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Abstract.
The problem of blind sparse analysis of electrogram (EGM) signals under atrial fibrillation (AF) conditions is considered in

this paper. A mathematical model for the observed signals that takes into account the multiple foci typically appearing inside
the heart during AF is firstly introduced. Then, a reconstruction model based on a fixed dictionary is developed and several
alternatives for choosing the dictionary are discussed. In order to obtain a sparse solution, which takes into account the biological
restrictions of the problem at the same time, the paper proposes using a Least Absolute Shrinkage and Selection Operator
(LASSO) regularization followed by a post-processing stage that removes low amplitude coefficients violating the refractory
period characteristic of cardiac cells. Finally, spectral analysis is performed on the clean activation sequence obtained from the
sparse learning stage in order to estimate the number of latent foci and their frequencies. Simulations on synthetic signals and
applications on real data are provided to validate the proposed approach.

Keywords: Biomedical signal processing, atrial fibrillation electrograms, sparsity-aware learning, LASSO regularization, spectral
analysis.

1. Introduction

The clinical term atrial fibrillation (AF) refers to
a family of common heart disorders characterized by
fast and uncoordinated activations in the atrium. The
mechanisms causing the initiation and maintenance of
AF include a set of heterogenous interactions at dif-
ferent levels (cells, tissues and the whole heart) chang-

*Corresponding author. E-mail: david.luengo@upm.es
**This work has been partly financed by the Spanish gov-

ernment through the CONSOLIDER-INGENIO 2010 program
(COMONSENS project, ref. CSD2008-00010), as well as projects
COSIMA (TEC2010-19545-C04-03), ALCIT (TEC2012-38800-
C03-01), COMPREHENSION (TEC2012-38883-C02-01) and DIS-
SECT (TEC2012-38058-C03-01).

ing along time and resulting into different states of AF
[7,23]. Several theories about the physiological causes
underlying AF initiation and maintenance have been
formulated over the last 50 years [21, 22], and numer-
ous efforts have been made in the implantation of al-
gorithms for the automatic detection of AF states [29].
One of the most prominent hypothesis considers multi-
ple uncoordinated activation foci placed at different lo-
cations inside the atrium. These fast and asynchronous
activations cause a disordered global electrical activ-
ity that contributes to AF maintenance [13]. In con-
trast, during normal heart operation conditions (sinus
rhythm) we observe a single activation focus, placed
at the sinus node, acting as a pacemaker for the whole
heart and leading to a regular global electrical activity.
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In order to understand the pathophysiology of AF,
dominant frequency analysis (DFA) has been tradition-
ally used to analyze the data collected from electro-
cardiograms (ECGs) or electrograms (EGMs). DFA
is useful for identifying the areas corresponding to
the highest activation frequencies that may be the
drivers maintaining AF, and therefore the targets of
ablation therapy for AF termination [28]. However,
DFA provides very limited information about the sig-
nal’s structure, since it is based on the implicit as-
sumption that the underlying signal consists of a sin-
gle quasi-periodic component plus an irregular compo-
nent [6]. Hence, the only spectral parameter required is
the dominant frequency (DF), which characterizes the
periodicity of the signal, but is very sensitive to distor-
tions and can provide misleading information [24,25].

More recently, organization analysis techniques
have been introduced, and additional parameters, such
as the regularity index (RI) and the organization in-
dex (OI), have been used to describe the signals [6, 8].
Many other linear and non-linear measures have been
proposed for the characterization of AF [16, 18, 26]:
the cross-correlation index, the non-linear association
measure, the fractionation index, etc. However, all of
them are based on the same implicit assumption that
the observed signals are modeled by a single regular
component with an additional distortion and noise.

This paper presents a novel formulation which takes
into account the presence of multiple foci and the
sparse nature of EGM signals. This new formulation
includes two major theoretical contributions. Firstly, it
takes into account the multiple activation foci to per-
form spectral analysis, detecting the number of foci
and their frequencies. Secondly, based on the sparse
nature of the recorded signals, a sparsity-aware learn-
ing technique based on the Least Absolute Shrinkage
and Selection Operator (LASSO) is applied, followed
by an additional stage that gets rid of spikes that vio-
late the biological restrictions, to obtain an activation
sequence on which the spectral analysis is performed.

In this paper, bipolar intracardiac electrograms
(EGMs), obtained placing a set of electrodes in di-
rect contact with the heart muscle during heart surgery
[24, 28], are used for the analysis. The resulting algo-
rithm applied to the signals consists of four steps:

1. Pre-processing to eliminate potential artifacts,
especially outside of the desired frequency range.

2. Inferring the spike trains associated to the acti-
vation times using a LASSO [33], followed by

a post-processing step to ensure that biological
restrictions are met [20].

3. Performing a sparse spectral analysis of that ac-
tivation sequence, using an iterative deflation ap-
proach to detect the number of foci and their fre-
quencies.

4. Applying a late post-processing step in order to
eliminate harmonics and subharmonics.

A preliminary version of this paper has appeared
in [20]. When compared to [20], this contribution in-
cludes several theoretical and practical modifications:
the pre-processing stage has been enhanced, the choice
of the reconstruction dictionary is briefly discussed
and a novel wavelet-based dictionary developed, a
method for estimating the noise variance has been in-
corporated and the spectral analysis stage has also been
improved. However, the most important extensions in
the paper are in the application side: more realistic
simulations on synthetic data have been performed us-
ing a typical activation shape for EGMs [8], and ap-
plications on real data have been performed for several
patients under sinus rhythm and AF conditions.

The paper is structured as follows. Section 2 de-
scribes the prevalent approach for the analysis of
EGMs: dominant frequency analysis. Section 3 details
the problem formulation used throughout the paper,
defines the novel mathematical model (based on a set
of unobserved latent signals) proposed for describing
the recorded EGMs, the sparsity-aware formulation in-
troduced for solving it, and the dictionary considered
for modeling the unknown latent signals. Section 4 de-
scribes the approach proposed for inferring the sparse
activations.Then, Section 5 shows how the sparse spike
train inferred using this approach can be used to per-
form sparse spectral analysis (SSA), thus inferring the
number of latent foci as well as their activation fre-
quencies. Results are presented in Section 6, both for
synthetic data and for real EGMs, obtained both under
sinus rhythm and atrial fibrillation (AF) conditions. Fi-
nally, Section 7 provides conclusions and perspectives.

2. Background: Dominant Frequency Analysis

Dominant frequency analysis (DFA) is the prevalent
approach for the analysis of EGMs. DFA assumes im-
plicitly that the observed signals are composed of a
single regular component (i.e., a quasi-periodic signal)
plus an irregular component that contains the remain-
ing noise and distortion. Hence, from a mathematical



Luengo et al. / Blind Analysis of AF EGMs 3

Algorithm 1 Dominant frequency analysis (DFA) for
the q-th signal [8].
1. Band-Pass filtering from 30 Hz to 400 Hz.
2. Rectification of the resulting signal, recovering near

direct current (DC) spectral components.
3. Low-Pass filtering with a 15 Hz cut-off frequency.
4. Computation of the spectrum using a localized Fast

Fourier Transform (FFT) with a Hanning window
of Λ = 4 s duration, resulting in a resolution fΛ =
1/Λ = 0.25 Hz in the frequency domain.

5. Search for the peak with the maximum amplitude
in the frequency domain. The frequency associated
to this peak is the dominant frequency (DF) of the
q-th EGM, f̃q .

point of view, the q-th EGM, 1 ≤ q ≤ Q with Q de-
noting the number of outputs, can be modeled as [8]

yq(t) =

∞∑

k=−∞

φq(t− kT̃q − τ̃q) + wq(t), (1)

where φq(t) idenotes the average shape of the regu-
lar component of the signal, T̃q its period, τ̃q the delay
for k = 0, and wq(t) is used to represent the irregu-
lar components. The goal of DFA is characterizing that
quasi-periodic signal through its average period, T̃q , or
equivalently its average frequency, f̃q = 1/T̃q , which
is the so called dominant frequency (DF). Occasionally
other parameters, such as the organization or the regu-
larity indexes, are also obtained to determine whether
the estimated DF is reliable or not [6, 8].

The DF is usually obtained separately for each chan-
nel using standard spectral analysis techniques. A typ-
ical signal processing approach includes the five steps
for each EGM shown in Algorithm 1 [8]. Several seg-
ments can be averaged in order to improve the estima-
tion of the dominant frequency. However, the ability of
the DF to reflect the average atrial activation rate de-
pends on the accuracy of Eq. (1) in representing the
true observed signal. Unfortunately, several character-
istics of atrial activation, such as the complexity of
the electrogram morphology, can alter the power spec-
trum. In these cases, f̃q is more related to the complex-
ity of the signal than to the atrial activation rate, thus
providing misleading information [24, 25].

3. Problem Formulation

In this section a novel formulation is proposed as an
alternative to the standard DFA formulation of Eq. (1)
First of all, a more realistic mathematical model based
on the assumption that the observed signals are the
result of several unobserved latent functions (the un-
known activation foci that we want to estimate) prop-
agating through the heart is introduced. Then, since
the real shapes of these latent signals are not pre-
cisely known, a sparsity-aware formulation, based on
an overcomplete dictionary, is introduced.

3.1. Signal Model

Assume that the recorded EGMs are composed of
the sum of several periodic or quasi-periodic signals
plus distortion and noise. Each of these observed pe-
riodic signals stem from a set of sparse activation foci
(spike trains) that propagate through the atrium and
reach the sensors. Hence, these unobserved activations
play the role of latent signals, providing a way of de-
scribing the correlation between the outputs. The pri-
mary goal of this paper is detecting the number of ac-
tivation foci, as well as their frequencies.

From a mathematical point of view, we consider a
model with Q correlated outputs, yq(t), obtained from
a set of bipolar electrodes. Furthermore, we assume
that these observations are generated by R unobserved
activation foci (latent signals) propagating inside the
atrium, plus noise and interference. Hence, the output
of the q-th channel (1 ≤ q ≤ Q) is modeled as

yq(t) =

R∑

r=1

pr(t) ∗ hr,q(t) + wq(t), (2)

where pr(t) (1 ≤ r ≤ R) denotes the r-th focus,
wq(t) models all the elements in the q-th output that
cannot be explained by the model (i.e., noise, interfer-
ences and distortion), hr,q(t) is the impulse response
of the channel between the r-th focus and the q-th out-
put EGM and ∗ denotes the standard linear convolution
operator. Note that hr,q(t) includes the response of the
sensor and can be slowly time-varying. However, since
the sparse learning and the subsequent spectral analy-
sis are performed using short time windows, the chan-
nel can be considered time-invariant in practice. Fig.
1 shows the underlying signal model corresponding to
Eq. (2).

Since we are not interested in recovering the pre-
cise shape of the activations, but only in their num-
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Fig. 1. Signal model corresponding to Eq. (2).

ber and frequencies, we model them as periodic spike
trains (this is not a limitation however, since the shape
of the activations can be included inside the channel’s
impulse response, hr,q(t)):

pr(t) =

∞∑

k=−∞

Ar[k]δ(t− kTr − τr), (3)

with δ(t) denoting Dirac’s delta, Tr = 1/fr the aver-
age period of the r-th spike train (with fr denoting its
associated average frequency) and τr its shift w.r.t. the
origin (0 ≤ τr < Tr). Substituting Eq. (3) into Eq. (2),
the q-th output becomes

yq(t) =

R∑

r=1

∞∑

k=−∞

Ar[k]hr,q(t− kTr − τr)+wq(t).

The discrete-time version of this model, obtained as-
suming a uniform sampling frequency, fs = 1/Ts, is

yq[n] = yq(nTs) =

R∑

r=1

∞∑

k=−∞

Ar[k]hr,q[n, k]+wq[n],

(4)

where hr,q[n, k] = hr,q(nTs−kTr−τr) is the discrete-
time equivalent channel and wq[n] = wq(nTs) are
the noise plus distortion and interference samples at
the sampling instants. In the sequel, this discrete-time

model is used for inferring the global spike train (i.e.,
the spike train resulting from the sum of the R foci)
and estimating R and fr = 1/Tr for r = 1, . . . , R.

3.2. Reconstruction Model

Let us denote the (N + 1)× 1 vector with the sam-
ples from the q-th EGM as yq = [yq[0], . . . , yq[N ]]>.
Now, let us define the N × 1 vector containing the
discrete-time differentiation of the q-th output, zq =
[zq[1], . . . , zq[N ]]> with zq[n] = yq[n]−yq[n−1] for
1 ≤ n ≤ N . Since the precise shape of the activations
is irrelevant in this case, and the number of latent foci
is still unknown, zq[n] is approximated by a mixture of
shifted smooth generic curves, i.e.,

zq[n] =

M∑

m=1

βm,q[n] ∗ φm[n] + σqεq[n]

=

M∑

m=1

N∑

k=1

βm,q[k]φm[n− k] + σqεq[n],

(5)

where εq[n] is additive white Gaussian noise (AWGN)
with zero-mean and unit variance (i.e., εq[n] ∼
N (0, 1)), σq denotes the actual noise variance, as-
sumed to be known or estimated from the data, and
βm,q[n] are the coefficients of the q-th output associ-
ated to the m-th sampled activation shape, φm[n] =
φm(nTs) for 1 ≤ m ≤ M and 1 ≤ q ≤ Q. Eq. (5) is
the discrete-time version of the continuous-time model

zq(t) =

M∑

m=1

βm,q(t) ∗ φm(t) + σqεq(t). (6)

Indeed, the reconstruction models assumed by the
sparsity-aware formulation, given by Eqs. (5) and (6),
are very similar to the assumed underlying signal mod-
els, given by Eqs. (2) and (4), although there are two
important differences:

1. Focusing on the discrete-time models, Eq. (5) de-
scribes the first-order time-difference of the sam-
pled EGM signals, whereas Eq. (4) models the
EGM signals themselves. Regarding the equiva-
lent continuous-time models, this corresponds to
working with the first derivative of the signals in-
stead of the signals themselves, which is a com-
mon approach to remove their baseline.
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2. Since the number of activations and their shapes
(i.e., the impulse responses associated to the
Q channels) are unknown, in the reconstruction
model a set of M ≥ R activations, constructed
using generic smooth curves φm(t), is used. The
same activation shapes are used for all the chan-
nels, and the relevant activations for each case are
selected automatically through a sparse learning
process based on LASSO with a post-processing
stage. This allows us to effectively remove the
subindex q from the original activations, hr,q(t),
moving it to the set of coefficients, βm,q(t).

3.3. Overcomplete Dictionaries for Sparse Learning

3.3.1. Ideal Dictionary
The optimum reconstruction model would be com-

posed of a set of Q dictionaries tailored to the char-
acteristics of each of the Q outputs. More specifically,
the dictionary for the q-th output would be given by the
following N ×RN matrix,

Φ̃q = [Φ̃1,q, Φ̃2,q, . . . , Φ̃N,q], (7)

where Φ̃n,q is the N × R matrix composed of the R
impulse responses between all the latent signals and
the q-th observation at the n-th time instant, i.e.,

Φ̃n,q =



h1,q[1− n] · · · hR,q[1− n]

...
...

h1,q[N − n] · · · hR,q[N − n]


 . (8)

Using this dictionary, Eq. (5) can be expressed as

zq = Φ̃qβq + σqεq, (9)

where βq is anRN ×1 column vector composed ofN
subvectors of size R:

βq = [β>q [1], . . . , β>q [N ]]>, (10)

withβq[n] = [β1,q[n], . . . , βR,q[n]]>. This dictionary
leads to the sparsest possible solution, containing at
most P = N

∑R
r=1 Ts/Tr non-zero elements for each

channel (PQ overall) that match the amplitudes of the
activations, Ar[k]. In fact, as some activations will be
masked due to the refractory period characteristic of
cardiac cells, the number of non-zero coefficients will
actually be lesser than P .

3.3.2. Alternative Dictionaries
Unfortunately, the ideal dictionary requires either

knowledge of the hr,q(t) or a reliable estimation,
something which may be unattainable for the applica-
tion considered. However, it provides us with a crite-
rion for comparing different dictionaries: the best dic-
tionary will be the one that attains the sparsest repre-
sentation, while obtaining a good reconstruction error.

In practice, the activation shapes are constructed us-
ing a family of smooth functions centered around the
origin, φm(t) with 1 ≤ m ≤ M and M ≥ R, such
that their support is approximately −Tm ≤ t ≤ Tm
(i.e., φm(t) ≈ 0 for |t| > Tm). Furthermore, this fam-
ily is selected in such a way that the time dispersion of
φm(t) increases with m (i.e., T1 < T2 < . . . < TM ).
The discrete-time sequences used to build the dictio-
nary are then obtained through uniform sampling of
the truncated and time-shifted continuous-time func-
tions, i.e.,

φm[n] = φm((n−NM )Ts). (11)

where NM = Nmax = max
1≤m≤M

Nm, with Nm =

bTm/Tsc being the integer part of the ratio Tm/Ts.
Hence, all the discrete-time activation elements suffer
a delay ofNM samples (i.e.,NMTs seconds) that must
be taken into account when interpreting the results ob-
tained in the sequel.1

Thus, the sparse model in Eq. (5) can be expressed
more compactly in matrix form by defining a set of
N ×M matrices, Φk for 1 ≤ k ≤ N , such that their
(n,m)-th element is Φk(n,m) = φm[n − k] for 1 ≤
n ≤ N and 1 ≤ m ≤M , i.e.,

Φk =



φ1[1− k] · · · φM [1− k]

...
...

φ1[N − k] · · · φM [N − k]


 . (12)

Concatenating all these matrices, we obtain the follow-
ing global N ×MN dictionary:

Φ = [Φ1, Φ2, . . . , ΦN ]. (13)

Since Φ is a non-square matrix with more columns
than rows, this dictionary is said to be overcomplete.
Note that φm[n] = 0 whenever n < 0 or n > 2Nm.

1Note that the largest support for all the activation shapes in the
dictionary has to be considered, although φm(t) = 0 for |t| > Tm.
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Hence, many elements in Φk (1 ≤ k ≤ N ), and thus
also in Φ, will actually be zero.

Therefore, Eq. (5) can be expressed by means of Eq.
(13) as

zq = Φβq + σqεq, (14)

where εq = [εq[1], . . . , εq[N ]]> is an N × 1 col-
umn vector with the noise samples associated to each
sample of zq[n], and βq is an MN × 1 column vector
composed of N subvectors of size M with a structure
identical to the one shown in Eq. (10), but

βq[n] = [β1,q[n], . . . , βM,q[n]]>, 1 ≤ n ≤ N. (15)

In [20], the activation shapes were obtained sam-
pling truncated and time-shifted Gaussian functions,2

φ(0)
m (t) = Gm(t) =

1

π1/4
√
σm

exp

(
− t2

2σ2
m

)
(16)

with σ2
1 < σ2

2 < . . . < σ2
M . As a better alternative, in

this paper we propose using the Mexican hat wavelet,
also known as Ricker wavelet,

φ(2)
m (t) = Rm(t)

=
2

π1/4
√

3σm

(
1− t2

σ2
m

)
exp

(
− t2

2σ2
m

)
,

(17)

which is the negative normalized second derivative of
a Gaussian function. Wavelets are frequently used in
bioinformatics, biometrics and image applications [30,
32] due to their ability to represent data compactly [11,
19, 27] and to estimate precisely details of ECG sig-
nals [18]. Furthermore, thresholding methods can be
easily derived to enhance the sparsity of the data rep-
resentation [3] and characterize biomedical data [2,9].
In particular, the mexican hat wavelet is often used in
electrocardiographic applications due to its similarity
to activations observed in real data [1, 5, 10, 14].Fig.
2 displays the wavelet-based overcomplete dictionary
used in the simulations, constructed usingM = 10 and
σm = 0.4m for m = 1, . . . ,M .

2Note that Eq. (16) corresponds to an energy-normalized Gaus-
sian instead of the standard unnormalized Gaussian used in [15,20].
The derivation of the normalized Gaussian, as well as the mexican
hat wavelet of Eq. (17), can be found in [17].

Fig. 2. Dictionary used in the simulations, constructed using the
mexican hat wavelet with M = 10 and σm = 0.4m for
m = 1, . . . ,M .

4. Proposed Sparse Solution: post-processed
LASSO

A procedure for obtaining a sparse solution βq for
Eq. (14), which fulfills the biological constraints is de-
veloped in this section. The proposed method, which is
a variation of the algorithm introduced in [34], follows
a two step approach: an initial sparse solution obtained
by applying a LASSO regularization is followed by a
greedy procedure for selecting only the largest coeffi-
cients that respect the biological constraints.

In order to obtain a sparse regressor, from which the
information on the arrival times can be retrieved, βq

is firstly estimated by means of LASSO [33]. Namely,
β̂
L1

q is given by

β̂
L1

q = arg min
βq∈RMN

{
1

2N

∥∥zq −Φβq

∥∥2

2
+ λq ‖βq‖1

}
,

where β̂
L1

q = [β̂
L1

q [1]>, . . . , β̂
L1

q [N ]>]> with β̂
L1

q [n]

= [β̂L1
1,q[n], . . . , β̂L1

M,q[n]]>, ‖βq‖1 denotes the L1

norm of βq and λq is the regularization parameter, that
indicates the trade-off between sparsity and estimation
precision: the higher the value of λq the more empha-
sis will be placed on obtaining a sparse solution, al-
though at the expense of an increased quadratic error
in the approximation.

However, in order to obtain an even sparser repre-
sentation that takes into account the physiological re-
strictions imposed on the signals, an additional step af-
ter the computation of β̂

L1

q is introduced. The samples
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associated to the arrival times of the spikes are esti-
mated recursively as follows:

n̂k,q = arg max
n=1,...,N

{
‖β̂

L1

q [n]‖1I
(
L(β̂

L1

q [n])
)}

s.t. |n̂k,q − n̂`,q| > Nmin, 1 ≤ ` ≤ k − 1,
(18)

where I(L(x)) is an indicator function, i.e., a function
that takes a value equal to one if the logical condition
L(x) is fulfilled and zero otherwise,

I
(
L(β̂

L1

q [n])
)

=

{
1, if L(β̂

L1

q [n]) holds
0, otherwise

, (19)

with the logical condition in this case being

L(β̂
L1

q [n]) = ηq < ‖β̂
L1

q [n]‖1 < ‖β̂
L1

q [n̂k−1,q]‖1,

(20)

and ηq andNmin user-defined thresholds. The first one,

ηq , is used to discard the β̂
L1

q [n] with a small L1 norm,
which contribute to improve the signal reconstruction
but provide no information on spike localization. A
value ηq = 3σq is used, as it has been found out empir-
ically to provide good results. The second one, Nmin,
accounts for the fact that consecutive pulses cannot
overlap. Thus, in practiceNmin is chosen in such a way
that Nmin/fs ≈ Tref , with Tref being the minimum
possible value of the refractory period: Tref = 100 ms
for sinus rhythm and Tref = 50 ms for AF.

The final procedure used in practice to implement
Eq. (18) for the q-th channel is an iterative greedy ap-
proach that follows the steps shown in Algorithm 2.
Following this procedure, a set of P arrival times are
obtained and used to construct an activation sequence
(also called spike train) composed of Kronecker deltas
at the locations of the activations,3

πq[n] =

P∑

k=1

δ[n− n̂k,q]. (22)

This clean sequence is used in the sequel to perform
the spectral analysis, as it is free from the effect of

3Note that we have not estimated R yet. Hence, we cannot sepa-
rate the contribution of each foci to Eq. (22) as we did in the original
signal model described in Section 3.1.

Algorithm 2 Iterative greedy approach for selection of
the final spikes for the q-th signal.

Initialization: set k = 1 and βmax =∞.
while βmax > ηq do

Select the index corresponding to the largest co-
efficient:

n̂k,q = arg max
n=1,...,N

‖β̂
L1

q [n]‖1. (21)

Set βmax = ‖β̂
L1

q [n̂k,q]‖1.
if βmax > ηq then

for ` = 1, . . . , k − 1 do
if |n̂k,q − n̂`,q| > Nmin then

1. Store n̂k,q and β̂
L1

q [n̂k,q].

2. Set k = k + 1 and β̂
L1

q [n̂k,q] = 0.
end if

end for
end if

end while

the unknown channels, hr,q(t), the particular dictio-
nary used, given by φm(t), and the noise, perturbations
and interferences, represented by wq[n].

As an example of the behavior of the proposed spike
detection procedure, Figs. 3, 4 and 5 show representa-
tive EGM signals and the corresponding detected ac-
tivation sequences for three cases: a synthetic signal
generated following the procedure described in Sec-
tion 6; a real signal recorded under sinus rhythm con-
dition; and a real AF signal. In all cases the detected
spikes correspond to true activations, although some
activations seem to be missed for the real AF signal.

5. Sparse Spectral Analysis

5.1. Deflation Approach for Peak Estimation

The spectral analysis is based on applying an iter-
ative deflation approach to the discrete Fourier trans-
form (DFT) of πq[n], extracting peaks with decreasing
amplitudes up to a user defined threshold. Hence, since
the spectral analysis is applied to the inferred sparse
activation sequence, this approach is called sparse
spectral analysis (SSA) [20]. The number of peaks ex-
tracted (after the post-processing described in Section



8 Luengo et al. / Blind Analysis of AF EGMs

Fig. 3. EGM signal and detected activation sequence for AF syn-
thetic data (R = 2, f1 = 3.20 Hz and f2 = 4.10 Hz) with
λ = 5 · 10−4, σ2 = 3 · 10−4 and Tref = 50 ms.

Fig. 4. EGM signal and detected activation sequence for real data
under sinus rhythm conditions (R̂ = 1 and f̂1 = 1.67 Hz) with
λ = 5 · 10−5 and Tref = 100 ms.

5.2) is an estimate of the number of existing foci, and
their locations an estimate of their frequencies.4

The first step in the SSA algorithm consists in split-
ting πq[n] into J windows containingNs samples with
or without overlap, as done in DFA (see Section 2).
Then, after bandpass filtering to focus on the desired
frequency band, Algorithm 3 is applied to the DFT of
each windowed segment, Πj

q(f) = F
{
πj
q [n]w[n]

}
for

1 ≤ j ≤ J , with w[n] denoting an appropriate win-
dowing function (the Hamming window in this case).
Algorithm 3 follows a deflation approach, searching
iteratively for the highest peak of |Πj

q(f)| within the

4The location of the highest peak (i.e., the first one extracted) cor-
responds to the dominant frequency. Thus, our approach always pro-
vides at least as much information as DFA.

Fig. 5. EGM signal and detected activation sequence for real data
under AF conditions(R̂ = 4, f̂1 = 2.30 Hz, f̂2 = 7.25 Hz,
f̂3 = 8.68 Hz and f̂4 = 3.28 Hz) with λ = 5 · 10−4 and
Tref = 50 ms.

Algorithm 3 Iterative Spectral Analysis for the q-th
signal.

for j = 1, . . . , J do
Initialize Γj

q = γq ·max |Πj
q(f)|.

Initialize i = 1 and πj
q,1[n] = πj

q [n]w[n].
while max |Πj

q,i(f)| ≥ Γj
q do

1. Calculate the spectrum: Πj
q,i(f) =

F
{
πj
q,i[n]

}
.

2. Obtain f̂ jq (i) = arg max
f
|Πj

q,i(f)|.

3. Filter the signal: πj
q,i+1[n] = πj

q,i[n] ∗
hnotch[n].
4. Set i = i+ 1.

end while
end for

frequency range that is physiologically interpretable
(0.5 ≤ fr ≤ 2 Hz for sinus rythm and 2 ≤ fr ≤ 10
Hz for AF) and adding it to the set of potential acti-
vation frequencies, f̂ jq . After each iteration a second-
order IIR digital notch filter is applied to the signal
centered around the detected frequency with bandwith
B3 dB = 2fΛ = 0.5 Hz to remove the detected peak
before searching for a new one. The algorithm stops
when the highest peak detected is below a threshold,
Γj
q = γq max |Πj

q(f)|, with γq user defined.
Figs. 6, 7 and 8 show the spectrum obtained itera-

tively for the single segments in Figs. 3–5. All these
figures display the spectrum obtained after each itera-
tion of Algorithm 3 (i.e., i = 1, . . . , R̂). Fig. 6 corre-
sponds to AF synthetic data (R = 2, but R̂ = 5 with
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f̂ = [8.18, 4.09, 9.58, 6.38, 3.20]> Hz); Fig. 7 corre-
sponds to sinusal real data (R̂ = 1 with f̂1 = 1.67 Hz);
and Fig. 8 corresponds to AF real data (R̂ = 9 with
f̂ = [9.60, 2.30, 7.25, 6.17, 8.68, 3.28, 9.87, 3.73,
6.92]> Hz). Note that these are the sets of frequencies
obtained before the post-processing described in Sec-
tion 5.2 to eliminate spurious frequencies.

Fig. 6. Example of the SSA for a single segment of AF synthetic
data with γ = 0.5: R = 2, f1 = 3.20 Hz and f2 = 4.10 Hz.

Fig. 7. Example of the SSA for a single segment of real data under
sinus rhythm conditions with γ = 0.4: R̂ = 1 and f̂1 = 1.67 Hz.

5.2. Post-Processing: Discarding Harmonics

The post-processing stage takes the set of potential
activation frequencies detected inside each window,
f̂ jq , and determines whether they belong to different ac-
tivation foci or not applying the following steps:

Fig. 8. Example of the SSA for a single segment of real data under
AF conditions with γ = 0.6: R̂ = 4, f̂1 = 2.30 Hz, f̂2 = 7.25

Hz, f̂3 = 8.68 Hz and f̂4 = 3.28 Hz.

1. Elimination of repeated frequencies. Two fre-
quencies, f1 and f2, correspond to the same fo-
cus if |f1 − f2| ≤ fΛ. If this happens, the one
associated to the smallest peak is deleted.

2. Analysis of 2/3 frequency relationships. Due to
the frequency range used in the analysis, given
a single frequency, f0, in practice at most two
harmonics can be found: f1 = 2f0 and f2 =
3f0. Thus, if the first and second harmonics of a
given frequency, f0, have been detected, their re-
lationship will be f1 = 2

3f2. This relationship is
checked here, keeping only the frequency associ-
ated to the highest amplitude in the spectrum.

3. Discovery of harmonics and subharmonics. If
two detected frequencies have a harmonic or sub-
harmonic relationship, only the one detected first
in the spectral analysis is kept, deleting the other.

4. Discovery of cross-modulation frequencies. An-
alyze whether each new element in f̂q is a cross-
modulation product of two previously detected
frequencies, i.e. whether f3 = mf1 + nf2 for
any two integers m and n. In this case, f3 will
be deleted. Given the frequency range of interest,
and assuming f2 > f1, only f2 ± f1 has to be
checked (i.e., m = ±1 and n = 1).

With this analysis, the number of activation foci
present in the EGMs, R̂j

q , as well as their frequencies,
f̂ jq , can be estimated. Continuing with the examples
shown in Figs. 6–8, the post-processing produces the
following results: in Fig. 6, R̂ = 2 with f̂1 = 8.18 Hz
and f̂2 = 3.20 Hz for AF synthetic data (note that the
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second estimated frequency corresponds to first true
one, whereas the first estimated frequency is the first
harmonic of the second true one, which has a higher
amplitude than the true frequency in this case); in Fig.
7, R̂ = 1 with f̂1 = 1.67 Hz for sinusal real data (ex-
pected, since there should be a single focus for sinus
rhythm with a frequency in the range 0.5–2 Hz); and
in Fig. 8, R̂ = 4 with f̂ = [2.30, 7.25, 8.68, 3.28]>

Hz for AF real data (note that 5 spurious frequencies
have been discarded).

6. Results

This section shows the results obtained after apply-
ing the spike extraction and spectral estimation algo-
rithms described in the previous sections. We first pro-
vide a summary of the overall algorithm, including the
important pre-processing stage, and describe the ex-
periments on synthetic data, which are used to validate
the proposed approach and expose the limitations of
spectral estimation. Results on real data obtained both
under sinus rhythm and AF conditions are then pre-
sented.

6.1. Overall Algorithm

Algorithm 4 summarizes all the steps for the analy-
sis of both the synthetic and the real data. Firstly, a pre-
processing stage is performed. Each EGM, obtained
through uniform sampling with fs = 977 Hz, is deci-
mated by a factor L = 2 (AF signals) or L = 4 (sinus
rhythm) after filtering using a 12 tap low-pass digital
filter with cut-off frequency ωc = π/L rad. to avoid
aliasing. The decimation factors used can be seen as a
compromise between performance (increasing L leads
to important activations not being detected) and com-
putational cost. This is followed by a discrete-time dif-
ferentiation for baseline removal, as detailed in Sec-
tion 4. After the pre-processing stage, Algorithm 2 is
applied on a channel-by-channel basis in order to ob-
tain a set of Q clean activation sequences. The spar-
sity parameter, λq , is set to an appropriate value ob-
tained after extensive simulations with synthetic data,5

whereas σq is assumed to be known for the synthetic
data and estimated from the EGMs (see Section 6.3)

5The results obtained are not too sensitive to the value of λq as
long as it remains within a proper range, i.e., as long as it is not too
small (thus resulting in a non-sparse least squares solution) or too
large (leading to small activations not being detected). See Table 2.

Algorithm 4 Blind analysis of EGMs: overview of the
full sparsity-aware estimation algorithm.
1. Pre-processing stage:

(a) Low-pass filtering and decimation by a factor
L = 2 (AF signals) or L = 4 (sinus rhythm).

(b) Discrete-time differentiation.

2. Spike extraction:

(a) Set λq .
(b) Set σq or estimate it from the data as shown in

Section 6.3.
(c) For each segment of each channel: obtain β̂L1

q

using LASSO (as described in Section 4) and
apply Algorithm 2 to discard invalid activations.

3. Discard invalid channels as shown in Section 6.3.
4. Spectral analysis of the clean activation sequence

given by Eq. (22):

(a) Divide the signal into segments composed ofN
samples with or without overlap.

(b) Apply Algorithm 3 to each segment of each
valid channel.

(c) Perform the post-processing described in Sec-
tion 5.2 to discard spurious frequencies.

for the real data. Invalid channels (i.e., channels with
too few or too many activations) are discarded follow-
ing the procedure described in Section 6.3. Finally, the
spectral analysis summarized in Algorithm 3 (followed
by the post-processing described in Section 5.2) is ap-
plied to each segment of each valid channel’s activa-
tion sequence. As a result, we obtain R̂j

q and f̂ jq for
q = 1, . . . , Q̂ and j = 1, . . . , J , where Q̂ ≤ Q is the
number of valid channels.

6.2. Synthetic Data

The synthetic data are generated following the ap-
proach shown in Algorithm 5. First of all, an acti-
vation sequence is constructed for each of the R la-
tent foci (R ∈ {1, 2, 3, 4}), whose frequencies, fr for
1 ≤ r ≤ R are selected uniformly within the physio-
logically meaningful range: fr ∈ [0.5, 2] Hz for sinus
rhythm (i.e., R = 1) and fr ∈ [2, 10] Hz for AF (i.e.,
R > 1). Their phases τr are also selected uniformly
within [0, 1/fr]. Furthermore, for R > 1 the newly
generated frequencies (f2, . . . , fr) cannot be equal to
previous ones or have any harmonic or cross-product
relationship with them, since this is unlikely to occur
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Algorithm 5 Generation of synthetic EGMs.
if sinus rhythm then

Set R = 1, fmin = 0.5 Hz, fmax = 2 Hz.
else

Set R ∈ {2, 3, 4}, fmin = 2 Hz, fmax = 10 Hz.
end if
Set r = 1.
while r ≤ R do

Draw fr ∼ U(fmin, fmax).
if fr valid then

Draw τr ∼ U(0, 1/fr).
Set r = r + 1.

end if
end while
Construct a global activation sequence: π̃q[n].
Discard activations violating the refractory period,
obtaining πq[n].
Construct synthetic EGM as πq[n] ∗ ψ[n] with ψ[n]
taken from [8].

in real situations. A global activation sequence is ob-
tained by concatenating all the activations from the dif-
ferent foci, and those activations placed within a time
distance less than Tref (Tref = 100 ms for R = 1
and Tref = 50 ms for R > 1) w.r.t. a prior activa-
tion are eliminated, since they would be masked by the
refractory period characteristic of cardiac cells in real
situations. Finally, the synthetic EGMs are obtained
convolving the pruned global activation sequence with
the typical activation shape given in [8] with a length
equal to 32 samples (i.e., time duration≈ 32.75 ms for
fs = 977 Hz). An example of an AF synthetic EGM
with R = 2, and the activations detected in that case,
can be seen in Figure 3.

Algorithm 4 is then applied to the synthetic data. In
a first stage, the spike extraction procedure described
in Section 4 is evaluated, focusing on the detection
probability. Table 1 shows the detection probability,
Pd, as a function of the signal to noise ratio (SNR) for
R ∈ {1, 2, 3, 4} using the optimum values of the spar-
sity parameter: λ = 5 · 10−5 for sinus rhythm (i.e.,
R = 1) and λ = 5·10−4 for AF (i.e.,R > 1). The good
behaviour of the proposed algorithm can be clearly ap-
preciated, with detection probabilities above 90 % for
SNR ≥ 30 dB when R = 1 and for SNR ≥ 25 dB
when R > 1. Table 2 displays Pd as a function of λ
for R ∈ {1, 2, 3, 4} when SNR = 30 dB, showing that
the results are not very sensitive to λ as long as it lies
within a proper range.

Table 1

Detection probability for synthetic data as a function of the SNR for
R = 1, . . . , 4. λ = 5 · 10−5 for R = 1, λ = 5 · 10−4 for R > 1

SNR (dB)

R 20 25 30 35 40

1 0.0910 0.8794 0.9350 0.9504 0.9523
2 0.0642 0.9523 0.9527 0.9505 0.9501
3 0.0693 0.9500 0.9507 0.9495 0.9498
4 0.0723 0.9479 0.9496 0.9473 0.9484

Table 2

Detection probability for synthetic data as a function of λ for R =
1, . . . , 4 and SNR = 30 dB

λ

R 5 · 10−4 10−4 5 · 10−5 10−5 5 · 10−6

1 0.7192 0.9285 0.9350 0.9266 0.9166
2 0.9527 0.9491 0.9463 0.9403 0.9362
3 0.9507 0.9477 0.9445 0.9346 0.9292
4 0.9496 0.9471 0.9435 0.9322 0.9243

In a second stage, the performance of the iterative
deflation approach for spectral analysis is evaluated.
Here, the goal is detecting the correct number of foci
and the results are presented in terms of the false alarm
probability, Pfa = Pr{R̂ > R}, and the non-detection
probability, Pnd = Pr{R̂ < R}. Fig. 9 displays the re-
sults for sinusal synthetic data (i.e., R = 1) as a func-
tion of the SNR and the relative threshold γ, showing
that Pfa is largely independent of the SNR (as long
as SNR ≥ 25 dB) and can be reduced to levels be-
low 0.1 by selecting γ ≥ 0.6. Note that, since at least
one peak (the dominant frequency) is always detected,
Pnd = 0 when R = 1. Regarding AF synthetic data
(i.e., R > 1), Fig. 10 displays ROC-type curves (i.e.,
1 − Pnd vs. Pfa) for R ∈ {2, 3, 4} and SNR = 30
dB.6 The good performance in all cases can be clearly
appreciated. Note that these results are homogeneous
with the simpler simulations performed in [20], where
artificial spike trains (i.e., without an activation shape
or masking due to the refractory period) and a fixed
loss probability for the spikes, Ploss, were used. The
probability of a spike being masked due to the refrac-
tory period of cardiac cells is Ploss ≈ 0.28 for R = 2,
Ploss ≈ 0.43 for R = 3 and Ploss ≈ 0.51 for R = 4.

6Strictly speaking, Receiver Operating Characteristic (ROC)
curves can only be used to illustrate the performance of a binary
classifier [12, 35]. However, by defining Pfa = Pr{R̂ > R} and
Pnd = Pr{R̂ < R}, useful information can be obtained from a
ROC-type curve.
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Fig. 9. Probability of false alarm for sinusal synthetic data (i.e.,
R = 1) as a function of the SNR and the relative threshold γ for
λ = 5 · 10−5 and Tref = 100 ms.

Fig. 10. ROC-type curve for AF synthetic data with R ∈ {2, 3, 4},
SNR = 30 dB, λ = 5 · 10−4 and Tref = 100 ms.

6.3. Real Data

In this section the proposed approach is tested
on real data from 5 different patients for both basal
rhythms: sinus rhythm (induced by a pacing device)
and AF (paroxysmal type). The study is composed
of 24 signal sets, each one containing 9–10 chan-
nels recorded during ablation surgery inside the Right
Atrium, using a lasso type sensor. Table 3 summa-
rizes all the relevant information about the signals in
the sudy. In all cases the measurements have been
taken in several points of the Right Atrium close to the
Pulmonary Veins, where the reentry circuits are more
common and ablation therapy usually takes place.

Algorithm 4 is applied to all the channels in the sig-
nal set on a channel-by-channel basis. The parameters
used (obtained from the extensive study performed on
the synthetic data) for sinus rhythm are λq = 5 · 10−5,

Fig. 11. Distortions observed in Sinus Rhythm (signal 2, channel 2)
and in AF Rhythm (signal 13, channel 10).

Tref = 100 ms and γq = 0.6; whereas for AF they
are λq = 5 · 10−4, Tref = 50 ms and γq = 0.6.7 The
noise variance is estimated from the data following a
simple procedure: construct a histogram of the EGMs
amplitudes and estimate σq as the standard deviation
of the equivalent zero-mean Gaussian that fits the low-
amplitude levels of the histogram.

Furthermore, thresholds are established on the min-
imum and maximum number of activations inside a
segment that can be expected from a physiological
point of view. If those thresholds are exceeded the sig-
nal is discarded as invalid, since it can provide mis-
leading results. This may happen when a sensor is
not in direct contact with the heart or due to distor-
tions produced by the movement of the measurement
(lasso) catheter, as it contacts the ablation catheter (a
very common situation during ablation surgery). Fig.
11 shows an example of this type of distortions both
for sinus and AF rhythms.

Examples of the signals and the detected spikes can
be seen in Figs. 4 and 5 for sinus rhythm and AF re-
spectively, and the corresponding single segment spec-
tra are shown in Figs. 7 and 8. In the sequel, two ex-
amples of the spectrograms obtained for sinus rhythm
and AF are shown in Figs. 12 and 13 respectively. On
the one hand, Fig. 12 shows the regular nature of sinus
rhythm, with a single focus and a stable frequency. On
the other hand, Fig. 13 shows the fragmented nature
of AF EGMs, with a variable number of foci per seg-

7Tref = 100 ms is a standard refractory period for cardiac cells.
However, there is evidence that AF is associated to a reduced refrac-
toriness [4, 31]. Hence, we use a smaller Tref = 50 ms for AF.
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Table 3

Information for Real Data signals with Sinus and AF Rhythm. RIPV
= Right Inferior Pulmonary Vein. LIPV = Left Inferior Pulmonary
Vein. RSPV = Right Superior Pulmonary Vein. LSPV = Left Su-
perior Pulmonary Vein. LPVA = Left Pulmonary Veins Atrium (the
place where both Superior and Inferior Left Pulmonary Veins come
together, where ablation isolation is generaly performed).

Signal Patient Type Location T (s) Q Observations

1 1 Sinusal RIPV 11.9 10 -
2 1 Sinusal LIPV 9.6 10 Channels 1, 2, 3, 9 and 10 have distortion
3 1 Sinusal RSPV 14.9 10 -
4 1 Sinusal LSPV 26.6 10 Channel 6 has distortion
5 2 Sinusal RSPV 71.9 10 -
6 3 Sinusal LSPV 57.9 10 Channels 2, 3, 9 and 10 have distortion
7 4 Sinusal LPVA 17.9 9 All the channels have distortion
8 4 Sinusal RIPV 57.9 9 All the channels have distortion
9 4 Sinusal RSPV 58.9 9 -

10 5 Sinusal LIPV 59.9 10 Channels 7, 8 and 10 have distortion
11 5 Sinusal LSPV 61.9 10 All the channels have distortion

12 1 AF RIPV 61.9 10 Channel 9 has distortion
13 1 AF LIPV 71.6 10 Channel 10 has distortion
14 1 AF RSPV 60.9 10 -
15 1 AF LSPV 59.6 10 -
16 2 AF RIPV 67.9 10 -
17 3 AF RSPV 68.9 10 -
18 3 AF LSPV 51.9 10 -
19 4 AF RIPV 59.9 9 -
20 4 AF RSPV 61.9 9 -
21 4 AF LPVA 63.9 9 -
22 5 AF LIPV 47.9 10 Channels 2 and 9 have distortion
23 5 AF RSPV 62.9 10 -
24 5 AF LSPV 50.9 10 Channels 1, 4 and 9 have distortion

ment (including segments where the signal appears to
be mostly noise) and no stable activation frequency.

Finally, a summary of all the information extracted
from the real data is provided in Table 4. This table
shows, for each signal of each patient, the number of
useful channels, Q̂, the number of segments available,
J , the average number of foci detected and the stan-
dard deviation, R̂ ± σR, and the vector with the aver-
age detected frequencies, f̂ , for f̂1, . . . , f̂JR̂K with JR̂K
denoting the result of rounding R̂ to the closest integer
number. First of all, from Table 4 it can be seen that
many channels are labelled as not valid, since chan-
nels where a single segment is wrong are discarded
in order to avoid erroneous conclusions. Concentrat-
ing on the valid patients, the algorithm provides the
expected results for sinus rhythm: it usually detects
a single focus (with two foci detected only occasion-
ally in some segments of some channels) with a fre-

Fig. 12. Example of a spectrogram for sinusal real data with detected
frequency in black (signal 5, channel 4).

quency range 0.845 ≤ f̂1 ≤ 1.665. Regarding AF
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Table 4
Results obtained after processing all the real data.

Signal Patient Type Q̂ J R̂± σR f̂

1 1 Sinusal 2 2 1.00± 0.00 [1.660] Hz
2 1 Sinusal 6 2 1.00± 0.00 [1.493] Hz
3 1 Sinusal 4 3 1.00± 0.00 [1.665] Hz
4 1 Sinusal 9 6 1.00± 0.00 [1.653] Hz
5 2 Sinusal 6 17 1.0098± 0.0048 [1.259] Hz
6 3 Sinusal 5 14 1.00± 0.00 [0.845] Hz
7 4 Sinusal 1 4 1.00± 0.00 [1.230] Hz
8 4 Sinusal 3 14 1.0238± 0.0113 [1.115] Hz
9 4 Sinusal 3 14 1.0714± 0.0305 [1.052] Hz

10 5 Sinusal 1 14 1.00± 0.00 [0.984] Hz
11 5 Sinusal 0 15 N. A. N. A.

12 1 AF 5 15 2.60± 0.31 [8.005, 7.534, 7.058] Hz
13 1 AF 1 17 3.41± 0.23 [6.726, 7.154, 7.820] Hz
14 1 AF 3 15 3.16± 0.31 [7.060, 6.910, 6.662] Hz
15 1 AF 2 14 3.11± 0.48 [7.858, 7.243, 7.952] Hz
16 2 AF 3 16 1.1875± 0.1742 [5.914] Hz
17 3 AF 0 17 N. A. N. A.
18 3 AF 0 12 N. A. N. A.
19 4 AF 6 14 2.00± 0.39 [5.994, 5.905] Hz
20 4 AF 3 15 1.71± 0.17 [5.766, 6.563] Hz
21 4 AF 1 15 2.60± 0.33 [6.311, 6.815, 6.983] Hz
22 5 AF 0 11 N. A. N. A.
23 5 AF 0 15 N. A. N. A.
24 5 AF 0 12 N. A. N. A.

Fig. 13. Example of a spectrogram for AF real data with detected
frequencies in black (signal 14, channel 1).

the results are harder to interpret, since there are many
fluctuations in R̂ and f̂ across different channels and
even segments, as shown in Fig. 13. However, look-
ing at the global picture shown by Table 4 provides
some interesting insights for the three patients with
valid data. For instance, patient 1 shows a large num-

ber of foci, JR̂K = 3, with high activation frequen-
cies, f̂r ∈ [6.662, 8.005] Hz. In contrast, for patient
2 we have JR̂K = 1 with f̂1 = 5.9 Hz on average, a
much lower activation frequency. Finally, patient 4 has
JR̂K = 2 with f̂r ∈ [5.766, 6.983], which corresponds
to an intermediate situation.

7. Conclusions and Perspectives

A completely novel signal processing methodology
for the blind analysis of atrial fibrillation (AF) electro-
grams (EGMs) has been presented in this paper. The
proposed approach is based on a new and more realis-
tic mathematical model for EGM signals that takes into
account the multiple unobserved latent foci (i.e., quasi-
periodic spike trains) typically present during AF. In
order to infer the number of foci and their frequen-
cies, a sparse reconstruction model (using a wavelet-
based overcomplete dictionary) has been introduced.
The reconstruction problem is then solved using an ini-
tial LASSO regularization followed by a second post-
processing stage which enforces the biological restric-
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tions imposed by the refractory period of cardiac cells.
The algorithm has been validated through a set of elab-
orate experiments with synthetic data, as well as a pre-
liminary study using 24 real data sets, both under sinus
rhythm and AF conditions.

Future work will focus on improving the spectral
analysis (taking into account lost activations due to the
masking effect caused by the refractory period and in-
troducing eigen-value-based methods) and extending
the proposed framework to the multi-channel case us-
ing some type of Group LASSO formulation.
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