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Abstract—We propose a new linear-in-the-parameters (LIP)
nonlinear filter based on kernel methods to address the problem
of nonlinear acoustic echo cancellation (NAEC). For this purpose
we define a framework based on a parallel scheme in which any
kernel-based adaptive filter (KAF) can be incorporated efficiently.
This structure is composed of a classic adaptive filter on one
branch, committed to estimating the linear part of the echo
path, and a kernel adaptive filter on the other branch, to model
the nonlinearities rebounding in the echo path. In addition, we
propose a novel low-complexity least mean square (LMS) KAF
with very few parameters, to be used in the parallel architecture.
Finally, we demonstrate the effectiveness of the proposed scheme
in real NAEC scenarios, for different choices of the KAF.

I. INTRODUCTION

Acoustic echo cancellation is still an open problem, mainly
due to the widespread use of mobile and hands-free devices.
These systems typically include low-cost transducers that
generate non-negligible nonlinear distortions. In such cases,
exclusively linear solutions are often not able to reduce the
echo signals, at the expense of the speech communication.
Nonlinear models are therefore becoming a key part of the
echo canceller.

A typical single-channel nonlinear acoustic echo cancel-
lation (NAEC) scenario is depicted in Fig. 1. The canceller
has access to two electric signals: the audio input signal x[n]
generated by the far-end user, which will be transduced and
propagated; and the microphone output d[n], modeled as:

d[n] = yh[n] + e0[n], (1)

where e0[n] represents additive noise at microphone location,
and yh[n] corresponds to the signal radiated by the loudspeaker
and propagated throughout the room from the emitter to the
microphone. Although the room propagation is an eminently
linear process that can be described by the acoustic impulse
response (AIR) h[n], the transduction and amplification pro-
cesses can generate some nonlinear distortion of the signal
x[n]. The aim of the canceller is to generate a replica of yh[n],
denoted y[n], to be subtracted from the microphone signal d[n]
in order to improve the communication.

Several different NAEC approaches have been proposed in
the recent literature. Some of them uses state-space models,
in particular a particle filter based on evolutionary strategies
[1] and Bayesian learning [2]. Another strategy focuses di-
rectly on hardware solutions that employ voltage and current
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Fig. 1. Typical single-channel NAEC scheme.

measurements [3]. A very important group of techniques for
NAEC is the class of linear-in-the-parameters (LIP) nonlinear
adaptive filters. These filters consist of a linear combination of
nonlinear representations of the input signal, and they include
Volterra filters [4], [5], Functional Links Adaptive filters
(FLAF) [6], [7], Even Mirror Fourier filters [8], cascaded
Kalman filters [9], Hammerstein group models [10], up to
schemes that propose physical models of the elements involved
in the NAEC scenario [11].

In this paper, we propose a specific type of LIP nonlinear
filters based on kernel methods. Kernel methods are a class
of machine learning techniques that provide a framework
for nonlinear signal processing, in which several nonlinear
techniques can be formulated as convex optimization problems
[12]. While traditionally they suffered from high computa-
tional requirements that made them unsuitable for real-time
applications, several low-complexity techniques have since
been developed that allow to design kernel adaptive filters
(KAF) [13], [14], for instance [15]–[20]. Recently, some of
these techniques have been applied to NAEC [21]–[23].

This work includes several contributions. In Section II we
provide a brief overview of kernel adaptive filtering and we
propose a novel, low-complexity online KAF algorithm. Then,
in Section III, we define a NAEC framework based on a
parallel structure similar to [6], in which any kernel adaptive
filter can be incorporated to model the nonlinear distortion.
In Section IV we test the proposed scheme with several
KAF algorithms in real NAEC scenarios, followed by our
conclusions and some brief future research lines in Section V.



II. ADAPTIVE FILTERING WITH KERNELS

A. Kernel methods

A standard procedure to extend the scope of linear filters
to nonlinear processing consists in mapping the input data
x ∈ X to a high-dimensional feature space by means of a
nonlinear transformation Φ(·) and then applying the linear
filtering algorithm in that space [24]. By operating in a high-
dimensional space, more degrees of freedom are available to
formulate a solution for the filtering problem. Nevertheless, the
additional dimensions also increase the computational load of
the algorithm, which may become excessive.

Kernel methods provide an efficient solution to this problem
by avoiding the explicit mapping of the data [12]. They exploit
a property from the theory of reproducing kernel Hilbert
spaces (RKHS) that allows to operate implicitly in the high-
dimensional feature space by solely replacing inner products
by Mercer kernels in the original problem formulation.

A Mercer kernel is any continuous, symmetric and positive
definite function κ : X × X → R, see [25]. The polynomial
kernel of order p, for instance, is defined as

κ(x,x′) = (x�x′ + c)p, (2)

where c is a trade-off parameter. According to Mercer’s
theorem, any Mercer kernel κ(x,x′) induces a mapping Φ(·)
from the input space to a high-dimensional feature space
(which is an inner product space) such that the following
relationship holds [26]

κ(x,x′) = Φ(x)�Φ(x′). (3)

In case of the polynomial kernel with p = 2, the mapping can
be calculated explicitly for L-dimensional data as

Φ(x) = [x1x1, . . . , x1xL, . . . , xLxL,
√
2cx1, . . . ,

√
2cxL, c].

The property (3), commonly known as the kernel trick,
is the building block of kernel methods. It implies that by
replacing the inner products by kernels in a linear algorithm,
a new algorithm is obtained that is equivalent to performing
the original algorithm in the feature space, without the need to
perform explicit calculations in this high-dimensional space.

Interestingly, in [27] it was shown that the coefficient space
of a Volterra series is an RKHS associated with a polynomial
kernel. This implies that the modeling of nonlinear systems
through Volterra filters, which require large amounts of data
and computation, can be carried out implicitly at much less
cost using polynomial kernels. A more commonly used kernel
is the Gaussian kernel κ(x,x′) = exp(−‖x − x′‖2/(2σ2)).
Nevertheless, this kernel function is much less efficient in
applications such as NAEC where the AIR is of very high
order.

Given a new datum x[n], the output of a linear filtering
algorithm in feature space can be written as

f(x[n]) = w̃�Φ(x[n]), (4)

where w̃ contains the coefficients of the filter. In order
to avoid explicitly calculating the involved high-dimensional

vectors, one can rely on the Representer theorem [28], which
guarantees that the solution in the feature space, w̃, can be
expressed as a linear combination of all previously observed
data x[i], transformed into feature space

w̃ =
∑
i

αiΦ(x[i]).

This expression allows to rewrite (4) as the kernel expansion

f(x[n]) =
∑
i

αiκ(x[i],x[n]) = α�k, (5)

in which α and k are vectors that hold the elements αi and
κ(x[i],x[n]), respectively.

B. A Kernelized Normalized Least Mean Squares Filter

Consider the well-known normalized least mean squares
filter (NLMS) [29], which performs the following update of its
solution ŵ each time it processes a new data pair (x[n], d[n]):

e[n] = d[n]− ŵ[n− 1]�x[n], (6a)

ŵ[n] = ŵ[n− 1] +
η

‖x[n]‖2 + ε
e[n]x[n], (6b)

where η is the learning rate and ε is a regularization factor.
Note that in the NAEC filtering scenario the datum x[n] refers
to the tap-delay input vector at the n-th time instant.

The update equations (6) of the NLMS algorithm can be
ported directly to the kernel feature space, where they read

e[n] = d[n]− w̃[n− 1]�Φ(x[n]), (7a)

w̃[n] = w̃[n− 1] +
η

‖Φ(x[n])‖2 + ε
e[n]Φ(x[n]). (7b)

In [17] a set of update equations for α[n] are obtained by
casting (7) into a least-squares projection framework, yielding

e[n] = d[n]−α[n− 1]�k, (8a)

α[n] =

[
α[n− 1]

0

]
+

η

‖ka‖2 + ε
e[n]ka (8b)

in which k is the n − 1-dimensional vector whose i-th
element is κ(x[i],x[n]), and ka = [k�, κ(x[n],x[n])]�. By
performing the update equations (8), a nonlinear version of
NLMS is obtained, which corresponds to linear filtering in
the high-dimensional feature space induced by the Mercer
kernel. Notice, though, that the computational complexity of
KNLMS for the n-th iteration is O(n). Furthermore, in order
to calculate k, all previous data x[i], i = 1, . . . , n− 1 need to
be stored. This set is referred to as the dictionary D.

C. A Simple and Practical KNLMS Algorithm

The update (8b) implies that the vector α[n] and the
dictionary D grow unboundedly over time. This growth stems
from the fact that the kernel expansion (5) relies explicitly on
all previously observed data. Kernel adaptive filters therefore
require a dictionary control mechanism that decides whether
to insert or to remove certain data, with the aim of building a
compact dictionary that represents the possible input data as
closely as possible.



A straightforward dictionary control mechanism for real-
time applications consists in pruning one datum from the dic-
tionary and inserting one new datum into it, in each iteration.
In order to decide which datum to prune, several algorithms
have been proposed [14]. However, most of them have O(M2)
complexity per iteration, where M is the dictionary size,
exceeding the cost of the parameter update of the adaptive
filter. A very simple and low-cost pruning strategy consists
in discarding the dictionary element with lowest associated
weight αi, as it has the lowest contribution in the functional
representation. This criterion is also very appropriate for
practical settings, as it does not add any free parameters to
the algorithm.

Algorithm 1 Simple Kernel Normalized Least Mean Squares
parameters: κ(·, ·), M , η.
initialize: D1 = {x[1]}, α[1] = d[1]/κ(x[1],x[1]).
for n = 2, 3, . . . do

if |D| = M then
Determine basis to remove: j = argmini αi[n− 1].
Remove j-th entry from D[n− 1] and α[n− 1].

end if
Calculate k, containing the kernels between D and x[n].
Calculate ka = [k�, κ(x[n],x[n])]�.
e[n] = d[n]−α[n− 1]�k (8a)
α[n] =

[
α[n− 1]�, 0

]�
+ η/(‖ka‖2 + ε) · e[n]ka (8b)

D[n] = D[n− 1] ∪ {x[n]}.
end for

We summarize the described simple KNLMS (SKNLMS)
algorithm in Alg. 1. While it serves as an illustration of the
design of a kernel adaptive filter, it is also a novel algorithm
that will be used in the experiments of Section IV.

III. PROPOSED NAEC SCHEME

An acoustic echo path always involves linear elements,
related to the acoustic propagation described by the AIR and to
the linear distortion of the transducer, and, increasingly often,
nonlinear distortions caused mainly by the power amplifier
and/or the loudspeaker. Different classes of structures have
been proposed for NAEC in the literature. Recently, a parallel
architecture was expressly proposed for NAEC, highlighting
its demonstrated versatility and robustness [6]. This structure
allows the decoupled adaptation of the linear and nonlinear
parts (which is why it is referred to as “split”), enabling an
independent selection of filtering settings such as adaptation
speed, input buffer length, etc.

Following this trend, the model we adopt is a parallel
construction similar to that of [6], composed of a linear and
a nonlinear adaptive filter. However, in this work, instead of
using a functional link adaptive filter for the nonlinear branch,
we propose to study the use of kernel adaptive filters to model
the nonlinearities of the echo path, motivated by their state-
of-the-art results in nonlinear adaptive filtering. The proposed
scheme is depicted in Fig. 2. We denote it the “split kernel
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Fig. 2. The proposed split kernel adaptive filtering scheme.

adaptive filter” (SKAF) due to its similarity with the split
functional link adaptive filter (SFLAF) from [6].

Alg. 2 lists the pseudo-code for the SKAF scheme. The two
training steps at the end are equivalent to an adaptation step
using the combined error e[n] = d[n]−yL[n]−yNL[n], which
is in line with [6]. However, by explicitly listing the desired
output as in Alg. 2, it becomes clear that any nonlinear filtering
algorithm with a training and prediction step can be fit into
this scheme. The proposed framework is therefore modular
and allows to take advantage of open source libraries such as
KAFBOX [30] which includes numerous KAF algorithms. A
Matlab implementation of the SKAF and SKNLMS algorithms
is available at http://gtas.unican.es/people/steven.

Algorithm 2 Split Kernel Adaptive Filtering
Initialize NLMS and KAF on data pair(x[1], d[1]).
for n = 2, 3, . . . do

Given input x[n], generate output yL[n] of NLMS.
Given input x[n], generate output yNL[n] of KAF.
Train NLMS on data pair (x[n], d[n]− yNL[n]).
Train KAF on data pair (x[n], d[n]− yL[n]).

end for

There is, however, a restriction on the KAF algorithm that is
plugged into this scheme. In particular, the algorithm should
have tracking capability, which is not always the case (see
[14]), and it should have an efficient mechanism for managing
the dictionary size in order to allow real-time application. In
the experiments we will study the results of two such kernel
adaptive filters, one of the LMS class (as proposed in Section
II) and one of the recursive least squares (RLS) class.

Finally, we remark that several authors have started studying
the application of kernel adaptive filtering in NAEC recently.
In particular, [21] modeled the acoustic echo path as a single
kernel adaptive filter using a sum of a linear and a nonlinear
kernel. In that approach, however, the linear filter is con-
ditioned by the restrictions imposed by the kernel adaptive
filter, such as the dictionary size. And in [23] a parallel
construction of filters was proposed, similar to our scheme,
though the nonlinear part was modelled by a more complex
multi-Gaussian kernel adaptive filter.
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Fig. 3. Performance comparison in terms of ERLE between a linear filter, a
SFLAF, a SKAF with SKNLMS and a SKAF with KRLS-T, in case of quiet
speech input. The speech is shown in black (original) and grey (distorted).

IV. EXPERIMENTAL EVALUATION

We evaluate the performance of the proposed method on real
data from a classic scenario of acoustic echo cancellation, i.e.
a hands-free desktop teleconference. Experiments take place in
a typical office room with a relatively low level of background
noise, thus providing sufficiently high signal-to-noise ratio
(SNR). This condition has been chosen in order to evaluate
the proposed canceller fairly, avoiding external interferences
that could require further processing modules (e.g., double-
talk detectors). For the same reason, we used a high-quality
microphone (AKG C562 CM with omnidirectional pattern),
which allows us to focus on the nonlinearities produced by the
loudspeaker. On the other hand, at 40 cm from the microphone,
we placed a low-cost commercial loudspeaker, capable of
introducing significant distortions. The input signal is male
speech recorded at 16 kHz sampling frequency. The duration
of the experiments is 20 seconds. We consider two different
volume levels, which entail different nonlinearity degrees. In
the first experiment, we consider a typical volume level of
a quiet speech conversation, without significant fluctuations.
In this condition, loudspeaker distortions are mild and they
cannot be perceived by the user. However, they do affect
the echo cancellation, thus degrading the performance in the
absence of a nonlinear modeling. In a second experiment, we
evaluate the NAEC performance in more adverse conditions,
caused by a louder volume level of the loudspeaker, which
produces stronger distortions. In this case, besides provoking
a performance decrease, such distortions also generate an
annoying audible crackling effect.

We compare the performance of three different algorithms:
SFLAF [6] (which has obtained better performance than
Volterra filters), the proposed SKAF scheme and linear NLMS.
The SKAF scheme is applied with two different kernel
adaptive filters: once with the computationally less expensive
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Fig. 4. Performance comparison in terms of ERLE between a linear filter, a
SFLAF, a SKAF with SKNLMS and a SKAF with KRLS-T, in case of speech
input with a loud volume level of the loudspeaker.

SKNLMS algorithm, and once with the more sophisticated
kernel recursive least-squares tracker (KRLS-T) algorithm
from [18], [19]. While RLS-based algorithms have higher
complexity than LMS-based algorithms, we equip the KRLS-T
algorithm with a far smaller dictionary than SKNLMS so that
both run times are similar (and lower than that of SFLAF).

In the first experiment, the parameters are set as follows: the
linear filter in all algorithms has 150 taps; NLMS has learning
rate η = 0.5 and regularization ε = 10−3; the nonlinear branch
of SFLAF uses trigonometric expansion functions and has a
buffer of 150 samples, expansion order 5, memory order 2,
learning rate 0.1, and regularization 0.001; both configurations
of SKAF use a buffer of 20 samples and the polynomial kernel
of order p = 3 with c = 1, and whereas the SKNLMS imple-
mentation uses a dictionary size M = 1000 and learning rate
0.5, the KRLS-T implementation uses M = 100 and forgetting
factor λ = 0.999. In the second experiment the following
parameters are changed: the nonlinear branch of SFLAF has
a buffer of 100 samples, learning rate 0.2, and regularization
0.1; both configurations of SKAF use the polynomial kernel
of order p = 2, and KRLS-T has forgetting factor λ = 0.99.

The performance of the algorithms is evaluated in terms of
the Echo Return Loss Enhancement (ERLE), defined as

ERLE[n] = 10 log10

(
E{d2[n]}
E{e2[n]}

)
,

where the operator E{·} denotes the mathematical expectation,
which is approximated by smoothing its instantaneous values.

The ERLE performances for both experiments are displayed
in Figs. 3 and 4, respectively. For better readability of the fig-
ures, we show a window of 2.5 out of 20 seconds of the ERLE
behavior. The results for SKAF (SKNLMS) are similar to
those obtained for SFLAF. This is an interesting result, given
the simplicity and lower run time of SKAF (SKNLMS). By
replacing SKNLMS with KRLS-T in SKAF a very significant



performance boost is obtained: This algorithm consistently
outperforms all other algorithms, often by a margin of more
than 5 dB in the first experiment. The gain in the second
experiment is smaller, as expected in the presence of stronger
non-linearities, though it is still noticeable.

V. CONCLUSIONS

We have studied a split kernel adaptive filtering architecture
in which a kernel adaptive filtering algorithm is employed
in parallel with a linear adaptive filter, for application in
nonlinear acoustic echo cancellation. We have designed a low-
complexity LMS-type kernel filter that fits into this framework.
Two experiments on real data show that the proposed frame-
work with the novel SKNLMS filter yields good results. By
using the more sophisticated KRLS-T kernel adaptive filter in
the proposed framework we achieve results that surpass the
state-of-the-art SFLAF algorithm.

Several future research directions lie ahead. First, new
and more robust filtering schemes can be studied, such as
collaborative schemes with convex combinations of filters.
Second, the proposed ideas can be applied in other applications
such as equalization and non-real-time applications.
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