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ABSTRACT

The problem of estimating a low-dimensional subspace from a

collection of experimentally measured subspaces arises in many ap-

plications of statistical signal processing. In this paper we address

this problem, and give a solution for the average subspace that mini-

mizes an extrinsic mean-squared error, defined by the squared Frobe-

nius norm between projection matrices. The solution automatically

returns the dimension of the optimal average subspace, which is the

novel result of the paper. The proposed order fitting rule is based on

thresholding the eigenvalues of the average projection matrix, and

thus it is free of penalty terms or other tuning parameters commonly

used by other rank estimation techniques. Several numerical exam-

ples demonstrate the usefulness and applicability of the proposed

criterion, showing how the dimension of the average subspace cap-

tures the variability of the measured subspaces.

Index Terms— Subspace signal processing, subspace averag-

ing, order-fitting, extrinsic mean, Grassmann manifold, flag mani-

fold.

1. INTRODUCTION

Given a subspace model for a signal, there are many ways to detect

the signal [1], or estimate where it lies in the subspace [2], but when

only experimental data is available, the question of extracting an av-

erage or prototype subspace model arises. Input data in many sig-

nal processing applications admit a subspace representation. Exam-

ples include detection and recognition of one-dimensional and multi-

dimensional geometrically warped signals, where an invariant repre-

sentation of the signal is shown to have the form of a subspace [3],

or pattern recognition applications in which features obtained after

a dimensionality reduction stage such as principal component anal-

ysis (PCA) are commonly used [4]. Also, in multi-antenna wireless

communications systems, subspaces play a central role in problems

such as spectrum sensing for cognitive radio [5], non-coherent com-

munications [6], [7], and interference alignment [8], [9].

In this paper we address the following question, which is cen-

tral to all these applications: “given a sequence of experimentally

derived subspaces, how are these subspaces to be averaged and the

dimension of the averaged subspace determined, from this collec-

tion of experimental subspaces?” Our key result is an order fitting

rule that minimizes the mean-squared error between the projection

The work of I. Santamaria was supported by the Spanish Government
through grants PRX14/0028 (Estancias de Movilidad de Profesores, Min-
isterio de Educación) and by project RACHEL (TEC2013-47141-C4-3-R)
funded by the Ministerio de Economa y Competitividad (MINECO). The
work of L. L. Scharf was supported by the National Science Foundation
(NSF) under grant CCF-1018472.

matrix associated with the average subspace (an equivalent represen-

tation of a subspace in its Grassmanian manifold) and the projections

associated with each of the experimental subspaces.

This mean-squared error may be considered an extrinsic or

chordal mean-squared error associated with a chordal mean, to

distinguish it from other intrinsic mean-squared errors such as

the mean-squared error associated with the Riemannian center of

mass [10], [11] (sometimes also named as Karcher mean [12]).

This order fitting rule is determined only by our definition of mean-

squared error. Consequently, it relies on no statistical model for the

experimentally-derived subspaces, and it uses no penalizing term to

control order.

1.1. Notation

In this paper we use ⟨A⟩ to denote a subspace of Cn (a point in

the complex Grassmann manifold), whereas A is used to denote a

matrix whose columns form a unitary basis for that subspace. The

superscripts (⋅)T and (⋅)H denote transpose and Hermitian, respec-

tively. The trace and Frobenius norm of a matrix B will be denoted,

respectively, as tr(B) and ∣∣B∣∣F .

2. PROBLEM FORMULATION

Let us consider a collection of subspaces {⟨Vm⟩}M
m=1

of Cn, each

with respective dimension dim(⟨Vm⟩) = qm < n. Each subspace

⟨Vm⟩ is a point on the Grassmann manifold G(qm, n), and the col-

lection of subspaces lives on a disjoint union of Grasmannians. Let

D = dim (⋃M
m=1 ⟨Vm⟩) ≤ n be the dimension of the union. In a pat-

tern recognition problem, for instance, the measured or observation

subspaces, {⟨Vm⟩}M
m=1

, might be noisy versions of a common ob-

ject under different pose and illumination conditions, or other forms

of elastic deformations [3]. As another example, in a noncoherent

multiple-input multiple-output (MIMO) communications system the

observed subspaces can be perturbed versions of a Grassmaniann

constellation point received from M different transmitters [7], [6].

Let Vm ∈ C
n×qm be a matrix whose columns form a unitary

basis for ⟨Vm⟩. Then V
H
mVm = Iqm , and Pm = VmV

H
m is the

idempotent orthogonal projection onto ⟨Vm⟩. Notice that Pm is a

unique representation of ⟨Vm⟩, whereas Vm is not unique, because

if G is an arbitrary unitary qm × qm matrix, then VmG will be

another representation of ⟨Vm⟩ with orthonormal columns.

The problem we consider in this paper is to determine the dimen-

sion s of the subspace ⟨Vs⟩ that “best approximates” the collection

of subspaces {⟨Vm⟩}M
m=1

. More specifically, we aim to solve



(s∗,V∗s) = argmin
s ∈{0,1,...,D}

⟨Vs⟩ ∈G(s,n)

1

M

M

∑
m=1

d (⟨Vs⟩ , ⟨Vm⟩)2 , (1)

where d (⟨Vs⟩ , ⟨Vm⟩) is the extrinsic distance metric between the

subspaces ⟨Vs⟩ and ⟨Vm⟩, which is given by the Frobenius norm of

the difference between the respective projection matrices [13], [11].

That is

d (⟨Vs⟩ , ⟨Vm⟩)2 = ∥Ps −Pm∥2
F
, (2)

where Ps = VsV
H
s . There is motivation for this definition. Let

{ei}ni=1 denote the standard basis for the ambient space Cn. Then,

the error in resolving ei onto the subspace ⟨Vs⟩ as opposed to the

subspace ⟨Vm⟩ is (Ps − Pm)ei, and the squared error computed

over the basis {ei}ni=1 is

n

∑
i=1

e
T
i (Ps −Pm)H(Ps −Pm)ei =

tr [(Ps −Pm)H(Ps −Pm)] =∣∣ Ps −Pm ∣∣2F . (3)

An argument in favor of this distance measure is that projections

operate in the ambient space, and it is where they operate that we

wish to measure error.

The extrinsic distance metric, as defined in (2), can also be com-

puted in terms of the cosines of the principal angles between the two

subspaces [14]; specifically, it is easy to show that

∥Ps −Pm∥2
F
= qm + s − 2

min(qm,s)

∑
r=1

cos(θr)2. (4)

Notice finally that s = 0 in (1) can be viewed as a null or noise-

only hypothesis, meaning that the collection of measured subspaces

does not contain a central or signal subspace.

3. SUBSPACE AVERAGING AND ORDER FITTING RULE

Using the extrinsic distance between subspaces, the proposed order

estimation criterion becomes

(s∗,P∗s) = argmin
s ∈{0,1,...,D}

P ∈Ps

1

M

M

∑
m=1

∥P −Pm∥2
F
, (5)

where Ps denotes the set of all projection matrices of rank s.

Let us first consider the following inner optimization problem:

given s ∈ {1, . . . ,D}, find the subspace ⟨Vs⟩ (unequivocally de-

termined by its projection matrix) that minimizes the following cost

function

E(s) = min
P∈Ps

1

M

M

∑
m=1

∥P −Pm∥2
F
, (6)

It is now easy to show that (6) can be expanded as follows:

E(s) = min
P∈Ps

tr [(P −P)H(P −P)H +P −P
2] . (7)

Here the symmetric matrix

P =
1

M

M

∑
m=1

Pm, (8)

is the average of the projection matrices1. In words, the inner prob-

lem amounts to finding a central or average subspace of dimension s

given the set of input (observed) subspaces.

Now, discarding constant terms and writing the projection ma-

trix as P = UsU
H
s , where Us is a unitary n× s matrix, problem (7)

can be rewritten as

min
Us∈S(s,n)

tr [(UsU
H
s −P)H (UsU

H
s −P)] , (9)

where S(s, n) denotes the complex Stiefel manifold of orthonor-

mal s-frames in Cn. Writing the compact eigendecomposition of

the average projection matrix in (8) as P = FKF
H , where K =

diag (k1, . . . , kD) with 1 ≥ k1 ≥ k2 ≥ . . . ≥ kD
2, our optimization

problem can alternatively be written as

max
Us∈S(s,n)

tr [UH
s FKF

H
Us] . (10)

It is known that the solution of (10) is given by any unitary ma-

trix whose column space is the same as the subspace spanned by the

s principal eigenvectors of F [15], [16], i.e.,

U
∗

s = (f1, f2, . . . , fs) = Fs. (11)

The nested sequence of optimal subspaces, ⟨U∗1⟩ ⊂ ⟨U∗2⟩ ⊂ ⋯ ⊂

⟨U∗D⟩, is a flag of means as defined in [17].

Plugging the solution for the optimal subspace of dimension s in

(6), the minimum mean squared error (MSE) E(s) takes the value

E(s) =

s

∑
i=1

(1 − ki) +
D

∑
i=s+1

ki. (12)

Interestingly, the MSE decomposition in (12) admits a bias-variance

tradeoff interpretation in which the first term is the variance due to

the selected dimensions of P, whereas the second term is a squared-

bias cost associated with the discarded dimensions.

The proposed subspace order fitting rule then becomes

s
∗

= argmin
s ∈{0,1,...,D}

s

∑
i=1

(1 − ki) +
D

∑
s+1

ki. (13)

A simple analysis reveals that E(s + 1) ≤ E(s) if ks+1 ≥
1

2
, and

therefore the fitting rule amounts to selecting the largest s such that

ks >
1

2
. Recently, we found out that a similar rule was developed for

the problem of designing optimum time-frequency (TF) subspaces

with a specified TF pass region [18].

According to the proposed criterion, the eigenvectors of the av-

erage projection matrix whose eigenvalues are above the threshold

η = 1/2 determine the signal subspace. Unlike other rank estima-

tion approaches in the literature, this optimality criterion is free of

tuning parameters and does not rely on any statistical model for the

generated data.

Why should the selected order not be the full order D? The

answer is that the average P is not a projection, and to force its ap-

proximation with a projection P is to risk the fitting of subdominant

modes of P, with small eigenvalues, with modes of P which are

1Notice, however, that the average of projection matrices is not a projec-

tion matrix, and therefore P is not idempotent.
2In practice, the measured subspaces will contain noise and therefore the

eigenvalues will be all distinct with probability one. Also, notice that since

P is the mean of M projection matrices, its eigenvalues are less than or equal
to 1, with equality iff all the projection matrices are identical.



forced to have unit eigenvalues. The order fitting rule automatically

protects against this.

Remark 1: The term v = tr(P −P
2) in the cost function (7),

measures how far the mean projection matrix P is from a true, idem-

potent, projection matrix. In terms of the eigenvalues, ki, this term

can be written as

v =

n

∑
i=1

ki(1 − ki), (14)

which is a measure of variability in the eigenvalues of P or, in other

words, a measure of how spread out are the measured subspaces. In

fact, if all subspaces were identical, then P would be idempotent

and (14) would be zero. On the other hand, when the subspaces are

far apart from each other, v increases. This aspect will be further

analyzed by means of numerical simulations in the next section.

4. SIMULATION RESULTS

In this section we evaluate the performance of the proposed order

fitting rule by means of some numerical examples. In the first exam-

ple, we generate M perturbed versions of a central subspace ⟨Vc⟩ ∈
G(k,n), as follows: we first generate

Gm = [Vc ∣ 0n×(n−k)] + σZm, m = 1, . . . ,M (15)

where Vc ∈ C
n×k is a matrix whose columns form an orthonor-

mal basis for a central subspace ⟨Vc⟩, 0n×(n−k) is an n × (n − k)
zero matrix, and Zm ∈ C

n×n is a matrix whose entries are indepen-

dent and identically distributed complex Gaussian random variables

with zero mean and variance 1/n. The value of σ determines the

signal-to-noise-ratio, which is defined for this example as SNR =

10 log
10

( k

nσ2 ). An orthogonal basis for the m-th subspace, Vm, is

then constructed from the first k orthonormal vectors of the QR de-

composition of Gm. Notice also that for this example all subspaces

in the collection have exactly the same dimension.

Fig. 1 shows the estimated order as a function of the SNR for

different values of (k,n) and a total number of M = 200 subspaces.

The curves represent averaged results of 500 independent simula-

tions. As we can see, there is phase-transition behavior between

s∗ = 0 (no central subspace) and the right order s∗ = k. This

phase-transition behavior might be related to some concentration-

of-measure phenomenon in the eigenvalues of the average projection

matrix, and deserves further theoretical study3.

Fig. 2 represents the estimated probability density function (pdf)

of the random variable v/n with v defined as in (14), which gives us

a measure of how clustered the subspaces are. For this example our

data set is a collection of M = 20 subspaces with (k,n) = (3,30)
and different SNRs. We observe that for low SNR values the sub-

spaces are more spread out and, consequently, v/n takes higher val-

ues. Interestingly, this random variable is also sharply concentrated

around its mean value.

In the second example, we evaluate the performance of the pro-

posed order fitting rule when the input subspaces have different di-

mensions. More precisely, each measured subspace in this example

is generated by extracting the first r columns of the DFT matrix,

where r is a discrete uniform random variable taking values in the

set r ∈ {1, ...,R}. Fig. 3 shows the estimated pdf of the optimal or-

der s∗ when the dimension of the ambient space is n = 100, R = 30,

and the number of input subspaces varies from M = 10 to M = 200.

3Similar phase-transition phenomena have been reported for the classical
problem of estimating the rank of a sample covariance matrix in the asymp-
totic regime [19], [20].
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Fig. 1. Estimated order as a function of the SNR for different values

of (k,n). In all examples the number of measured subspaces is M =

200.
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n ∑
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i=1 ki(1 − ki) when (k,n) = (3,30) for different values of the

SNR and M = 20 subspaces.

Although the estimated order is obviously a discrete variable, for

representation purposes we have estimated its pdf using the Parzen

windowing method and hence a continuous density results. As ex-

pected, the estimated pdf shrinks around the mean value s∗ = 15 as

the number of input subspaces increases.

5. CONCLUSIONS

In this paper we have solved a subspace averaging problem that min-

imizes an extrinsic mean-squared error between the experimental

subspace projections and the projection onto an extrinsic mean of

subspaces. The minimization automatically returns an order-fitting
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rule for the dimension of the extrinsic subspace mean. The rule is

simple: when the eigenvalues of the average of experimental projec-

tions are smaller than 1/2, the extrinsic mean of subspaces discards

eigenvectors of the average, and uses only those eigenvectors for

which eigenvalues of the average are greater than 1/2 to construct

its projection. In fact, the extrinsic mean of subspaces is constructed

by quantizing the eigenvalues of the average projections at 0 or 1,

around the slicing level 1/2, and building its projection from these

quantized eigenvalues. The order fitting rule follows directly from

the definition of extrinsic mean-squared error, with no dependence

on a statistical model for the data or a penalty term that would control

for order.

As future work, we will consider extensions of the proposed rule

to subspace clustering problems [21], where the goal is to simulta-

neously find the average subspaces, and determine their orders, that

best fit each cluster of experimental subspaces. Also, we will con-

sider applications in the context of multi-antenna communications

and subspace tracking algorithms.
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