Furthermore, the choice of the Max-SNR algorithm for 

implementation simplifies the architecture of this block with-

out significant deterioration of the performance of the whole 

system. The proposed algorithm reduces to the maximization 

of the energy of the equivalent SISO channel or, in other 

words, to the maximization of the received SNR: 
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where the nTnR matrix Hk is the MIMO channel response at the 

k-th subcarrier, and wT and wR are the beamformers. These are 

complex vectors containing the RF weights to be applied by 

the AFE. 

The input signals of the MIMAX RF weights block come 

from the channel estimator whose outputs are the 52 

subcarrier samples for each one of the 16 (considering a 

MIMAX link with four antennas at the transmitter and 

receiver sides) equivalent SISO channels. Notice also that all 

operations are carried out with complex numbers. Specifically, 

the pseudocode for implementing this algorithm can be sum-

marized in the following steps: 

• Step A: Create 52 column vectors xk (dimensions 

16x1) where the i-th element of xk is the sample of the 

k-th subcarrier for the i-th equivalent SISO channel. 

Create 52 16x16 matrices Xk = xk*xk’. Add the 52 

matrices → Y = ΣXk 

• Step B: Calculate the dominant eigenvector z of the 

matrix Y using a fixed number of iterations of a power 

method. 

• Step C: Construct Z as the 4x4 matrix resized from 

the 16x1 vector z. The Max-SNR Rx beamformer wR 

is the left singular vector of Z, which is obtained 

applying again a fixed number of iterations of a power 

method. 

A schematic diagram of the Max-SNR implementation 

steps is shown in Figure 8. Step A is creation of the 52 column 

vectors xk where the i-th element of xk is the sample of the k-

th subcarrier for the i-th equivalent SISO channel. The size of 

xk is nTnR (16 in this case). It also creates the 52 rank-one 

matrices Xk=xkxk
H 

of 16x16 dimension and adds these 52 

matrices in a sum Y. Step B calculates the z dominant eigen-

vector of the sum matrix. The common way to calculate this 

dominant eigenvector is to perform the singular value decom-

position (SVD). However, the implementation of a complete 

SVD is not needed as it would use too many resources. The 

alternative solution is the power method which was finally 

implemented. This method is probably the simplest one for 

finding the largest eigenvector of a matrix. From the z vector 

of 16x1 dimension obtained by Step B, we construct the Z 

matrix of 4x4 dimension resized by columns. Step C 

calculates the SVD maximum eigenvector of Z in order to 

extract the first row of the U matrix. Again, it is not necessary 

to perform the complete SVD. A beamforming weight coeff-

icient can be calculated as the dominant eigenvector of the 

product ZZ
H 

where Z
H 

is the Hermitian of matrix Z. Thus Step 

C can be split in two substeps: the first one is a matrix 

multiplication and the second is a 4x4 power method. The 

resultant vector of this last power method is the wR 

beamforming weight under the Max-SNR criterion. 



 

Figure 8. Max-SNR beamforming weights calculation 

The first task of the weight delivery block consists of 

transferring the calculated optimal weights to the MAC 

processor after a training frame has been received. This is so-

called weight updating and it is a straightforward procedure 

(Figure 9). The beamforming weights are provided directly by 

the MIMAX RF weights block (or by the weight correction 

block if finally needed). 

The next task is to transfer the optimal or default weights 

from MAC to radio-frequency control unit (RFCU) during the 

transmission or reception of data frames. This procedure, 

called weight uploading, has been easily implemented by 

allowing a direct connection between the MAC processor and 

the RFCU as shown in Figure 10. Finally, the last task is to 

apply the predefined set of weights during transmission or 

reception of a training frame: this procedure is denoted as 

weight setting. 

 

Figure 9. Illustration of the weight updating 

 

Figure 10. Illustration of the weight delivery 

VII. FREQUENCY OFFSET ESTIMATION 

Any residual frequency offset that occurs after the 

synchronizer stage of the conventional IEEE802.11a receiver 

distorts the weight calculations during training. Therefore, it 

could be necessary to estimate and compensate that residual 

frequency offset by transmitting two training symbols using 

the same pair of Tx and Rx beamformers. Under assumption 

that the residual frequency offset is lower than the subcarrier 

spacing, the maximum likelihood frequency offset estimator is 

given by 
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where Nc is the number of active subcarriers; s1 and s2 are the 

OFDM training symbols used for frequency estimation; and ∆t 

means the time between symbols s1 and s2.  

VIII. IMPLEMENTATION 

In this section, the implementation process of the MAC 

and baseband processors is briefly described.  

The MAC hardware accelerator has been designed and 

thoroughly simulated in VHDL. Afterwards, the VHDL model 

has been implemented on a Virtex5 LX50 FPGA using the 

Xilinx ISE tool. It is attached to an ASIC that contains the 

MIPS processor. This FPGA/ASIC solution allows for easy 

debugging and bug fixing under real-time conditions. The 

ASIC silicon chip of 50 mm
2
 is fabricated in IHP’s 0.25 µm 

CMOS technology [16]. A standalone MAC module in a 

CardBus form factor with the PCMCIA interface to the host 

computer and the MIPP interface to PHY is shown in Figure 

11. It consumes the power of 1 W at the operating frequency 

of 80 MHz. 

 
Figure 11. MAC hardware platform 

For design and implementation of the baseband processor, 

we have used the Xilinx System Generator tool. This tool is a 

plug-in to the Matlab’s Simulink that enables designers to 



develop high-performance DSP systems to be implemented in 

FPGA technology. It can automatically translate designs into 

FPGA implementations that are faithful, synthesizable and 

efficient. 

The chosen FPGA is a Virtex5 LX330 which has 34560 

slices. Regarding the RF weights calculation block, some 

decisions have been taken to reach a good compromise 

between FPGA utilization and system performance: We used 

5 iterations for each power method and 8 bits interfaces 

between the blocks shown in Figure 8. The conventional 

IEEE802.11a baseband processor occupies around 45 %, 

whereas the new MIMAX baseband modules occupy 33 % of 

the available slices. The operating clock frequency of the 

processor is 80 MHz. 

The baseband modules are integrated in a dedicated 

baseband board featuring communication with the MAC 

processor and the analogue front-end. The baseband board 

incorporates, except a Virtex5 LX330 FPGA, all required 

interfaces, digital-to-analogue and analogue-to-digital conver-

ters for baseband signals, program flash, power and clock 

circuitries, and connectors. The photograph of the produced 

baseband board is shown in Figure 12. 

 

Figure 12. Baseband hardware platform 

IX. TEST SETUPS 

For testing the PHY and MAC components individually, we 

have developed two test setups. The first one is intended for 

PHY testing without MAC (MAC emulator). This will 

simplify many test operations like parameter settings since it 

is not required to “route” them through the complex MAC 

firmware. The setup consists of a data converter unit 

(MIPPToUSB in Figure 13) described in VHDL, some small 

USB hardware to directly connect the baseband board to the 

USB port of PC (bypassing MAC) and a terminal program on 

PC to send/receive commands directly to/from the baseband 

board. 

The terminal program has several functionalities that are 

based on receiving and sending 32-bit words. The format of 

the words being sent corresponds to the one defined for the 

MIPPToUSB interface. When starting the program, a menu 

appears containing the list of all available options. By 

choosing the adequate command, it is possible to set and read 

any PHY parameter. In addition, there is a possibility to send 

a single beacon or training frame or to send frames perio-

dically. Frame parameters, such as the length, data rate etc. 

can be selected. Received frames will be displayed and CRC 

checked. The program is written in C and supposed to be 

easily extendable for new features or adaptable to debugging 

problems. 

The second test setup (Link Emulator) allows verifying the 

functionality and evaluating the performance of the MAC 

implementation including host drivers with an emulated PHY 

link.  The setup provides communication between up to four 

MAC stations on two independent channels. The interface to 

the MAC board is generally the MIPP interface described 

above but, optionally, the MIPPToUSB component could be 

attached providing direct access to PC. The design has been 

implemented on a Virtex 1000E FPGA. 

 

Figure 13. Block diagram of the PHY link emulator 

The block diagram in Figure 13 shows the structure of the 

MIPP and USB parts of the Link Emulator. Additional 

connectors allow to monitor the frames transferred on both 

channels (AirData and AirFT signals) and some interface 

signals, e.g. for the USB port, on a logic analyzer for debug 

purposes.  

The MIPP station in the Link Emulator consists of two 

main components. The first one is BB_Top which represents 

the external interface of the baseband processor. It is 

connected to the MxPhy component, which is responsible for 

receiving and sending data to the air link. It replaces the 

MIMAX baseband processor.  

The USB station is the extension of a MIPP station with 

one extra component: MIPPToUSB. Besides that, there are no 

other changes in comparison to MIPP. Once the data frame is 

sent from one of the stations, the other stations recognize the 

incoming frame and receive it. Of course, it is possible to send 

frames from any of the stations, and it can be received by 

some or all stations. It is important to say that it is also 

possible to perform all relevant control and configuration 

commands for every station. 

The baseband board was used for the real-time tests of the 

MIMAX baseband processor in several setups. First, we have 

verified the correct reading, changing, and re-reading of a few 



configuration parameters. Then, using the USB terminal 

program a few beacon, data and training frames were 

transmitted and the generated I/Q signals at the DAC were 

analyzed to verify a correct transmission. Afterwards, some 

data frames were generated in Matlab and downloaded to the 

vector signal generator. The signals generated with the 

E4438C RF generator were used as I/Q inputs of the MIMAX 

baseband board and the correctness of the data was verified by 

the USB terminal program. 

The most important test aimed at checking the correct real-

time behavior of the developed MIMAX modules. For this test 

we generated training frames for a 4x4 MIMO system where 

each of the 16 training symbols was affected by a different 

SISO channel. These training frames were generated in 

Matlab and distorted by known MIMO channels. The training 

sequence was transmitted with the vector signal generator and 

the optimal weights calculated by the processor were provided 

to the USB terminal program. The beamforming weights 

obtained in simulation and those provided by the baseband 

board are compared in Figure 14. This test was repeated for 

different channel conditions: in all examples, a very good 

agreement between the weights obtained in simulation and 

those provided by the baseband board was observed. 

 

 Figure 14. RF weights calculated in simulation and in real time 

X. CONCLUSION 

In this paper, we have described the architecture, design, 

implementation, and test of the new MAC and baseband 

processors of the RF-MIMO WLAN. These processors fulfill 

all the requirements of the new analogue front-end that 

exploits the available spatial diversity of the IEEE802.11a 

communication scheme. 
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