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Abstract— In this letter we derive a tight analytical approxi-
mation for the outage capacity of orthogonal space-time block
codes (STBC’s). The proposed expression is a simple closed-form
function of the power covariance matrix of the channel. In the
case of uncorrelated channels, the expression only depends on
the variances of the channel power gains that can be expressed
analytically for the most common fading distributions: Rayleigh,
Rice, Nakagami, Weibull, etc. Furthermore, the approximation
encompasses different fading distributions and gains between
different pairs of transmit and receive antennas, which can ocurr
in distributed STBC networks.

Index Terms— MIMO systems, channel capacity, space-time
block codes (STBC’s), fading channels.

I. INTRODUCTION

IT IS WELL KNOWN that space-time block cod-
ing (STBC) transforms the multiple-input-multiple-output

(MIMO) channel into a number of independent scalar chan-
nels providing diversity gain with very simple encoding and
decoding [1], [2]. On the other hand, the achieved data rate is
well below the theoretic capacity limit of the MIMO channel
because the capacity of the effective scalar channel is lower
than the capacity of the MIMO matrix channel [3]. In [4] a
closed-form expression of information outage probability was
derived for MIMO-OSTBC Nakagami-m fading channels [4].
In this letter we derive a general, simple and tight closed-
form approximation for the outage capacity of MIMO-OSTBC
systems that is valid for arbitrary channel fading distribu-
tions. The approximation also encompasses different fading
distributions and gains between different pairs of transmit and
receive antennas, which can be useful in the performance
analysis of distributed STBC networks. The rest of the letter
is organized as follows. In section II we derive the closed-
form approximation for the outage capacity. In section III
we show how to use the derived expression in different
fading channels. Simulation results presented in section IV
demostrate the accuracy of the approximation. Finally, some
concluding remarks are given in section V.

II. OUTAGE CAPACITY APPROXIMATION

We assume a frequency-flat fading channel, which is known
at the receiver but unknown at the transmitter. We also assume
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i.i.d. AWGN noise at the receive antennas. When OSTBC is
used, the MIMO channel transforms into an effective scalar
complex AWGN channel with effective signal-to-noise-ratio
(SNR) at detection given by [5],[3], [6], [7]

γ =
Es α ‖H‖2

F

σ2nT R
= ρ

‖H‖2
F

nT R
, (1)

where Es is the total transmitted energy on the nT transmit
antennas per symbol time, α is the average path-loss between
the transmitter and the receiver, R is the code rate, σ2 is
the noise power and ‖H‖2

F is the squared Frobenius norm
of the nR × nT MIMO channel matrix H. In (1) we assume
that H is normalized so, E

[
‖H‖2

F

]
= nRnT , being E [·] the

expectation operator. Notice that ρ = Es α/σ2 is the average
SNR at the receiver branches before decoding. The capacity
(in bps/Hz) will be

C = R log2 (1 + γ) . (2)

Expanding (2) in Taylor series about the expected value of
the effective SNR (µγ)

C (γ) = R log2 (1 + µγ)

+R log2 (e)
∞∑

m=1

(−1)m−1

m

(γ − µγ)m

(1 + µγ)m , (3)

where e is the Neper’s number. Applying the expectation
operator to (3), the second-order approximation for the ergodic
capacity will be

E [C] = µC ≈ R log2 (1 + µγ) − R σ2
γ log2 e

2 (1 + µγ)2
. (4)

Similarly, expanding C2 (γ) in Taylor series about µγ and
applying the expectation operator, the second moment of the
capacity can be approximated as follows

E
[
C2

] ≈ R2 (log2 (1 + µγ))2

+
R2σ2

γ log2 e

(1 + µγ)2
log2

(
e

1 + µγ

)
. (5)

From (4) and (5), the variance of the capacity will be

σ2
C ≈ R2 (log2 e)2

[
σ2

γ

(1 + µγ)2
− σ4

γ

4 (1 + µγ)4

]
. (6)
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Considering (1) and the channel normalization, the mean
and variance of the capacity can be approximated as follows

µC ≈ R log2

(
1 +

ρnR

R

)
− R log2 (e) ρ2 var ‖H‖2

F

2 n2
T (R + ρnR)2

, (7)

σ2
C ≈

(
R ρ log2 e

nT (R + ρnR)

)2

var ‖H‖2
F

×
(

1 − ρ2 var ‖H‖2
F

n2
T (R + ρnR)2

)
. (8)

From (7) and (8) we can obtain a gaussian approximation
of the cumulative distribution function of the capacity

FC(c) ≈ 1 − 1
2

erfc

(
c − µC√

2σC

)
, (9)

where erfc(x) is the complementary error function. The q%-
outage capacity (Cq) is defined as the transmission rate that
is guaranteed for 1− q/100 of the channel realizations. Then,
from (9), the q% outage capacity can be approximated as
follows

Cq ≈ µC + σC

√
2 erfc−1

(
2 − q

50

)
. (10)

The expressions (7), (8) and (10) reveal that when the
number of antennas increases, the capacity variance decreases
and the ergodic and outage capacity become less dependent
on the channel fading statistics and on the number of transmit
antennas.

III. FADING CHANNEL DISTRIBUTIONS

Equation (10), combined with (7) and (8), provides us
with a closed-form approximation of the outage capacity as a
function of the variance of ‖H‖2

F . This can be expressed as
follows

var ‖H‖2
F =

nR∑
i=1

nT∑
j=1

nR∑
k=1

nT∑
s=1

E
[
|hij |2 |hks|2

]

−E
[
|hij |2

]
E

[
|hks|2

]
, (11)

where the hij are the entries of the MIMO channel matrix H.
Notice that the variance of ‖H‖2

F is the sum of the entries of
the power covariance matrix of the channel [8], [9]. Therefore,
the power covariance matrix is the only channel statistic
required for the capacity estimation. Much of the experimental
research in antenna diversity has involved the measurements of
power covariance matrices. Assuming uncorrelated channels
(11) reduces to

var ‖H‖2
F =

nR∑
i=1

nT∑
j=1

var |hij |2 . (12)

Therefore, for uncorrelated channels we only need the
variances of the power gains to estimate the outage capacity.
These variances can be obtained analytically for most of the
fading distributions. Assuming that the Ωij are the mean

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10

SNR (dB)

5 
%

 −
 O

ut
ag

e 
ca

pa
ci

ty
 (b

ps
/H

z)

2 x 2, R = 1, K = 1 
 
2 x 2, R = 1, K = 10
 
2 x 4, R = 1, K = 1 
 
2 x 4, R = 1, K = 10
 
4 x 1, R = 3/4, K = 1 
 
4 x 1, R = 3/4, K = 10
 

Fig. 1. 5%-outage capacity as a function of the average SNR at the receiver
(before decoding) for some uncorrelated MIMO ricean fading channels with
different number of antennas, code rates (R) and ricean-K factors (K).

powers of the channel matrix entries (they determine the
potential imbalances of the channel)

Nakagami-m: var |hij |2 =
Ω2

ij

mij
, (13)

Rice : var |hij |2 = Ω2
ij

×
(

2 exp (−Kij) 1F1 (3; 1;Kij)
(Kij + 1)2

− 1

)
, (14)

Weibull: var |hij |2 = Ω2
ij

(
Γ (1 + 4/βij)

(Γ (1 + 2/βij))
2 − 1

)
, (15)

where the mij are the Nakagami parameters, the Kij are
the ricean factors and the βij are the Weibull parameters.
1F1 (·; ·; ·) is the confluent hypergeometric function and Γ (·)
is the gamma function.

Similarly, other fading distributions can be considered.
Notice also that the Rayleigh distribution can be viewed as
a particular case of the Nakagami distribution with mij = 1,
Ricean distribution with Kij = 0 or Weibull distribution with
βij = 2.

IV. SIMULATION RESULTS

To show the accuracy of the derived approximation we
compare its predictions with those obtained through Monte
Carlo simulations in a variety of MIMO configurations and
fading distributions. In all the cases, the solid lines represents
the predictions provided by (10) and the markers are the values
obtained by Monte Carlo simulations.

Fig.1 shows the 5%-outage capacity versus the average SNR
at the receiver before decoding (ρ in (1)) for uncorrelated
identically distributed ricean fading channels. MIMO ricean
channels with different number of antennas, code rates (R)
and ricean-K factors are considered. Fig.2 shows the outage
capacity versus outage probability (q) for uncorrelated 4 × 4
weibull fading channels with different code rates and Weibull
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Fig. 2. Outage capacity versus outage probability for 4 × 4 uncorrelated
Weibull fading channels with different code rates (R) and Weibull fading
parameters (b). The SNR before decoding is 15 dB in all the cases.
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Fig. 3. 5%-outage capacity versus the average SNR at the receiver for
different uncorrelated Nakagami fading channels where the channel matrix
entries are not identically distributed.

fading parameters (b). In this case the average SNR before
decoding is 15 dB.

In the previous results we have considered channel matrices
with identically distributed entries. In distributed networks
the fading distributions between different pairs of transmit
and receive antennas can be different. In these cases the
proposed expression can also be used providing accurate
approximations. As an example Fig. 3 shows results for dif-
ferent Nakagami-m fading channels where the channel matrix
entries are not identically distributed. In the configurations
with two transmit antennas the Nakagami parameters were
mi1 = 0.5, mi2 = 2, i = 1, . . . , nR, and in the cases

with four transmit antennas the Nakagami parameters were
mi1 = 0.5, mi2 = 1, mi3 = 2, mi4 = 4, i = 1, . . . , nR.

V. CONCLUSIONS

In this letter we have derived a tight and simple closed-form
approximation for the outage capacity of narrow-band MIMO-
OSTBC systems that is valid for any fading channel. The
expression is a simple function of the power covariance matrix

of the channel. In uncorrelated channels, the approximation
only depends on the variances of the power gains of the MIMO
channel. Such variances can be analytically expressed for the
most common fading distributions: Rayleigh, Rice, Nakagami,
Weibull, etc. The proposed expression is also useful for MIMO
channels with different fading distributions, which is the case
of many distributed MIMO-STBC networks. The accuracy of
the approximation reveals that, for uncorrelated channels, the
ergodic and outage capacities mainly depend on the means and
variances of the power gains of the MIMO channel regardless
the specific fading distributions. The derived expression also
shows that, for high number of antennas, the ergodic and
outage capacities are little dependent on the channel fading
statistics and on the number of transmit antennas.
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