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ABSTRACT

Subspace averaging is proposed and examined as a method of enu-
merating sources in large linear arrays, under conditions of low sam-
ple support. The key idea is to exploit shift invariance as a way of
extracting many subspaces, which may then be approximated by a
single extrinsic average. An automatic order determination rule for
this extrinsic average is then the rule for determining the number
of sources. Experimental results are presented for cases where the
number of array snapshots is roughly half the number of array ele-
ments, and sources are well separated with respect to the Rayleigh
limit.

Index Terms— Array processing, Grassmann manifold, model
order estimation, source enumeration, subspace averaging.

1. INTRODUCTION

Estimating the number of source signals received by a sensor array,
which is called the source enumeration problem, is a classic problem
in array signal processing, radar, and wireless communications [1,
2]. Approaches to this problem are based on information theoretic
criteria, such as AIC [3,4], MDL [4,5], and BIC [6], all of which are
functions of the eigenvalues of the sample covariance matrix.

A research trend for future wireless communication systems is
the use of large antenna arrays with up to a few hundred antennas
(e.g. massive MIMO systems) [7]. These large-scale arrays typically
operate in the small sample regime for which the number of snap-
shots, N , is significantly smaller than the number of sensors, M . In
this regime, most conventional order estimation or source enumera-
tion techniques, which require a full-rank sample covariance matrix,
provide poor results.

Using recent results from random matrix theory, Nadakuditi and
Edelman proposed a version of the AIC in [8]. This work exploits
the distribution of the moments of the eigenvalues of large sample
covariance matrices, and introduces the concept of “effective number
of identifiable signals”, which explains the undetectability of weak
or closely-spaced signals using eigenvalues of the sample covariance
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matrix in the small sample regime. Random matrix results were also
used in [9], to derive an asymptotically consistent estimator of the
sample covariance matrix with shrinkage of eigenvalues, followed
by use of the minimum description length (MDL) criterion.

Another notable work on source enumeration using short data
records is the exponentially embedded families (EEF) criterion [10,
11]. This approach applies a mutiparameter exponential embedding
for all the models. From this embedding, the method constructs a
likelihood function using sufficient statistics for the problem, and
then chooses the model with maximum likelihood. From a different
perspective, the exponential fitting test (EFT) is based on the obser-
vation that the profile of the ordered noise eigenvalues can be well
approximated by a decaying exponential [12, 13]. The EFT method,
which performs particularly well when both the number of sensors
and snapshots is low, detects a break between the profile of popula-
tion noise eigenvalues and the theoretical exponential profile.

In the work reported here, we assume the signal is received by a
uniform linear array (ULA) for which a property called shift invari-
ance holds [14–16]. This property means that, in a noiseless case
and with K noncoherent sources, all subsets of L > K consecutive
rows of the signal covariance matrix span the same K-dimensional
subspace. In the noisy case the extracted subspaces are not shift-
invariant, but we can apply a recently proposed technique for sub-
space averaging that also provides an estimate for the order of the
optimal average subspace [17,18]. The number of subspaces to aver-
age increases with the number of sensors, which makes the proposed
technique competitive for scenarios with short data records and very
large arrays, as our simulation results show.

Notation. In this paper we use 〈A〉 to denote a subspace of Cn
(a point on the complex Grassmann manifold), whereas A is used
to denote a matrix whose columns form a basis for that subspace.
The superscripts (·)T and (·)H denote transpose and Hermitian, re-
spectively. The expectation operator will be denoted by E[·], and
x ∼ CNM (0,R) indicates that x is an M -dimensional complex
circular Gaussian random vector of zero mean and covariance ma-
trix R.

2. SOURCE ENUMERATION IN LARGE ARRAYS

2.1. Problem Statement

Let us consider K narrowband signals impinging on a large, uni-
form, half-wavelength linear array with M antennas. The received
signal is

x[n] = [a(θ1) · · · a(θK)] s[n] + e[n] = As[n] + e[n], (1)



where a(θk) =
[
1 e−jθk e−jθk(M−1)

]T
is the M × 1 com-

plex array response for the kth source, sk, with unknown direction-
of-arrival (DOA) θk. The signal and noise vectors are modeled
as s[n] ∼ CNK(0,S) and e[n] ∼ CNM (0, σ2I), respectively.
The dimensions are these: x ∈ CM ,A ∈ CM×K , s ∈ CK , and
e ∈ CM . From the signal model (1), the theoretical covariance ma-
trix is

R = E
[
x[n]xH [n]

]
= ASAH + σ2I. (2)

We assume there are N snapshots collected in the data matrix
matrix X =

[
x[1] . . . x[N ]

]
. The source enumeration problem

consists of estimating K from X.

2.2. Prior Work

In this subsection we review some representative methods for order
estimation in the small sample regime that will be used for compari-
son. All methods are functions of the eigenvalues λ1 ≥ · · · ≥ λM
of the sample covariance matrix,

R̂ =
1

N

N∑
n=1

x[n]xH [n] =
1

N
XXH .

LS-MDL: The standard MDL method proposed by Wax and
Kailath in [4], based on a fundamental result of Anderson [19], is

k̂MDL = argmin
0≤k≤M−1

(M−k)N log

(
a(k)

g(k)

)
+

1

2
k(2M−k) logN,

(3)
where a(k) and g(k) are the geometric and the arithmetic mean,
respectively, of the M − k smallest eigenvalues of R̂. When the
number of snapshots is smaller than the number of sensors or anten-
nas (N < M ), the sample covariance becomes rank-deficient and
(3) can not be applied directly. The LS-MDL method proposed by
Huang and So in [9] replaces the noise eigenvalues λi in the MDL
criterion by a linear shrinkage (LS), calculated as

ρ
(k)
i = β(k)a(k) + (1− β(k))λi, i = k + 1, . . . ,M,

where β(k) = min(1, α(k)), with

α(k) =

M∑
i=k+1

λ2
i + (M − k)2a(k)2

(N + 1)

(
M∑

i=k+1

λ2
i − (M − k)a(k)2

) .
NE: The method proposed by Nadakuditi and Edelman in [8],

which we refer to as the NE criterion, is given by

k̂NE = argmin
0≤k≤M−1

{
1

2

(
Ntk
M

)2
}

+ 2(k + 1),

where

tk =

[ ∑M
i=k+1 λ

2
i

a(k)2(M − k)
−
(

1 +
M

N

)]
M.

3. ORDER ESTIMATION BY SUBSPACE AVERAGING

As an alternative to the previous model order estimation techniques
in the small sample regime, we propose a subspace averaging (SA)
method, which exploits the shift invariant structure of uniform linear
arrays in combination with the recently proposed subspace averaging
technique of [17]. This method is similar to the use of subspace
averaging for direction of arrival estimation in [20–22].

3.1. Subspace Shifting Invariance

When uniform linear arrays are used, a property called shift invari-
ance holds, which forms the basis of the ESPRIT method [14, 15]
and its many variants. Let Ap be the L × K matrix with rows
p, . . . , p + L − 1 extracted from the steering matrix A. In Mat-
lab notation Ap = A(p : p+ L− 1, :). Then, from (1) it is readily
verified that

Ap diag(e−jθ1 , . . . , e−jθK ) = Ap+1,

which is the shift invariance property. In this way, Ap and Ap+1 are
related by a nonsingular rotation matrix,

D = diag(e−jθ1 , . . . , e−jθK ),

and therefore they span the same subspace 〈Ap〉 = 〈Ap+1〉 with
dim(〈Ap〉) = K < L. In ESPRIT, two sub-arrays of dimension
L = M − 1 are considered, and thus we have A1D = A2, where
A1 and A2 select, respectively, the first and the last M − 1 rows of
A.

There is an interesting characterization of the shift invariance
property. Let xp[n] be an L × 1 vector containing the observations
acquired by sensors p, . . . , p + L − 1 of x[n], and let Sr denote a
shift operator, so that Srxp[n] = xp+r[n]. Then, in the noise-free
model xp[n] = Aps[n], this shift invariance produces

Srxp[n] = SrAps[n] = Ap+rs[n] = ApD
rs[n].

The source signal Drs[n] is distributed as s[n] is distributed, pro-
vided s[n] is complex normal with covariance matrix σ2

sI, making D
a measure-preserving transformation. So shift on xp[n] is measure-
preserving on s. This property leaves second-order matrices invari-
ant.

Following similar arguments, it is possible to show that, when
the signal covariance matrix in (2) is S = σ2

sI, the K principal left
singular vectors of R are also shift-invariant [15, 16]. When noise
is present, however, the shift-invariance property does not hold for
the principal eigenvectors extracted from the sample covariance ma-
trix. The Optimal Subspace Estimation (OSE) technique proposed
by Vaccaro et al. obtains an improved estimate of the signal sub-
space with the required structure (up to the first order) [16]. The OSE
algorithm, which requires the number of sourcesK to be known, has
recently been used with the subspace averaging of [17] to improve
DOA estimation [20–22].

3.2. Order Selection by Subspace Averaging

In this section we briefly review the order estimation rule described
in [17]. Let 〈Gp〉 be a subspace of dimensionK in an ambient space
of dimension L, and let Gp ∈ CL×K be a matrix whose columns
form a unitary basis for 〈Gp〉. The orthogonal projection matrix onto
the subspace is Pp = GpG

H
p , which is a unique representation for

a subspace in its Grassmann manifold. Suppose now that we have
a collection of P subspaces 〈Gp〉, p = 1, . . . , P, and we want to
determine the dimension of the optimal average subspace according
to an extrinsic distance measure, which is given by the Frobenius
norm of the difference between the respective projection matrices
[23, 24].

SA: The subspace averaging method proposed in [17] (see also
[25]) first computes the average projection matrix as

P =
1

P

P∑
p=1

Pp.



Algorithm 1: Subspace averaging criterion.

Input: R̂, L = b3M/4c and kmax;
Output: Order estimate k̂SA
for p = 1, . . . , P do

Extract R̂p from R̂ and obtain R̂p = UpΣpU
H
p

Compute the projection matrix Pp = GpG
H
p , where

Gp = [up,1, . . . ,up,kmax ]

Compute P and its eigenvalues (σ1, . . . , σL)

Estimate k̂SA as the largest k such that σk > 1
2

Writing the eigenvalue decomposition (EVD) of the average projec-
tion matrix as P = FΣFH , where Σ = diag (σ1, . . . , σL) with
1 ≥ σ1 ≥ σ2 ≥ . . . ≥ σL, the subspace order selection rule that
minimizes the extrinsic distance is [17]

k̂SA = argmin
0≤k≤L

k∑
i=1

(1− σi) +

L∑
k+1

σi,

which amounts to selecting the largest k such that σk > 1
2

.

3.3. Application of the Proposed Method

From the L×1 (L > K) sub-array snapshots xp[n] we can estimate
an L× L sample covariance as

R̂p =
1

N

N∑
n=1

xp[n]xHp [n].

Each R̂p block corresponds to an L×L submatrix of the full sample
covariance R̂ extracted along its diagonal, that is, R̂p = R̂(p :
p+ L− 1, p : p+ L− 1).

Due to the shift invariance property of uniform linear arrays, the
noiseless signal subspaces of the theoretical Rp are identical. Since
there are M sensors and we extract L-dimensional subarrays, there
are P = M − L + 1 different submatrices R̂p, p = 1, . . . , P . For
each R̂p we compute its EVD R̂p = UpΣpU

H
p , and then extract a

subspace formed by the kmax principal eigenvectors

Gp =
[
up,1 . . . up,kmax

]
∈ CL×kmax ,

where kmax < min(L,N) is an overestimate of the maximum num-
ber of sources that we expect in our problem. From the collection of
subspaces with unitary basis Gp, p = 1, . . . , P , the order estima-
tion method described in Sec. 3.2 can be applied. A summary of the
proposed algorithm is shown in Algorithm 1.

Notice that the only parameters in the method are the dimension
of the subarrays, L, and the dimension of the extracted subspaces,
kmax. For the results in this paper, we have used L = b3M/4c,
which seems to provide good performance for a wide range of val-
ues. In fact, as long as each extracted subspace contains a large
common portion of the signal subspace and (more or less) indepen-
dent portions of the noise subspace, then, the averaging procedure
enhances signal coordinates while averaging out noise coordinates.

A final comment regarding the computational cost is in order.
While the computational complexity of the order estimation methods
reviewed in Sec. 2.2 is roughly O(M3) due to the EVD of R̂, the
proposed SA technique requires (P + 1)O(L3) operations since we
need to perform P + 1 EVDs of the L×L matrices P and R̂p, p =
1, . . . , P .
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Fig. 1. Probability of correct detection vs. SNR for all methods
when K = 3, ∆θ = 10◦, M = 100, and N = 60.

4. SIMULATION RESULTS

In this section we compare the performance of the proposed sub-
space averaging (SA) technique with LS-MDL and NE. Notice that
neither LS-MDL nor NE exploits the shift invariance for this prob-
lem.

We consider a scenario with K narrowband incoherent unit-
power signals and DOAs separated ∆θ impinging on a uniform lin-
ear array with M antennas and half-wavelength element separation.
For almost all examples, M = 100 antenna elements, for which the
Rayleigh limit to resolution is aproximately 1.2 degrees. For all ex-
periments in this section, the SA method extracts subspaces of ambi-
ent dimension L = b3M/4c, and the maximum number of sources
is fixed at kmax = 7 for Experiments 1-4 and at kmax = 15 for
Experiment 5. In other words, the subspaces to average are points
on the Grassmann manifold G(kmax, L).

Experiment 1: In the first example we consider an array with
M = 100 antennas receiving K = 3 sources separated ∆θ = 10◦,
andN = 60 snapshots, thus yielding a rank-deficient sample covari-
ance matrix. Fig. 1 shows the probability of correct detection vs. the
signal-to-noise-ratio (SNR) for all methods. For this scenario with
a large array, very few snapshots, and widely separated sources, the
SA method outperforms LS-MDL. For very low SNR, the NE per-
forms well, but it frequently overestimates the number of sources for
higher values of the SNR.

Experiment 2: Increasing the number of snapshots toN = 150
and keeping fixed the rest of the parameters, we obtain the results
shown in Fig. 2. The advantages of the SA method become more
evident for this scenario.

Experiment 3: To analyze the impact of the separation between
sources, we consider again a scenario with M = 100 antennas,
N = 60 snapshots, K = 3 sources. But now sources are sepa-
rated at angles of ∆θ = {10◦, 4◦, 3◦}. We restrict the comparison
to the LS-MDL criterion. The results are shown in Fig 3. When
the separation between sources is small (high-resolution scenario),
the SA method typically underestimates the true number of sources,
whereas the LS-MDL criterion provides a more accurate estimate.
Clearly, the smaller the resolution ∆θ , the higher the collinearity
between the steering vectors. In this situation, the SA method, as
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Fig. 2. Probability of correct detection vs. SNR for all methods
when K = 3, ∆θ = 10◦, M = 100, and N = 150.
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Fig. 3. Probability of correct detection vs. SNR for the SA and
LS-MDL methods when K = 3, ∆θ = {10◦, 4◦, 3◦}, and N = 60.

configured here, tends to underestimate the true dimension of the
central subspace. This problem can be mitigated by adjusting the
subspace ambient dimension L = b3M/4c. This is a trade-off that
will be analyzed in future work.

Experiment 4. In Fig. 4 we compare the performance of the
SA, the NE and the LS-MDL criteria for an increasing number of
antennas whenN = 150 snapshots,K = 3 sources separated ∆θ =
5◦, and SNR = −15 dB. Notice that since we are using for the SA
criterion a fixed ambient dimension L = b3M/4c, the number of
subspaces to average P = M −L+ 1 increases with the number of
antennas, which is beneficial for the SA method.

Experiment 5. In the final experiment, we consider a scenario
with K = 7 sources widely separated at ∆θ = 10◦, M = 100
antennas,N = 60 snapshots and SNR = −15 dB. Fig. 5 depicts the
histogram of the estimated order for the SA and the LS-MDL me-
thods. In this scenario, the LS-MDL underestimates the true value,
whereas the proposed SA criterion does not.
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Fig. 4. Probability of correct detection vs. number of antennas for
the SA, NE and LS-MDL methods when K = 3, ∆θ = 5◦, N =
150, and SNR is −15 dB.
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Fig. 5. Histogram of the estimated order for SA and LS-MDL when
K = 7, ∆θ = 10◦, SNR= −15 dB, M = 100 and N = 60.

5. CONCLUSIONS

This paper addresses the problem of source enumeration in condi-
tions of low sample support. Subspace averaging, based on shift-
nvariance in linear, equally-spaced arrays, is used as a method to
enhance signal coordinates and mitigate the effects of low sample
support. Experimental results for subspace averaging are promising
for enumerating sources that are widely separated with respect to the
Rayleigh limit. The problem of enumerating sources closely spaced
with respect to the Rayleigh limit, in conditions of low sample sup-
port and low SNR remains open. In fact, the open question is: “at
what sample supports and SNRs can closely spaced sources be enu-
merated? This is a question of performance bounding and threshold
effects for source enumeration.
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