
MAC and Baseband Hardware Platforms

for RF-MIMO WLAN

Z. Stamenković
*
, K. Tittelbach-Helmrich

*
, M. Krstić

*
, J. Ibanez

 #
, V. Elvira

 #
, and I. Santamaria

#

*
Systems Department, IHP GmbH

Im Technologiepark 25, 15236 Frankfurt (Oder), Germany

stamenkovic,tittelbach,krstic@ihp-microelectronics.com

#
Communications Engineering Department, University of Cantabria

Plaza de la Ciencia s/n, 39005 Santander, Spain

jesus,victorea,nacho@gtas.dicom.unican.es

Abstract — The paper describes hardware solutions for the IEEE

802.11 MAC (Medium Access Control) layer and IEEE 802.11a

digital baseband in an RF-MIMO WLAN transceiver that

performs the signal combining in the analogue domain.

Architecture and implementation details of the MAC processor

including a hardware accelerator and a 16-bit MAC-PHY

interface are presented. The proposed hardware solution is

tested and verified using a PHY link emulator. Architecture,

design, implementation, and test of a reconfigurable digital

baseband processor are described too. Description includes the

baseband algorithms (the main blocks being MIMO channel

estimation and Tx-Rx analog beamforming), their FPGA-based

implementation, baseband printed-circuit-board, and real-time

tests.

Index Terms — Baseband, MAC, MIMO, processor

I. INTRODUCTION

Current multiple-input multiple-output (MIMO) wireless

systems perform the combining and processing of the complex

antenna signal in the digital baseband. Since complete

transmitter and receiver are required for each path, the

resulting power consumption and costs of the conventional

MIMO approaches [1] limit applications for ubiquitous

networks. A low-power and low-cost RF-MIMO (MIMAX)

system for maximum reliability and performance (Figure 1)

compliant to the IEEE Standard 802.11a [2] has recently been

proposed [2], [4]. It significantly decreases the hardware

complexity by performing the adaptive weighting and

combining of the antenna signals in the RF front-end [5]-[8].

Multiple antennas are used to increase the transmission

reliability through spatial diversity. Redesigns have mostly

been done in the physical medium dependent (PMD) layer.

They demand for changes in the physical layer convergence

(PLC) and medium access control (MAC) protocols to

optimally exploit the benefits of the new RF front-end [9]-[14].
The PLCP pursues mapping MAC protocol data units in PMD

layer compliant frame formats. This task is common for all

communication schemes defined by the IEEE Standard 802.11.

Furthermore, the spatial diversity must be exploited, possible

impairments in the RF spatial processing have to be compen-

sated and the MIMO channel has to be estimated. Particularly,

these tasks are not needed in the IEEE802.11a scheme, which

is specified for SISO communication.

There are several differences between the MIMAX

approach and the full multiplexing MIMO approach. In

MIMAX, the same weight is used for all subcarriers in OFDM

transmissions whereas it is possible to weight each subcarrier

independently from the others in the full MIMO transmission

scheme.

Base
band

D
A

D
A

LO

cos

sin

I

Q

Vector
modulator

Vector
modulator

Vector
modulator

Vector
modulator

RF control unitEPP

EPP

SPI + control signals

PA

PA

PA

PA

low-pass

low-pass

LNA + VM

LNA + VM

LNA + VM

LNA + VM

A
D

A
D

LO

cos

sin

Base
band

RF control unit

Q

I

EPP

EPP

SPI + control signals

Band-pass

Band-pass

Band-pass

Band-pass

Low-pass

Low-pass

Figure 1: MIMAX transmitter and receiver

Integrating the signal processing in analogue circuits is

limited in the maximum achievable resolution because of

noise processes, process variations or nonlinear behavior of

the devices. Therefore, the signal processing has to be calibra-

ted by the baseband to adapt to the RF impairments. This

mainly considers the correlation between real and imaginary

parts of the vector modulator approach. Compensation is

achieved by a calibration performed by the RF control unit in

Figure 1. The characteristics of the vector modulator are

analyzed by this module and stored in an internal memory.

The weights provided by the baseband are then transferred

into corresponding values of the vector modulator using the

previously determined relationship and these new weights

control the vector modulator. Integrating additional calibration

options in the RF front-end and the RF control unit allow an

internal adaptation to impairments of the fabrication process

and a feedback to the baseband processing. These techniques

are based on look-up tables or neural network approaches. The

vector modulator is connected to the RF control unit by a

serial peripheral interface (SPI).

The RF-MIMO analogue front-end needs new algorithms

to exploit the available spatial diversity of the MIMO channel.

Several challenges are addressed in the physical layer

convergence protocol. First, the impairments of the RF front-

end are considered in the baseband processor. The algorithms

must operate reliably and robustly with respect to the limited

resolution of the RF front-end. Moreover, these algorithms

must determine the optimal complex weights to be applied at

each antenna (implemented by means of vector modulators).

The MIMO beamforming algorithms need channel state

information at both sides of the link, which is obtained by a

specific training procedure. Different optimization goals can

be used when determining the optimal Tx/Rx weights [6].

Because of its simplicity, the maximization of the signal-to-

noise-ratio (SNR) is the criterion chosen for implementation.

In order to test the modifications in the IEEE802.11 MAC

layer [2], a simulation model of the IEEE802.11 WLAN has

been developed in the Specification and Description Language

(SDL) [15]. It is composed of simplified models for the 5 GHz

OFDM physical layer (PHY), and a detailed model for the

medium access control (MAC) layer. The model is used to

verify the functional correctness of the MAC design and to

investigate the performance.

The MAC processor architecture is presented in Section II.

The hardware accelerator that performs the most time critical

MAC functions is described in Section III. The baseband

architecture is presented in Section IV. Functional modules of

the baseband processor are described in Section V, VI, and

VII. The implementation details are presented in Section VIII

and test details in Section IX. The conclusions are drawn in

Section X.

II. MAC ARCHITECTURE

The MAC protocol complies with the IEEE Standard

802.11 and accounts for the following extra requirements due

to RF-MIMO technology:

1. Maintenance of a database of active and available

users (MAC address, number of antennas at the user,

last optimum weights, etc.).

2. Configuration of the transceiver’s MIMO front end,

i.e. the antenna weight coefficients, before sending or

receiving WLAN frames.

3. Measurement of the channel parameters to determine

the optimal weights for every WLAN connection.

Using the SDL simulation results, a sophisticated

hardware/software partitioning of the MAC layer design is

carried out to eliminate performance bottlenecks. Finally, the

functionalities of transmitting and receiving paths (Figure 2)

are assigned to a MAC processor that consists of a general

purpose processor (MAC software) and an additional

hardware accelerator (MAC hardware).

Figure 2. Hardware/software partitioning of the MAC layer

In order to develop a universal RF-MIMO WLAN board

independent of any host computer system, we have

implemented the complete IEEE 802.11 compliant MAC

protocol on the WLAN module. No parts of the MAC need to

be integrated into the host driver, which greatly relaxes timing

demands within the host computer’s operating system. The

MAC layer is implemented as hardware/ software co-design

for a 32-bit general purpose processor and the RF-MIMO

specific hardware accelerator.

The software part of the MAC layer generally covers all

functionality which is not timing critical or which benefits

from great flexibility. This includes maintaining the queue of

frames to be transmitted, deferring frame transmissions to

stations in power-save mode, frame fragmentation in the

transmitter (if desired) as well as de-fragmentation and

duplicate detection at the receiver. Also, all the MAC

management procedures like scanning, joining, authentication,

association, etc. have been programmed in software.

The hardware accelerator functionality for the transmit

direction includes a buffer for the next frame, the generation

of cyclic redundancy checks (CRC) and an encrypt option.

After having sent off the frame, the hardware accelerator waits

for the acknowledgement and signals the success or failure

(timeout) of the frame transfer to the software. In the receive

direction, a CRC checker, a frame address filter, the gene-

ration of acknowledgements and CTS frames and a decryption

module are integrated in hardware. Tracking channel state

(busy/idle) including back-off for sending frames, 6 timers (32

bit, timer tick 1 µs) and the system time (64 bit) are also

provided as hardware modules.

A simplified functional architecture diagram of the MAC

processor is shown in Figure 3. The blocks shown in the left

part represent the MAC functions executed in software on a

32-bit General Purpose Processor (GPP). The right part

sketches the functional scope of the hardware accelerator

including an interface between the MAC and PHY layers

called MIPP interface [15]. This parallel port interface is a

combination of a 16-bit parallel bidirectional data bus and

some control and handshake signals.

Figure 3. Functional block diagram of the MAC processor

The general purpose processor (Figure 4) is based on a

MIPS32 4KEp core with instruction and data caches. All

external interfaces including the MAC hardware accelerator

are attached to the MIPS processor’s memory bus as memory-

mapped I/O components. The processor interfaces comprise a

CardBus interface to a host PC, a serial RS232 interface for

firmware download, an EJTAG interface with Test Access

Port (TAP) acting as a hardware debugger, and general

purpose I/Os (GPIO).

Figure 4. Hardware architecture of the general purpose processor

III. MAC HARDWARE ACCELERATOR

Figure 5 represents architecture of hardware accelerator

itself. The MAC interface consists of data bus, address buss

and some control signals. There is set of instructions for the

hardware accelerator implemented in MAC software. Access

to specific modules is provided by the address decoder. The

status register collects any relevant information about

processes in other modules and thus allows communication

with MAC software. The transmitter module provides

functionality for the transmit direction and collision avoid-

ance. The receiver fulfils its natural functionality described

earlier. The control component is a broker between MAC and

PHY.

All components accessing PHY via the MIPP interface are

under the authority of an arbiter block. In order to increase the

attainable system throughput, the authors have replaced the

standard 8-bit EPP interface with a 16-bit interface.

Figure 5. Block diagram of the hardware accelerator

This section describes details of the most time critical

MAC functions and their implementation in hardware. The

functionality of the hardware accelerator is defined and

verified by simulation within the MAC SDL model. Finally,

the hardware accelerator is designed in VHDL and impleme-

nted on an FPGA.

The transmitter tracks the channel state (idle or busy). It

buffers the next frame and sends it after performing the back-

off procedure. In parallel, it generates the cyclic redundancy

checks (CRC). For frames, for which an acknowledgement is

expected, it sets a respective timeout and checks for successful

delivery. The transmitter block also contains a unit managing

the IEEE802.11 Network Allocation Vector (NAV) which is a

mechanism for channel time reservation in the case of frame

fragmentation or to solve the hidden node problem in

conjunction with RTS/CTS frames.

As a MIMO extension, the transmitter contains a table of

antenna weight coefficients for distinct connections. It

transfers the respective weight coefficient to the PHY layer

before sending a frame. When a frame exchange sequence is

finished, it sets some configurable default weight coefficients

which should be good enough to receive a short RTS frame

from any station. From the source address contained in the

RTS frame, the optimal weight coefficients for that conne-

ction can be deduced and set in the PHY layer before recei-

ving the (possibly long) frame itself.

The receiver comprises a CRC checker, a frame address

filter, and the generation of acknowledgements and CTS

frames. The control component, as a broker between MAC

and PHY, sets and reads the PHY parameters, controls the

timers for handshake of the MIPP interface, and stores the

received data from PHY after any set/write command from

MAC.

The arbiter controls the MIPP handshake and the access to

bi-directional data bus. A special priority mechanism has been

developed to prevent undesired delays in the data flow and

raise the data reliability. The priority mechanism is imple-

mented as a state machine driven by signals responsible for:

• reset,

• sending the frame data,

• sending and receiving the control data, and

• receiving the frame data.

Transmitted data have the highest priority. Then the

control data come. After writing to the MIPP interface, the

arbiter automatically will read one word from PHY. This

atomic set of instructions prevents from unexpected data loss.

Reading of the frame data from PHY has the lowest priority.

Of course, when the reset occurs the state machine will stop

for given number of clock cycles and go to idle state.

IV. BASEBAND ARCHITECTURE

The architecture of the baseband processor is shown in

Figure 6. It is composed of two main parts: the baseband

processor implementing the IEEE Standard 802.11a and new

MIMAX baseband modules implementing new functionalities

required by the MIMAX RF front-end architecture.

The new functionalities are grouped into two main

modules: channel estimator and MIMAX RF weights (or

beamforming) block. These MIMAX modules will be active

only when a MIMAX training frame is detected by the Tx/Rx

control block, which transfers the MIMAX signal field data to

the MIMAX control block in order to start the procedure (i.e.

the MIMAX channel estimation and beamforming).

More precisely, the architecture of the baseband processor

integrates the following modules:

• MIMAX channel estimation: This module estimates the

nTnR MIMO channel. The estimation is based on the FFT

analysis of the nTnR training OFDM symbols of the

received training frame. The nT and nR parameters denote

the numbers of transmit and receive antennas. It works in

the frequency domain taking the FFT signal provided by

the IEEE802.11a processor as input and uses a least

squares estimation method (Section V).

• MIMAX RF weights: It takes the estimated MIMO

channel as input and computes the optimal Tx/Rx

beamforming weights using the Max-SNR algorithm

described in Section VI. It is the most important block in

terms of complexity and FPGA resources.

• Frequency offset estimation: Due to the residual frequen-

cy error at the output of the conventional IEEE802.11a

synchronizer, it might be necessary to include a freque-

ncy offset estimator working in parallel with the MIMAX

channel estimation and RF weights modules (Section

VII). To estimate the frequency offset, it is necessary to

transmit an additional training symbol, resulting in a tra-

ining frame of nTnR+1 training symbols.

• Weight correction: This module multiplies the weights by

a unitary (e.g. rotation) matrix in order to compensate the

effects of the residual frequency offset and specific

Tx/Rx beamformers used during training.

BB processor FPGA

Receiver

MIMAX Modules

Transmitter

MAC

In
p
u
t b
u
ffe
r

S
c
ra
m
b
le
r

S
ig
n
a
l fie

ld

g
e
n
e
ra
to
r

E
n
c
o
d
e
r

In
te
rle
a
v
e
r

M
a
p
p
e
r

P
ilo
t in

s
e
rtio

n

IF
F
T

G
u
a
rd
 in
s
e
rtio

n

P
re
a
m
b
le
 in
s
e
rtio

n

Pilot scrambler

D
A
C

P
a
ra
lle
l c
o
n
v
e
rte
r

D
e
s
c
ra
m
b
le
r

V
ite
rb
i d
e
c
o
d
e
r

D
e
in
te
rle
a
v
e
r

D
e
m
a
p
p
e
r

C
h
a
n
n
e
l e
s
tim

a
tio
n

F
F
T

TX/RX

control

A
D
C

I

Q

I

Q

D
ig
ita
l

A
G
C

S
y
n
c
h
ro
n
iz
e
r

A
D
C RSSI

Weight

delivering

M
IP
P

RF Control Unit

S
P
I1 AFE

S
P
I2

Frequency

offset

estimation

MIMAX

channel

estimation

MIMAX

RF weights

Weight

correction

MIMAX

control

AFE

Figure 6. Architecture of the MIMAX baseband processor

• Weight delivery: It transfers the calculated optimal

weights to the MAC processor (the weight updating). In

addition, it allows applying (from the baseband) the

predefined set of weights during training (the weight

setting) and transferring (from MAC) the optimal or

default weights during data transmission or reception (the

weight uploading).

• MIMAX control: This module controls the signal and

data flow among all MIMAX blocks. It receives from the

Tx/Rx control block information included in the training

frame signal field (the number of Tx/Rx antennas, the

number of training symbols), as well as some activation

and synchronization signals.

• RF control unit: This is a control interface between the

baseband processor and analogue front-end (AFE). It is

an integrated part of the baseband processor.

All the MIMAX blocks are activated only when a training

frame is received. Therefore they can be powered down while

either processing conventional data frames or transmitting

training frames. Only the MIMAX control block, the weight

delivery block, and the RF control unit remain active at any

time because it must transfer and set the weights from the

MAC processor to the RF control unit.

The complete baseband processor was initially designed

using a Matlab model that uses floating-point operations to

implement all processing stages. This floating-point model is

useful to obtain an upper bound on the expected performance

of the baseband processor, but cannot be used for FPGA

implementation. A fixed-point Matlab model was then deve-

loped that allowed us to take design decisions with regard to

the required precision (e.g., number of bits, number of

iterations to be applied in the algorithms, etc.)

V. CHANNEL ESTIMATION

The MIMAX channel estimator uses the nTnR training

OFDM symbols included in a training frame. Each training

symbol is affected by a specific pair of Tx and Rx beam-

formers. A conventional least squares algorithm is used to

estimate the nTnR equivalent SISO channels at the 52 active

subcarriers.

Some design decisions has been taken in order to simplify

the implementation of the MIMAX channel estimator. First,

the identity matrix has been selected for the Tx and Rx

beamforming matrices used during the training stage. Second,

the MIMAX training symbols will be the same as the

IEEE802.11a long training symbols composed of 52 sub-

carriers modulated by BPSK values.

As Figure 7 shows, the MIMAX channel estimator works

in the frequency domain (i.e., after FFT) and could include an

optional post filtering procedure to smooth the resulting

frequency responses. From an implementation point of view,

the LS estimator requires very few FPGA resources (just sign

inverters and control logic), but the post filtering process

could be expensive in terms of memory and MACs (while

providing marginal BER improvement). For this reason, we

have initially designed only the LS version of the MIMAX

channel estimator block.

Figure 7. MIMAX channel estimation

VI. BEAMFORMING WEIGHTS CALCULATION AND DELIVERY

We have focused on the implementation of the Max-SNR

beamforming algorithm. This initial algorithm has been

chosen because other criteria proposed in [6] use the Max-

SNR solution as a starting point.

Furthermore, the choice of the Max-SNR algorithm for

implementation simplifies the architecture of this block with-

out significant deterioration of the performance of the whole

system. The proposed algorithm reduces to the maximization

of the energy of the equivalent SISO channel or, in other

words, to the maximization of the received SNR:

2

, 1

arg max ,
c

T R

N
H

R k T

k =

=∑
w w

w H w s.t.
2 2

1
T R

= =w w ,

where the nTnR matrix Hk is the MIMO channel response at the

k-th subcarrier, and wT and wR are the beamformers. These are

complex vectors containing the RF weights to be applied by

the AFE.

The input signals of the MIMAX RF weights block come

from the channel estimator whose outputs are the 52

subcarrier samples for each one of the 16 (considering a

MIMAX link with four antennas at the transmitter and

receiver sides) equivalent SISO channels. Notice also that all

operations are carried out with complex numbers. Specifically,

the pseudocode for implementing this algorithm can be sum-

marized in the following steps:

• Step A: Create 52 column vectors xk (dimensions

16x1) where the i-th element of xk is the sample of the

k-th subcarrier for the i-th equivalent SISO channel.

Create 52 16x16 matrices Xk = xk*xk’. Add the 52

matrices → Y = ΣXk

• Step B: Calculate the dominant eigenvector z of the

matrix Y using a fixed number of iterations of a power

method.

• Step C: Construct Z as the 4x4 matrix resized from

the 16x1 vector z. The Max-SNR Rx beamformer wR

is the left singular vector of Z, which is obtained

applying again a fixed number of iterations of a power

method.

A schematic diagram of the Max-SNR implementation

steps is shown in Figure 8. Step A is creation of the 52 column

vectors xk where the i-th element of xk is the sample of the k-

th subcarrier for the i-th equivalent SISO channel. The size of

xk is nTnR (16 in this case). It also creates the 52 rank-one

matrices Xk=xkxk
H

of 16x16 dimension and adds these 52

matrices in a sum Y. Step B calculates the z dominant eigen-

vector of the sum matrix. The common way to calculate this

dominant eigenvector is to perform the singular value decom-

position (SVD). However, the implementation of a complete

SVD is not needed as it would use too many resources. The

alternative solution is the power method which was finally

implemented. This method is probably the simplest one for

finding the largest eigenvector of a matrix. From the z vector

of 16x1 dimension obtained by Step B, we construct the Z

matrix of 4x4 dimension resized by columns. Step C

calculates the SVD maximum eigenvector of Z in order to

extract the first row of the U matrix. Again, it is not necessary

to perform the complete SVD. A beamforming weight coeff-

icient can be calculated as the dominant eigenvector of the

product ZZ
H

where Z
H

is the Hermitian of matrix Z. Thus Step

C can be split in two substeps: the first one is a matrix

multiplication and the second is a 4x4 power method. The

resultant vector of this last power method is the wR

beamforming weight under the Max-SNR criterion.

Figure 8. Max-SNR beamforming weights calculation

The first task of the weight delivery block consists of

transferring the calculated optimal weights to the MAC

processor after a training frame has been received. This is so-

called weight updating and it is a straightforward procedure

(Figure 9). The beamforming weights are provided directly by

the MIMAX RF weights block (or by the weight correction

block if finally needed).

The next task is to transfer the optimal or default weights

from MAC to radio-frequency control unit (RFCU) during the

transmission or reception of data frames. This procedure,

called weight uploading, has been easily implemented by

allowing a direct connection between the MAC processor and

the RFCU as shown in Figure 10. Finally, the last task is to

apply the predefined set of weights during transmission or

reception of a training frame: this procedure is denoted as

weight setting.

Figure 9. Illustration of the weight updating

Figure 10. Illustration of the weight delivery

VII. FREQUENCY OFFSET ESTIMATION

Any residual frequency offset that occurs after the

synchronizer stage of the conventional IEEE802.11a receiver

distorts the weight calculations during training. Therefore, it

could be necessary to estimate and compensate that residual

frequency offset by transmitting two training symbols using

the same pair of Tx and Rx beamformers. Under assumption

that the residual frequency offset is lower than the subcarrier

spacing, the maximum likelihood frequency offset estimator is

given by

∆
=∆ ∑

=

Nc

k

ML ksks
t

f
1

*

21][][angle
2

1ˆ
π

,

where Nc is the number of active subcarriers; s1 and s2 are the

OFDM training symbols used for frequency estimation; and ∆t

means the time between symbols s1 and s2.

VIII. IMPLEMENTATION

In this section, the implementation process of the MAC

and baseband processors is briefly described.

The MAC hardware accelerator has been designed and

thoroughly simulated in VHDL. Afterwards, the VHDL model

has been implemented on a Virtex5 LX50 FPGA using the

Xilinx ISE tool. It is attached to an ASIC that contains the

MIPS processor. This FPGA/ASIC solution allows for easy

debugging and bug fixing under real-time conditions. The

ASIC silicon chip of 50 mm
2
 is fabricated in IHP’s 0.25 µm

CMOS technology [16]. A standalone MAC module in a

CardBus form factor with the PCMCIA interface to the host

computer and the MIPP interface to PHY is shown in Figure

11. It consumes the power of 1 W at the operating frequency

of 80 MHz.

Figure 11. MAC hardware platform

For design and implementation of the baseband processor,

we have used the Xilinx System Generator tool. This tool is a

plug-in to the Matlab’s Simulink that enables designers to

develop high-performance DSP systems to be implemented in

FPGA technology. It can automatically translate designs into

FPGA implementations that are faithful, synthesizable and

efficient.

The chosen FPGA is a Virtex5 LX330 which has 34560

slices. Regarding the RF weights calculation block, some

decisions have been taken to reach a good compromise

between FPGA utilization and system performance: We used

5 iterations for each power method and 8 bits interfaces

between the blocks shown in Figure 8. The conventional

IEEE802.11a baseband processor occupies around 45 %,

whereas the new MIMAX baseband modules occupy 33 % of

the available slices. The operating clock frequency of the

processor is 80 MHz.

The baseband modules are integrated in a dedicated

baseband board featuring communication with the MAC

processor and the analogue front-end. The baseband board

incorporates, except a Virtex5 LX330 FPGA, all required

interfaces, digital-to-analogue and analogue-to-digital conver-

ters for baseband signals, program flash, power and clock

circuitries, and connectors. The photograph of the produced

baseband board is shown in Figure 12.

Figure 12. Baseband hardware platform

IX. TEST SETUPS

For testing the PHY and MAC components individually, we

have developed two test setups. The first one is intended for

PHY testing without MAC (MAC emulator). This will

simplify many test operations like parameter settings since it

is not required to “route” them through the complex MAC

firmware. The setup consists of a data converter unit

(MIPPToUSB in Figure 13) described in VHDL, some small

USB hardware to directly connect the baseband board to the

USB port of PC (bypassing MAC) and a terminal program on

PC to send/receive commands directly to/from the baseband

board.

The terminal program has several functionalities that are

based on receiving and sending 32-bit words. The format of

the words being sent corresponds to the one defined for the

MIPPToUSB interface. When starting the program, a menu

appears containing the list of all available options. By

choosing the adequate command, it is possible to set and read

any PHY parameter. In addition, there is a possibility to send

a single beacon or training frame or to send frames perio-

dically. Frame parameters, such as the length, data rate etc.

can be selected. Received frames will be displayed and CRC

checked. The program is written in C and supposed to be

easily extendable for new features or adaptable to debugging

problems.

The second test setup (Link Emulator) allows verifying the

functionality and evaluating the performance of the MAC

implementation including host drivers with an emulated PHY

link. The setup provides communication between up to four

MAC stations on two independent channels. The interface to

the MAC board is generally the MIPP interface described

above but, optionally, the MIPPToUSB component could be

attached providing direct access to PC. The design has been

implemented on a Virtex 1000E FPGA.

Figure 13. Block diagram of the PHY link emulator

The block diagram in Figure 13 shows the structure of the

MIPP and USB parts of the Link Emulator. Additional

connectors allow to monitor the frames transferred on both

channels (AirData and AirFT signals) and some interface

signals, e.g. for the USB port, on a logic analyzer for debug

purposes.

The MIPP station in the Link Emulator consists of two

main components. The first one is BB_Top which represents

the external interface of the baseband processor. It is

connected to the MxPhy component, which is responsible for

receiving and sending data to the air link. It replaces the

MIMAX baseband processor.

The USB station is the extension of a MIPP station with

one extra component: MIPPToUSB. Besides that, there are no

other changes in comparison to MIPP. Once the data frame is

sent from one of the stations, the other stations recognize the

incoming frame and receive it. Of course, it is possible to send

frames from any of the stations, and it can be received by

some or all stations. It is important to say that it is also

possible to perform all relevant control and configuration

commands for every station.

The baseband board was used for the real-time tests of the

MIMAX baseband processor in several setups. First, we have

verified the correct reading, changing, and re-reading of a few

configuration parameters. Then, using the USB terminal

program a few beacon, data and training frames were

transmitted and the generated I/Q signals at the DAC were

analyzed to verify a correct transmission. Afterwards, some

data frames were generated in Matlab and downloaded to the

vector signal generator. The signals generated with the

E4438C RF generator were used as I/Q inputs of the MIMAX

baseband board and the correctness of the data was verified by

the USB terminal program.

The most important test aimed at checking the correct real-

time behavior of the developed MIMAX modules. For this test

we generated training frames for a 4x4 MIMO system where

each of the 16 training symbols was affected by a different

SISO channel. These training frames were generated in

Matlab and distorted by known MIMO channels. The training

sequence was transmitted with the vector signal generator and

the optimal weights calculated by the processor were provided

to the USB terminal program. The beamforming weights

obtained in simulation and those provided by the baseband

board are compared in Figure 14. This test was repeated for

different channel conditions: in all examples, a very good

agreement between the weights obtained in simulation and

those provided by the baseband board was observed.

 Figure 14. RF weights calculated in simulation and in real time

X. CONCLUSION

In this paper, we have described the architecture, design,

implementation, and test of the new MAC and baseband

processors of the RF-MIMO WLAN. These processors fulfill

all the requirements of the new analogue front-end that

exploits the available spatial diversity of the IEEE802.11a

communication scheme.

ACKNOWLEDGEMENT

The research leading to these results has received funding

from the European Community’s Seventh Framework Pro-

gramme FP7 (2007 - 2013) under the grant agreement no.

213952 also referred as MIMAX.

REFERENCES

[1] H. Boelcskei, D. Gesbert, C. B. Papadias, and A.-J. van der Veen,

Space-Time Wireless Systems: From Array Processing to MIMO

Communications, Cambridge University Press, Cambridge 2006.

[2] IEEE Standard for Information technology - Local and metropolitan

area networks - Specific requirements: Wireless LAN MAC and PHY

Specifications, IEEE Std 802.11, IEEE Computer Society, 2007.

[3] MIMAX: Advanced MIMO systems for maximum reliability and

performance, http://www.ict-mimax.eu, 2008.

[4] Z. Stamenkovic, K. Tittelbach-Helmrich, M. Krstic, J. Perez, J. Via, and

J. Ibanez, “Architecture of an Analog Combining MIMO System

Compliant to IEEE802.11a,” Proc. ICT-MobileSummit 2009, Santander

(Spain) 2009, (pp. 1-8)

[5] F. Ellinger and W. Baechtold, “Adaptive Antenna Receiver Module for

WLAN at C-Band with Low Power Consumption,” IEEE Microwave

and Wireless Components Letters, vol. 12, pp. 348-350, 2002.

[6] J. Via, I. Santamaria, V. Elvira and R. Eickhoff, “A General Criterion

for Analog Tx-Rx Beamforming under OFDM Transmissions,” IEEE

Trans. on Signal Processing, vol. 58, pp. 2155-2167, 2010.

[7] R. Eickhoff, R. Kraemer, I. Santamaria, and L. Gonzalez, “Developing

Energy-Efficient MIMO Radios,” IEEE Vehicular Technology

Magazine, vol. 4, pp. 34-41, 2009.

[8] A. Jahanian, F. Tzeng, and P. Heydari, “Code Modulated Path Sharing

Multi-Antenna Receivers: Theory and Design,” IEEE Trans. Wireless

Communications, vol. 8, pp. 2193-2201, 2009.

[9] D.J. Dechene, K.A. Meerja, A. Shami, and S. Primak, “A Novel MIMO-

Aware Distributed Media Access Control Scheme for IEEE 802.11

Wireless Local Area Networks,” Proc. 32nd IEEE Conference on Local

Computer Networks, Dublin (Ireland) 2007, (pp. 125-132)

[10] J. Mirkovic, G. Orfanos, H.-J. Reumerman, and D. Denteneer, “A MAC

Protocol for MIMO Based IEEE 802.11 Wireless Local Area

Networks,” Proc. IEEE Wireless Communications and Networking

Conference, Hong Kong (China) 2007, (pp. 2131-2136)

[11] A. Jahanian, F. Tzeng, and P. Heydari, “Code-Modulated Path-Sharing

Multi-Antenna Receivers: Theory and Analysis,” IEEE Trans. Wireless

Communications, vol. 8, pp. 2193-2201, 2009.

[12] L. Yuxia and V.W.S. Wong, “Cross-Layer Design of MIMO-Enabled

WLANs with Network Utility Maximization,” IEEE Trans. Vehicular

Technology, vol. 58, pp. 2443-2456, 2009.

[13] A. M. Ashtaiwi, MIMO-Aware Medium Access Control in IEEE 802.11

Networks, Queen’s University, Ph.D. Thesis, Kingston 2009.

[14] H.-P. Loeb and C. Sauer, “A Modular Reference Application for IEEE

802.11n Wireless LAN MACs,” Proc. IEEE International Conference

on Communications, Dresden (Germany) 2009, (pp. 1-5)

[15] Z. Stamenkovic, E. Miletic, M. Obrknezev, and K. Tittelbach-Helmrich,

“MAC Protocol Implementation in RF-MIMO WLAN,” Proc. 16th

IEEE International Conference on Electronics, Circuits, and Systems,

Yasmine Hammamet (Tunisia) 2009, (pp. 303-306)

[16] Innovations for High Performance microelectronics, http://www.ihp-

microelectronics.com

