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ABSTRACT
In this paper the structural risk minimization (SRM) prin-
ciple is applied to derive an iterative algorithm for blind
identification of sparse single-input multiple-output (SIMO)
channels. The key idea consists of reformulating this prob-
lem as a support vector regression (SVR) problem in which
the channel coefficients are the Lagrange multipliers of the
dual problem. By employing the Vapnik’s ε-insensitivity
loss function, the solution can be expanded in terms of a
reduced number of Lagrange multipliers (i.e., the nonzero
filter coefficients) and then a sparse solution is found. This
method can be also used for non-sparse channels when the
channel order has been highly overestimated. In this situ-
ation, the SRM principle pushes zero to the small leading
and trailing terms of the impulse response. Some simula-
tion results are provided to demonstrate the performance of
the method.

1. INTRODUCTION

Blind channel identification, which consists of identifying
the channel from its output without using a training sequence,
is a widely studied problem with many signal processing
applications: channel equalization, sonar, seismic deconvo-
lution, etc. Single-input multiple-output (SIMO) channels
appear either when the signal is oversampled at the receiver
or from the use of an array of antennas. The transmission
channels in some applications such as high-definition tele-
vision (HDTV) [1], hilly terrain delay profile or underwater
acoustic channels [2], are sparse: that is, only a small num-
ber of their coefficients are non-zero.

Since the work by Tong, Xu and Kailath [3], it is well
known that SOS are sufficient for blind identification when
the input signal is informative enough and the channels do
not share any common roots. Widely used SOS-based meth-
ods are the subspace approach (SS), the least squares (LS)
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technique and the linear prediction (LP) methods. How-
ever, a common drawback of SS and LS techniques is their
poor performance when the channel order is overestimated.
Some robust techniques to alleviate this problem have been
recently proposed [4, 5]. Although these methods offer in-
creased robustness against channel order overestimation, they
still fail to identify sparse channels.

The structural risk minimization (SRM) principle is a
criterion that establishes a trade-off between the complexity
of the solution and the closeness to the data. In particular,
the support vector machine (SVM) technique, which can be
derived from the SRM principle, typically provides sparse
solutions [6]. Specifically, the SVM solution can be ex-
panded in terms of a reduced set of relevant input data sam-
ples (the so-called support vectors) [7]. Recently, the SVM
approach was applied to blind identification of non-sparse
SIMO channels [8]. This method can be viewed as a reg-
ularized version of the LS technique proposed in [9], but it
does not exploit explicitly the sparsity provided by the SVM
solution.

In this paper we present a new SVM-based blind iden-
tification algorithm for sparse SIMO channels. In the pro-
posed formulation, the channel coefficients play the role of
the Lagrange multipliers. By using the Vapnik’s ε-insensitive
loss function only those Lagrange multipliers corresponding
to support vectors are nonzero and therefore a sparse solu-
tion is obtained. The ε parameter allows us to control the
sparseness of the final solution. Finally, the proposed al-
gorithm can be also used as a robust method to combat the
channel overmodeling problem, even if the channel is not
sparse.

2. BLIND SPARSE SIMO CHANNEL
IDENTIFICATION

Without loss of generality, in this work we focus on the
one-input, two-output SIMO system shown in Fig.1, where
the FIR channels (h1,h2) are known to be sparse in a pri-



Fig. 1. Single input/two output channels

ori. In blind channel identification, we need to identify the
unknown channel responses, h1,h2, from the observed re-
ceive signals only. If the order of the channels is M , then
the received signal xi from the ith channel is

xi(n) =
M∑

k=0

hi(k)s(n− k) + ni(n), i = 1, 2 (1)

When we cast xi(n), hi(k), s(n), ni(n) into vectors
xi, hi, s and ni, (1) becomes

xi = hi ∗ s + ni, i = 1, 2 (2)

where ∗ denotes convolution. As shown in Fig.1, using the
channel outputs (x1,x2) and the channel estimates (ĥ1, ĥ2),
one can form the following vectors.

y1 = x1 ∗ ĥ2,

y2 = x2 ∗ ĥ1 .

In the absence of noise, and if the nontrivial channel esti-
mates are exact, then we have y1 = y2. This is because

y1 = h2 ∗ x1 = h2 ∗ (h1 ∗ s)

= h1 ∗ (h2 ∗ s) = h1 ∗ x2 = y2 .

This relationship can be re-expressed in a matrix-vector form
as:

y1 = X1ĥ2 = X2ĥ1 = y2 , (3)

where Xi’s are Toeplitz matrix defined as

Xi =




xi(M) · · · xi(0)
xi(M + 1) · · · xi(1)

...
. . .

...
xi(M + N − 1) · · · xi(N − 1)


 , (4)

or, equivalently,

X ĥ = 0 , (5)

where

X =
[

X2 −X1

]
, ĥ =

[
ĥ1

ĥ2

]
.

If we solve (5) by minimizing ĥT XT Xĥ with the constraint
‖ ĥ ‖= 1, then ŷ is the LS solution which is the eigenvector
corresponding to the minimum eigenvalue of XT X. Based
on (5), we will next develop a blind identification method
for sparse SIMO channels using SVMs.

2.1. Support Vector Regression Approach

In [8] the authors propose a blind iterative procedure in
which, at each iteration, a desired output is constructed as
yd = y1+y2

2 , and then a pair of uncoupled SVM-based re-
gression problems is solved. As it was shown in [8], this
procedure offers an increased robustness in comparison to
[9]; however, it does not take full advantage of the SVM
framework to get a sparse solution.

To fully exploit the sparse approximation characteristics
provided by SVMs, we first propose the following regres-
sion problems

X1ĥ2 ' yd, (6)

X2ĥ1 ' yd, (7)

and premultiplying Eqs. (6) and (7) by XT
1 and XT

2 ,

XT
1 X1ĥ2︸ ︷︷ ︸

w1

= XT
1 yd︸ ︷︷ ︸
ỹ1

,

XT
2 X2ĥ1︸ ︷︷ ︸

w2

= XT
2 yd︸ ︷︷ ︸
ỹ2

,

or, more compactly,

XT
1 w1 = ỹ1, (8)

XT
2 w2 = ỹ2. (9)

These are two new regression problems for which the input
matrix is now the transposed input matrix XT

i , and the new
output vector is XT

i yd. Moreover, the new regressor wi ad-
mits an expansion in terms of the filter coefficients, which,
in this way, become the Lagrange multipliers of the SVM
formulation.

The proposed SVR method minimizes the following cost
function

J(wi) = C

M∑
n=0

(ξn + ξ∗n) +
1
2
‖ wi ‖2 (10)

subject to

ỹi(n)−wT
i xi(n) ≤ ε + ξn, n = 0, . . . , M

wT
i xi(n)− ỹi(n) ≤ ε + ξ∗n, n = 0, . . . , M

ξn ≥ 0, n = 0, . . . , M

ξ∗n ≥ 0, n = 0, . . . , M



for i = 1, 2, and where xi(n) denotes the n-th column of
Xi.

In (10) the regularization parameter C controls the trade-
off between the training error and the complexity of the
solution. On the other hand, ε is a parameter that deter-
mines the precision of the regression and therefore controls
the sparseness of the final solution. Then, the solution is a
linear combination of input data

wi =
M∑

n=0

(α∗i (n)− αi(n))xi(n) (11)

for i = 1, 2. In (11) only a small number of Lagrange mul-
tipliers (α∗i (n)− αi(n)), which corresponds to the channel
coefficients hi(0), hi(1), . . . , hi(M), will be nonzero. The
dual problem (10) is a quadratic programming (QP) prob-
lem, which can be efficiently solved [10].

To summarize, the proposed SVM-based method to blindly
identify a sparse SIMO channel can be described as follows:

Algorithm 1 Summary of the SVM based blind sparse
channel identification

Choose initial value for C, ε and ĥ1, ĥ2

repeat
Calculate y1 = X1ĥ2 and y2 = X2ĥ1.
Calculate yd = y1+y2

2

Obtain (8),(9) and solve (10) for i = 1, 2
Obtain sparse channel coefficients hi for i=1,2 from
(11)

until Convergence

3. SIMULATION RESULTS

Several simulations have been conducted to test the perfor-
mance of the proposed algorithm by varying different ob-
servation parameters such as signal-to-noise ratio (SNR),
sample size, and overestimated channel order. The algo-
rithm performance is measured in terms of normalized mean
squared error (NMSE) defined in [5]

NMSE =
1

‖ h ‖2 min
α,k≥0

∥∥∥∥∥∥
αĥ−




0k,1

h
0M ′−M−k




∥∥∥∥∥∥

2

(12)

where M
′ ≥ M is the estimated channel order.

In the first simulation we consider a sparse SIMO sys-
tem which consists of a single transmit antenna and two re-
ceive antennas. The two sparse channels are respectively,
H1(z) = 1 − 0.62z−5 − 0.33z−14 + 0.08z−24, H2(z) =
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Fig. 2. Zeros of subchannel h1,h2
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Fig. 3. Comparison with other methods when the channel
order is exact (solid) or overestimated by 10 taps (dashed)
in a sparse SIMO simulation

0.91 + 0.56z−11 − 0.28z−17. Input of this system is N =
100, i.i.d. BPSK signals. In Fig.2, we plot the zeros of
h1,h2. Note that there are pairs of close zeros which im-
pair subspace based method because of a badly conditioned
input correlation matrix. Fig.3 is the result of blind sparse
SIMO channel identification with varying SNR for exact
channel order estimate and overestimated channel order. We
can see that the proposed blind method is superior to other
methods particulary when the channel is overestimated.

Fig.5 shows the robustness to order overestimation when
SNR is 20dB. It is evident that the proposed method outper-
forms other methods in highly overestimated channel order
estimate. 50 trials of the proposed algorithm and Regalia
method is shown in Fig.6 when the order overestimated by
10 taps and SNR is 30dB. Proposed method performs much
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Fig. 4. Comparison with other methods when the channel order
is exact (solid) or overestimated by 20 taps (dashed) in a raised-
cosine pulse with multipath simulation

better than Regalia method in identifying the coefficients of
zero taps or very small taps.

In the second example we consider a raised-cosine pulse
limited in 4T (T is the symbol period) with roll-off factor 0.1
and the multipath channel h(t) = δ(t)− 0.7δ(t− T

4 ). The
input signal is also i.i.d. BPSK signal and the received data
were sampled at twice the symbol rate to obtain a SIMO
system. Fig.4 shows the performance at different SNRs.
Note that LS method and Regalia methods perform bet-
ter than the proposed method at high SNR when the chan-
nel order is known a priori. However with overestimated
channel order, proposed method outperforms other meth-
ods. 50 trials of the proposed algorithm and Regalia method
is shown in Fig.7 when the order overestimated by 20 taps
and SNR=20dB. The computational cost to be paid for this
robustness to channel order overestimation is solving a QP
problem of size N at each iteration which is much higher
than LS based method and Regalia method. In its current
implementation of the proposed method, its application is
limited to the use of small dataset (N ≤ 100 symbols).

4. CONCLUSIONS

In this paper we have developed a new Support Vector Re-
gression based algorithm for blind identification of sparse
SIMO channels. Sparsity property of SVM method was ex-
ploited to identify sparse channel coefficients and the good
generalization performance of SVM leads a robust solution
when the channel order is overestimated. Due to the high
computational cost of the proposed iterative algorithm, the
use of this SVM based algorithm is advisable in applica-
tions when the data samples are small (N ≤ 100 symbols)
and the way to reduce this computational cost should be in-

vestigated.
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Fig. 5. Comparison of robustness when the channel order is exact or overestimated by 10 taps
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Fig. 6. 50 trials of the SVM based method and Regalia method when overestimated by 10 taps and SNR=30dB
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Fig. 7. 50 trials of the SVM based method and Regalia method when overestimated by 20 taps and SNR=20dB


