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Abstract—In this work, we derive analytical approximate ex-
pressions for the user rates achievable by interference alignment
(IA) algorithms in single-beam multiple-input multiple-output
(MIMO) networks for a fixed channel realization. Unlike previous
works that perform a large-system analysis in which the number
of users, antennas, or streams is required to tend to infinity, in this
paper we only require that the number of different IA solutions
(precoders and decoders) for the given scenario is sufficiently
high, which typically happens even for moderate-size feasible
networks. Based on the assumption that the IA beamformers
for a given channel realization are random vectors isotropically
distributed on the complex unit sphere, we characterize the user
rates by averaging over the (possible finite) set of IA solutions.
Some simulation results show the accuracy of the proposed rate
expressions.

I. INTRODUCTION

Interference alignment (IA) has received a lot of attention

in recent years as a key technique to achieve the maximum

degrees of freedom (DoF) of wireless networks in the presence

of interference. The basic idea of IA consists of designing the

transmitted signals in such a way that the interference at each

receiver falls within a lower-dimensional subspace, therefore

leaving a subspace free of interference for the desired signal

[1], [2], [3].

The goal of this paper is to analyze the performance of

IA algorithms for the K-user multiple-input multiple-output

(MIMO) interference channel when each user wishes to send

a single beam or message. Due to the lack of analytical

expressions for the rates achievable by interference align-

ment algorithms, the performance of IA schemes is typically

characterized by means of Monte Carlo simulations. This

might be a time consuming and computationally complex task,

especially for scenarios involving a large number of users

and/or antennas, for which no closed-form solution for the IA

precoders exist and one has to resort to iterative optimization

algorithms such as [4], [5], [6], [7].

The asymptotic performance of IA systems was first ana-

lyzed in [8] in the large-system limit in which the number

of users and antennas tend to infinity at a fixed ratio. This

analysis allowed the authors to derive approximations for the

asymptote (i.e., the multiplexing gain or DoF) and offset of

the sum-rate curve. More recently, random matrix theory was

used in [9] to derive analytical rate expressions of IA schemes
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also in the large system limit in which the number of antennas

and streams tend to infinity, but the number of users is fixed.

More recently, the performance analysis of IA under imperfect

channel state information and limited feedback models has

been considered in [10], [11]. The goal of these works,

however, is to analyze the throughput loss as a function of

the number of bits used to quantize the channels and the IA

precoding and decoding vectors.

In this work, we derive analytical approximate expressions

for the per-user rates achievable by IA algorithms in single-

beam MIMO networks for a fixed channel realization. Instead

of performing a large-system analysis in which the number of

users, antennas, or streams is required to grow, we only require

that the number of different IA solutions for the given scenario

is sufficiently high, which typically happens for moderate size

networks [12], [13].

The analysis is based on the assumption (supported by

numerical results) that, for a given channel realization, the pre-

coding and decoding vectors corresponding to different align-

ment solutions are random vectors isotropically distributed

on the complex unit sphere. Building on this assumption,

we characterize the performance of single-beam IA schemes

by averaging over the (possible finite) set of IA solutions,

instead of the more traditional approach that averages over

the random channel realizations. Specifically, we characterize

the signal-to-noise ratio of a given user as a scaled beta

distribution, which allows us to derive analytical expressions

for the rate achievable by a particular user when either a

random IA solution or the best-out-of-L solution is applied. We

also provide approximate expressions for the average sum-rate

achievable by the K users. In the end, this analysis will help

us to answer the question: How many IA solutions should we

compute to obtain a performance close to that of the maximum

achievable sum-rate solution?

A. Notation

In this paper we use bold-faced upper case letters to denote

matrices, bold-faced lower case letters for column vectors,

and light-face lower case letters for scalar quantities. The

superscript (·)H denotes Hermitian. The Frobenius norm of

a matrix A will be denoted as ‖A‖F , and the Euclidean norm

of a vector is ||x||. u⊗v is the Kronecker product of vectors

u and v, and vec(H) is a vector obtained by stacking the

columns of H on top of one another. Finally, the notation



x ∈ S1(C
N ) denotes that x belongs to the Stiefel manifold of

unit-norm vectors in CN .

II. PROBLEM STATEMENT

We consider a K-user multiple-input multiple-output

(MIMO) interference channel with constant channel coeffi-

cients, where each user wishes to send a single data stream

using IA [1], [2]. For simplicity, we focus on a symmetric sce-

nario in which each transmitter is equipped with M antennas

and each receiver has N antennas. Following the conventional

notation [14], we denote this single-beam MIMO network as

(M ×N, 1)
K

.

The MIMO channel from transmitter l to receiver k is de-

noted as Hkl and assumed to be flat-fading and constant over

time. Each Hkl is an N×M complex matrix with independent

entries drawn from a continuous distribution. We also assume

that the IA problem is feasible, which can be checked for

some particular scenarios using the theoretical results in [14]–

[16] or, for arbitrary networks, with the polynomial complexity

feasibility test proposed in [17].

For feasible systems, it has been recently proved in [12],

[13] that the number of different alignment solutions for a

given channel realization may be either finite (when M+N =
K + 1) or infinite (when M + N > K + 1). Furthermore,

for single beam systems the exact number of solutions can

be easily obtained by the combinatorial counting procedure

described in [13].

We now introduce some notation that will be needed in the

subsequent analysis. The i-th alignment solution is formed

by unit-norm precoders and decoders on the complex Stiefel

manifolds: vk,i ∈ S1(C
M ) and uk,i ∈ S1(C

N ), which satisfy

the IA equations

u
H
k,iHklvl,i = 0, ∀k 6= l (1)

u
H
k,iHkkvk,i 6= 0. (2)

The i-th IA solution for the K users is collectively denoted

as Si = {(vk,i,uk,i), k = 1, . . . ,K} and the set of all IA

solutions is denoted as S = {Si, i = 1, . . . , P}, with P ∈ N
+

being the total number of different IA solutions. Notice that,

due to the problem invariances, if vk,i is a solution of the IA

problem, then vk,ie
jθ is also a solution. In fact, from the point

of view of this analysis vk,i and vk,ie
jθ are exactly the same

solution: i.e., the P solutions are counted in the Grassmann

manifold.

Our main goal is to derive approximate expressions for the

average rate achievable by user k when a random IA solution

(or the best-out-of-L solution) from the set S is used:

ES [Ck] = ES

[

log

(

1 +
Pk|u

H
k,iHkkvk,i|

2

σ2
k

)]

, (3)

where Pk is the transmitted power of user k and σ2
k is the

variance of the additive white Gaussian noise at the input of the

k-th receiver. Notice that, unlike most works dealing with the

statistical characterization of wireless communication systems,

in (3) the expectation is not computed over the distribution of

the channel coefficients, but over the (possibly finite) set S of

IA solutions for the k user. To stress this point we denote the

mathematical expectation as ES .

III. STATISTICAL ANALYSIS

For a feasible system, the signal-to-noise-ratio (SNR) after

perfect IA at receiver k can be expressed as

SNRk =
Pk|u

H
k,iHkkvk,i|

2

σ2
k

=
Pk||hkk||

2|(v∗k,i ⊗ uk,i)
H · h̃kk|

2

σ2
k

, (4)

where

hkk = vec(Hkk) = ||hkk||h̃kk.

Let us denote bk,i = v
∗
k,i ⊗ uk,i. Since the design of the IA

precoders and decoders does not involve the direct channel

matrix Hkk, bk,i is a unit-norm MN × 1 column vector

independent of h̃kk.

A. Isotropically distributed IA solutions

In this work, we make the following main assumption:

(A1) For a given channel realization, the vectors bk,i corre-

sponding to different IA solutions are independent and

isotropically distributed on the MN -dimensional com-

plex unit sphere.

To check the validity of this assumption we consider the

interference channel (2 × 5, 1)6, for which there are a total

of P = 265 different alignment solutions [13]. We obtained

all 265 solutions using the procedure described in [18], and

computed the pairwise angle between vectors bk,i and bk,j

corresponding to two different solutions. Fig. 1 compares the

estimated cumulative distribution function (cdf) for the pair-

wise angle with the theoretical cdf of isotropically generated

random vectors [19]. We can observe that, for feasible systems

and when the number of solutions is sufficiently high, the

isotropic assumption is a rather accurate approximation for

the distribution of IA solutions.

To further validate the isotropic assumption, let bk,i, i =
1, . . . , n ≤ P be a random sample from the set of P

different IA solutions. Without any loss of generality, we

assume that the real random vectors formed by stacking the

real and imaginary parts of bk,i have been drawn accord-

ing to a 2MN -variate von Mises-Fisher distribution [20]:

(R(bk,i), I(bk,i)) ∼M(µ, κ), where µ indicates the direction

along which the unit-norm vectors are clustered and κ is

the concentration parameter. The greater is κ, the greater the

clustering around the mean direction given by µ; whereas

for κ = 0 the distribution is isotropic. Now, given bk,i, i =
1, . . . , n ≤ P , we consider the following binary hypothesis

testing:
H0 : κ = 0
H1 : κ 6= 0,
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Fig. 1. Comparison of the pairwise angle cdf between two different IA
solutions for the (2× 5, 1)6 MIMO-IC. The system has a total of P = 265
IA solutions.

where the direction parameter µ is unknown. The uniformly

most powerful invariant test (UMPIT) for this problem is the

Rayleigh test, which is given by [20], [21]

||bk||
2
H1

≷
H0

η

where the threshold η is fixed for a given probability of

false alarm, and bk = 1
n

∑n
i=1 bk,i. We run the test for

100 different (2× 5, 1)6 MIMO-IC channels. More precisely,

we computed all P = 265 IA solutions for each channel

realization, and used all solutions in the test (n = P ).

For a Pfa=0.1, the test always accepted the null hypothesis,

thus validating the isotropic assumption. The same result was

obtained for other systems with more IA solutions.

B. Achievable rates for a random IA solution

Our first goal is to characterize statistically the SNR for

user k, given by (4), when its precoder-decoder pair is taken

at random from the set of P different IA solutions. According

to Assumption 1, bk,i = v
∗
k,i⊗uk,i is isotropically distributed

in S1(C
MN )

p(bk,i) =
Γ(MN)

2πMN
δ
(

b
H
k,ibk,i − 1

)

, (5)

where Γ(n) = (n−1)! denotes the Gamma function. We have

the following result.

Proposition 1. The random variable SNRk can be expressed

as,

SNRk = ρkX, (6)

where ρk =
Pk||Hkk||

2

F

σ2

k

is a deterministic constant, and X

is beta distributed with parameters 1 and MN − 1, that is,

X ∼ Beta(1,MN − 1).

Proof. From (4), we see that X = |bH
k,ih̃kk|

2. Taking into

account that h̃kk is a fixed unit norm vector that points in a

direction determined by the direct link MIMO channel, we see

that X is the squared length of the projection of h̃kk onto a

vector isotropically distributed on the MN -dimensional com-

plex hypersphere, which is known to follow a beta distribution

[22], [23], [24], and thus X ∼ Beta(1,MN − 1).

Since SNRk follows a scaled beta distribution, the average

rate achievable by user k when a random IA solution from the

set S is used is given by the following expression [25]

ES [Ck] = ES [log (1 + SNRk)]
(

log(e)ρk
MN

)

3F2(1, 1, 2; 2,MN + 1;−ρk), (7)

where 3F2(a1, a2, a3; b1, b2;x) denotes the generalized hyper-

geometric function. Finally, using (7), the average sum-rate

for the K users can be easily obtained as

ES [C] =
1

K

K
∑

k=1

ES [Ck]. (8)

C. Achievable rates for the best-out-of-L IA solution

Suppose we obtain now L different solutions (out of the

total P ) and use the best one for user k. Then, the signal-to-

noise ratio for user k is

SNRk,L = ρkmax (X1, X2, · · · , XL) = ρkY, (9)

where Xl ∼ Beta(1,MN − 1) are i.i.d. beta-

distributed random variables, and we have defined

Y = max (X1, X2, · · · , XL). In this case, deriving a

closed-form expression for the achievable rate does not

appear to be feasible. Therefore, we apply Jensen’s inequality

and proceed as follows

ES [C
L
k ] ≤ log (1 + ρkES [Y ]) ,

where CL
k denotes the average sum-rate achievable by user k

when the best-out-of-L alignment solution is used. The expec-

tation of the maximum of L i.i.d beta-distributed variables can

be obtained as follows

E[Y ] =

∫ 1

0

(1− F (Y ))dy =

∫ 1

0

(1− F (X)L)dx, (10)

where F (X) = 1− (1− x)MN−1 is the distribution function

of X ∼ Beta(1,MN − 1). The expectation in (10) is given

by1

E[Y ] =
L
∑

l=1

(

L

l

)

(−1)L+1 1

l(MN − 1) + 1
, (11)

and therefore, the proposed approximation for the expected

achievable rate is

ES [C
L
k ] = log

(

1 + ρk

L
∑

l=1

(

L

l

)

(−1)L+1 1

l(MN − 1) + 1

)

.

(12)

1For values of L > 100, some numerical problems may appear when
computing very large combinatorial numbers. For these cases, it is better to
directly perform the numerical integration of (10).



Remark: It can be shown that

L
∑

l=1

(

L

l

)

(−1)L+1 1

l(MN − 1) + 1
≤

1

MN − 1

L
∑

l=1

(

L

l

)

(−1)L+1 1

l
=

HL

MN − 1
,

where HL is the Harmonic number. On the other hand, for

large L, HL ≈ γ + ln(L), where γ is the Euler-Mascheroni

constant. This result indicates that the SNR for user k increases

only logarithmically with the number of explored IA solutions,

and hence exploring a small percentage of solutions provides

most of the benefit.

Obviously, the best IA solution for user k is not necessarily

the best solution for the rest of users. To derive an expression

for the sum-rate when the best average solution for the whole

network is used we need yet another approximation. We

start by making the crude assumption that log(1 + ρkX) ∼
N(µk, σ

2
k), where µk is given by (7) and for the variance we

use a first-order Taylor series expansion of the log function

around its mean, that is

σ2
k =

(

ρk log(e)

MN + ρk

)2
MN − 1

MN + 1
. (13)

Since the rates achieved by each user are assumed to be

independent Gaussian variables, the average sum-rate when a

random IA solution is applied is also Gaussianly distributed

C =
1

K

K
∑

k=1

Ck ∼ N

(

1

K

K
∑

k=1

µk,
1

K2

K
∑

k=1

σ2
k

)

.

Finally, to characterize the average sum-rate for the best-

out-of-L solution, when use the following approximation for

expected value of the maximum of L i.i.d. Gaussian random

variables.

Proposition 2. Let X1, X2, . . . , XL be L i.i.d. Gaussian

random variables with density function Xl ∼ N(µ, σ2), and

let Y = max (X1, X2, · · · , XL). The expected value of Y can

be bounded as

E[Y ] ≤ µ+ σ
√

2 ln(L) (14)

Proof. For any s > 0, we can apply Jensen’s inequality to esY

and obtain

esE[Y ] ≤ E
[

esY
]

= E

[

max
l

esXl

]

≤

L
∑

l=1

E
[

esXl

]

= L
(

eµs+
s
2
σ
2

2

)

,

where the last equality follows from the moment generating

function of N(µ, σ2). Taking logarithms we can rewrite the

above inequality as

E[Y ] ≤
ln(L)

s
+ µ+

sσ2

2
.

Now, we can set s = σ
√

2 ln(L) and the bound in (14)

follows.

Finally, the proposed approximation for the average sum-

rate of the best-out-of-L solution is

ES [C
L] =

1

K





K
∑

k=1

µk +

√

√

√

√2 ln(L)

K
∑

k=1

σ2
k



 , (15)

where µk is given by (7) and σ2
k is given by (13).

IV. SIMULATION RESULTS

In this section we evaluate the accuracy of the per-user rate

approximations given by (7) and (12), as well as their average

sum-rate counterparts (8) and (15) by means of computer

simulations. In the first example, we consider a single beam

MIMO-IC with K = 6 users, M = 2 transmit antennas and

N = 5 receive antennas, for which a total of P = 265
different IA solutions exist [13], and obtain a random IA

solution using any of the algorithms proposed to this end [4]–

[7]. Fig. 2 compares the true rate achieved by user 5 after

alignment with the approximation given by (7), as well as the

true and approximated average sum-rate for the 6 users. We

observe that the proposed analytical rate expressions provide

very accurate approximations for the true rates.
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Fig. 2. Comparison of the true rates with the approximations given by (7) and
(8) when a random alignment solution is used. The scenario is a (2× 5, 1)6

MIMO-IC, which has P = 265 solutions.

In the second example, we consider the network (3×4, 1)6

which has P = 7570 IA solutions [13]. For a given channel

realization we obtain a subset of solutions by initializing

the interference leakage minimization algorithm at multiple

random points. The signal-to-noise-ratio for this example has

been fixed to SNR = 15 dB. Fig. 3 depicts the rate achieved

by user 3 when the best-out-of-L alignment solution is used as

a function of L, and compare it with the approximation given

by (12). Also, the true average sum-rate is compared with the

approximation in (15). We observe that both approximations

capture quite well the logarithmic behavior of the true curves

and, in general, the approximations are very accurate. For this



scenario, by selecting the best out of 25 IA solutions, which is

less than 0.4% of the total 7570 solutions, we get more than

90% of the maximum rate for this scenario. This behavior

has been corroborated in many other scenarios, allowing us

to conclude that exploring only a tiny fraction of the total

number of solutions is sufficient to operate close to the optimal

performance.

User 3

Average sum-rate

True

Approximation

Fig. 3. Comparison of the true rates with the approximations given by (12)
and (15) when the best-out-of-L alignment solution is used. The scenario is a
(3 × 4, 1)6 MIMO-IC, which has P = 7570 solutions, and the SNR = 15
dB.

V. CONCLUSIONS

This paper derived analytical approximate rate expressions

for interference alignment schemes in single-beam MIMO

networks. The main assumptions were that the number of IA

solutions for a given channel realization is sufficiently high,

and that these solutions are isotropically distributed random

vectors on the Stiefel manifold. The obtained expressions

allow us to predict rather accurately the performance of IA

techniques without resorting to time consuming Monte Carlo

simulations. Moreover, our analysis also revealed that the SNR

for a particular user increases only logarithmically with the

number of solutions, and hence finding only a small fraction

of the total number of solutions is sufficient to achieve close

to optimal performance. In future work, we plan to extend

this analysis to multibeam IA networks, as well as to compare

the proposed approximations with those derived in the large-

system limit.
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