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Abstract—This paper derives an asymptotic generalized likeli-
hood ratio test (GLRT) and an asymptotic locally most powerful
invariant test (LMPIT) for two hypothesis testing problems: 1)
Is a vector-valued random process cyclostationary (CS) or is it
wide-sense stationary (WSS)? 2) Is a vector-valued randomprocess
CS or is it nonstationary? Our approach uses the relationship be-
tween a scalar-valuedCS time series and a vector-valuedWSS time
series for which the knowledge of the cycle period is required. This
relationship allows us to formulate the problem as a test for the
covariance structure of the observations. The covariance matrix
of the observations has a block-Toeplitz structure for CS andWSS
processes. By considering the asymptotic casewhere the covariance
matrix becomes block-circulant we are able to derive its maximum
likelihood (ML) estimate and thus an asymptoticGLRT.Moreover,
using Wijsman’s theorem, we also obtain an asymptotic LMPIT.
These detectors may be expressed in terms of the Loève spectrum,
the cyclic spectrum, and the power spectral density, establishing
how to fuse the information in these spectra for an asymptotic
GLRT and LMPIT. This goes beyond the state-of-the-art, where
it is common practice to build detectors of cyclostationarity from
ad-hoc functions of these spectra.
Index Terms—Cyclostationarity, generalized likelihood ratio test

(GLRT), locally most powerful invariant test (LMPIT), Toeplitz
matrix, Wijsman’s theorem.

I. INTRODUCTION

A zero-mean, discrete-time, complex-valued random
process is said to be (second-order) cyclostationary

(CS) if its covariance function is periodic with period [1],
[2]:
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The period is a natural number greater than 1 because
corresponds to a wide-sense stationary (WSS) process. CS sig-
nals model phenomena generated by periodic effects in commu-
nications [3] (where the periodicity is induced by modulation,
sampling, and multiplexing operations), meteorology and cli-
matology [4]–[6], oceanography [7]–[9], astronomy [10], and
economics [11]–[13]. This plethora of applications has created
significant interest in the analysis of CS signals as evidenced by
the published literature [14], [15].
The detection of cyclostationarity is particularly important,

for two main reasons. Firstly, if a signal is CS then this fact
can usually be exploited in applications to improve estimation
performance. However, treating a signal as CS—when in fact
it is not—generally leads to very poor performance. Secondly,
the presence or absence of CS signals can be used to trigger
other actions. This is the case in cognitive radio (CR), which
is a new communications technology that has the potential to
boost spectrum usage [16]–[18]. The main idea behind CR is
the opportunistic access of some users (so-called “cognitive” or
“secondary” users) to a given frequency band when the rightful
owner of the band (the primary user) is not transmitting. Spec-
trum sensing (the detection of vacant channels) is therefore a
key ingredient to CR [19]. One of the most important properties
that can be exploited to detect primary users is the cyclostation-
arity of communications signals, but other properties, such as
temporally and/or spatially uncorrelated noise, can be also uti-
lized. For these reasons, detection of cyclostationarity has re-
ceived much attention in the past [11], [20]–[23] and is now re-
ceiving a lot of renewed attention in the context of CR [24]–[31].
Detectors of cyclostationarity can roughly be classified into

the following three categories:
1) Techniques based on the Loève (or dual-frequency) spec-
trum. For a harmonizable process, the Loève spectrum [32]
is defined as the 2D-Fourier transform of the correlation
function . The support of the Loève spectrum of
a CS process is on lines parallel to the stationary manifold
[33], whereas for WSS processes the support is only one
line, the stationary manifold. Several detectors [11], [20],
[21] have been proposed that exploit this by comparing the
values of the Loève spectrum along the lines that corre-
spond to the CS components to the values along the line
that corresponds to the WSS component. The critical ques-
tion is what function to use for this comparison. The early
works [11], [20], [21] use ad-hoc approaches, which are not
grounded in established statistical principles. We will see
later that our approach can indeed be interpreted as com-
paring the strengths of the CS and WSS components in the
Loève spectrum, but in a statistically sound fashion.
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2) Techniques based on testing for nonzero cyclic covariance
function or cyclic spectrum. There are several works
that test whether or not the estimated cyclic covariance
function or cyclic spectrum are zero [22], [28], [34], [35].
This, however, raises the questions: What cycle frequen-
cies (which harmonics) and which lags of the covariance
function (or global frequencies in the cyclic spectrum)
must be selected and how should they be combined? Since
our detectors admit an interpretation in terms of the cyclic
spectrum they show how to merge the information at each
cycle frequency and global frequency.

3) Techniques based on testing for correlation between the
process and a frequency-shifted version thereof. It was
proven in [36] that there exists correlation between the
CS process and , which is
shifted by the cycle frequency . This idea was first used in
[37] to estimate the number of CS signals impinging on an
antenna array, by applying canonical correlation analysis to
the signals and their frequency-shifted versions. This has
also been done in the context of CR to detect the presence
of primary users [31]. These two papers test the correla-
tion in the temporal domain, although it is also possible to
do so in the frequency domain [23], where the frequency
coherence between and is used as the detector
statistic. However, these detectors only consider one lag
or frequency and one cycle frequency, and it is not clear
how to select these without knowledge of the true cyclic
correlation. If we were to consider multiple lags, it is not
apparent how we would optimally fuse the information at
different lags or frequencies and cycle frequencies.

Most of the approaches in the literature are for scalar time
series and relatively few works have considered vector-valued
time series [24]–[26], [28], [31], even though some of the scalar
detectors could easily be extended to multivariate time series.
All the detectors cited here consider testing cyclostationarity vs.
wide-sense stationarity. We are not aware of any detectors that
test cyclostationarity vs. nonstationarity.
As we have already mentioned, most detectors of cyclo-

stationarity are ad-hoc detectors, which are not derived from
accepted statistical principles, such as the generalized likeli-
hood ratio test (GLRT), the uniformly most powerful invariant
test (UMPIT), or the locally most powerful invariant test
(LMPIT), etc. Our paper closes this gap. Our approach uses
the relationship between a scalar-valued CS time series and a
vector-valued WSS time series [33] to formulate the problem
as a test for the covariance structure of the observations. The
derivation of the GLRT is relatively straightforward, and the
main difficulty is that there is no closed-form maximum likeli-
hood (ML) estimator of the covariance matrices because these
are block-Toeplitz. This difficulty is addressed by considering
the asymptotic case where the covariance matrices become
block-circulant. The derivation of the LMPIT is a bit more
involved. The typical approach for deriving the LMPIT is based
on the maximal invariant statistic. Then its distribution under
both hypotheses is obtained and the ratio of the distributions is
calculated. If this ratio (or a transformation thereof) does not
depend on unknown parameters it is the UMPIT. If it does, we
may instead obtain the LMPIT for close hypotheses. Yet this

approach only works for a very few selected problems. Here,
we instead use Wijsman’s theorem [38]–[41], which allows us
to obtain the ratio of the distributions of the maximal invariant
statistic without actually deriving the distributions or even
the maximal invariant statistic. Incidentally, both GLRT and
LMPIT are functions of coherence matrices, as are the detectors
for spatial correlation in [42]–[44].
The paper is organized as follows: Section II presents the de-

tection problem and formulates it as a test for the covariance
structure of the observations. In Section III, we reformulate the
problem in the frequency domain. Sections IV and V derive the
GLRT and the LMPIT, respectively. An illuminating interpreta-
tion of the detectors in the Loève frequency domain is presented
in Section VI. Finally, Section VII numerically evaluates the
performance of our detectors.

II. PROBLEM FORMULATION

We consider the problem of testing whether a zero-mean mul-
tivariate time series, observed by sensors or antennas, isWSS,
or CS with known cycle period , or nonstationary (NS). That
is, we are interested in the following three hypotheses:

(1)

where is a multivariate process of dimension ,
assumed proper complex Gaussian [45]. Given samples of

, which are collected in the vector

(2)

the hypotheses in (1) may be formulated as

(3)

where is the covariance matrix under the th
hypothesis. Hence the hypothesis test is based on the structure
of .
The NS case is the simplest because does not have any

particular structure beyond being positive definite,

...
. . .

...

(4)
where is the NS ma-
trix-valued covariance sequence. The structure under station-
arity is also easy to obtain [46], and the covariance matrix is

...
. . .

... (5)

where is the WSS
matrix-valued covariance sequence. It is clear that is block-
Toeplitz with block size (the number of antennas or sensors).
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Fig. 1. Structure of the covariance matrix for and under the three considered hypotheses. Each square corresponds to an matrix. (a) Stationary
case; (b) Cyclostationary case; (c) Nonstationary case.

That is, the th block is . Finally, to find the
structure of under cyclostationarity, we follow our previous
work [47]. We arrange in blocks of size to obtain the
time series

(6)

which is WSS [33]. The vector may therefore be rewritten in
terms of as

(7)

which is a stack of samples of the WSS process . Hence,
the covariance matrix is also block-Toeplitz, but with block size

:

...
. . .

... (8)

where is the matrix-
valued WSS covariance sequence. To sum up, the covariance
matrix is block-Toeplitz under and , but only positive
definite under (see Fig. 1).
One final comment is in order. Only the structure of the co-

variance matrices is known under each of the three hypotheses,
but the particular values, that is, the matrix-valued covariance
sequences, are unknown. Thus, the only information available
a priori is the cycle period.

III. REWRITING THE HYPOTHESES: ASYMPTOTIC CASE

Since the covariance matrices are unknown, the hypotheses
are composite, in which case the GLRT, the UMPIT and the
LMPIT are typical approaches for binary tests [48], [49]. For the
GLRT we need the ML estimates of the unknown parameters,
which, in our case, are the covariance matrices. As we have
seen, under stationarity and cyclostationarity these covariance
matrices are block-Toeplitz, for which there is no closed-form
ML estimate [49]. Thus, we will follow an approach similar to
the one proposed in [43], [46], [47], which enables us to derive
an asymptotic GLRT.

Assume that we are given independent and identically dis-
tributed (i.i.d.) realizations of the vector . The like-
lihood of these observations under is

(9)

where the sample covariance matrix is

(10)

Since there is no closed-form solution for ML estimates of
block-Toeplitz matrices we approximate them by block-cir-
culant matrices. Block-Toeplitz matrices are asymptotically
equivalent to block-circulant matrices [50], [51], and the like-
lihoods converge in mean-square, as shown in the following
theorem.
Theorem 1: As , the log-likelihood random vari-

able (RV), parameterized by a block-Toeplitz covariance ma-
trix, converges in mean-square (sometimes called l.i.m.) to the
log-likelihood RV parameterized by a properly selected block-
circulant covariance matrix:

where , and is the block-Toeplitz
covariance matrix with a generic block size ,

...
. . .

... (11)

The matrix-valued covariance sequence that generates is
, and is the block-circulant

covariance matrix whose th block is .
Equivalently, the block-circulant matrix may be factored as

(12)
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Here, is the Fourier matrix of dimension , and is a
block-diagonal matrix, whose th block is given by the discrete
Fourier transform (DFT) of the covariance sequence,

(13)

with . Thus, is simply the cross-spectral
matrix (CSM) at frequency .

Proof: The proof follows from [46] with a few
modifications.
Corollary 1: The log-likelihood for the block-circulant co-

variance matrix may be rewritten as

(14)

where is the sample CSM at frequency .
Taking into account Theorem 1, the hypotheses in (3) are

asymptotically equivalent to

(15)

For nonstationary data, is positive definite without further
structure. For cyclostationary data, is block-circulant with
block size and may therefore be factored as

(16)

where is an unknown positive definite block-diagonal ma-
trix of block size . For stationary data, is a block-circu-
lant covariance matrix with block size , which may be factored
as

(17)

where is a positive definite block-diagonal matrix of block
size .
Let us now transform the observations as

(18)

where is the commutation (or “stride permutation”) ma-
trix [52], which fulfills , where is
a matrix. Basically, this transformation is a particular
reordering of the frequencies in the DFT of . We formulate
the hypothesis test in terms of instead of and must therefore
obtain the covariance matrix of under the three hypotheses.
Under , the covariance matrix is

(19)

which is another unknown positive definite matrix. Under ,
the covariance matrix of the transformed observations is

(20)

and, taking into account (17),

(21)

where we have used .
Thus, the covariance matrix is just a scaled and permuted ver-
sion of the blocks of , and since is unknown, is also
an unknown positive definite block-diagonal matrix. Under ,
the derivation is more involved and based on the Cooley-Tukey
theorem.
Theorem 2 (Cooley-Tukey): The Fourier matrix may be fac-

tored as

(22)

where is a diagonal matrix of twiddle factors.
Proof: See [53].

The covariance matrix under is given by

(23)

and, using the factorization in (16), it becomes

(24)

With

(25)

and the associative property of the Kronecker product, we obtain

(26)

Applying Theorem 2, the term inside the square brackets
becomes

(27)

which yields

(28)

It is clear that the Kronecker product of the matrix inside the
square brackets and the identity matrix results in a block-diag-
onal matrix with block size . Since the covariance matrix
under is an unknown positive definite block-diagonal ma-
trix multiplied on the left by a block-diagonal matrix with the
same block size and on the right by the Hermitian transpose of
this matrix, is also an unknown positive definite block-diag-
onal matrix with block size .
Putting all the pieces together, the hypotheses are

(29)
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where is a positive definite matrix without further structure,
is a positive definite block-diagonal matrix with block size
, and is also a positive definite block-diagonal matrix but

with block size . Hence, under all three hypotheses, the covari-
ance matrices are block-diagonal. contains just one block of
size . This fact will simplify the derivations of the
tests. Moreover, an insightful interpretation of these covariance
matrices is presented in Section VI.

IV. DERIVATION OF THE GLRT
In the previous section, we showed that the three covariance

matrices are block-diagonal without further structure but dif-
ferent block sizes. In this section, we derive the GLRT for the
case of two block-diagonal with arbitrary block sizes. Later on,
these block sizes are chosen as those in (29) to derive the asymp-
totic GLRT for the tests CS vs. WSS signals, and CS vs. NS sig-
nals. The derivation of the LMPIT follows in Section VI.

A. GLRT for Block-Diagonality With Different Block Sizes
Consider the following hypothesis test

(30)

where is a block-diagonal matrix with block size and
without further structure, i.e. , and is a block-di-
agonal matrix with block size and without further structure,
i.e. . Of course, must be a multiple of because
the sizes of and are the same.
The generalized likelihood ratio (GLR) for the test in (30) is

given by

(31)

where the maximization is carried out over the set of positive
definite block-diagonal matrices, with block size under

and block size under . In the following theorem we
present the solution to (31).
Theorem 3: The GLRT in (31) is

(32)

where 0, 1, builds a block-diagonal
matrix from the blocks on the main diagonal
of by setting the off-diagonal blocks equal to zero,

is a
coherence matrix, and is the sample covariance matrix of

.
Proof: Under both hypotheses, we need theML estimate of

a block-diagonal covariancematrix. The likelihood for a generic
block size is given by

(33)

Taking into account the block-diagonal structure of , the like-
lihood becomes

(34)

where and are the th blocks of dimensions on the
diagonal of and , respectively. Since has no structure
besides being positive definite, its ML estimate is ,
which is easily proven using the derivatives in [54]. Finally,
the proof is concluded by building a block-diagonal matrix with
blocks , with , which yields

(35)

Applying the ML estimator in (35) directly to the block-diag-
onal matrices in (30), and plugging these back into (31), the
proof follows.

B. GLRT for Testing Cyclostationarity vs. Wide-Sense
Stationarity
The generalized likelihood ratio (GLR) for testing cyclosta-

tionarity vs. wide-sense stationarity is

(36)

for which wemay use the results in the previous subsection. The
solution is presented in the following theorem.
Theorem 4: Asymptotically, as , the GLR for the test
vs. is

(37)
where is a
coherence matrix, and the th block on the diagonal
of is denoted by .

Proof: The proof is a direct application of the GLRT in the
previous subsection.
It is clear that is invariant to multiplications by a nonsin-

gular block-diagonal matrix with block size . This means the
GLRT is asymptotically invariant to multiplications in the fre-
quency domain, hence invariant to MIMO linear filtering (cir-
cular convolution) of . For finite , this invariance only
holds approximately.
Interestingly, using the properties of the determinant, the

above GLRT may be rewritten as

(38)
where is the estimate of the CSM of the WSS vector
representation , given by

(39)
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where

(40)

Similarly, is the estimate of the CSM of , given by

(41)

with

(42)

For the scalar case, , this GLRT was derived in [47].

C. GLRT for Testing Cyclostationarity vs. Nonstationarity
For the test against , the GLR is

(43)

and the solution is presented next.
Theorem 5: Asymptotically, as , the GLR for the test
vs. is

(44)

where is a co-
herence matrix.

Proof: The proof is a direct application of Theorem 3.
We note that while theML estimate of is an asymptotic es-

timate, the estimate is an ML estimate for finite values of ,
provided that . Moreover, the GLRT is invariant to
multiplications by any nonsingular block-diagonal matrix with
block size . Hence, the GLRT for vs. is asymptoti-
cally invariant to linear filtering (circular convolution) of
(rather than when testing vs. ).
Finally, it is also worth noting that this approach can be used

to show that the GLR for the test WSS vs. NS is .
However, we do not consider this test in more detail since it is
outside the scope of the paper.

V. DERIVATION OF THE LMPIT
In this section, as in the previous one, we test block-diago-

nality with two different block sizes, but now using the LMPIT.
To do so, we first study the invariances of the hypothesis test
and use those to derive the LMPIT. We employ Wijsman’s the-
orem to avoid having to derive the maximal invariant statistic

and its distributions. For a more detailed review of Wijsman’s
theorem, see Appendix A. Then, the aforementioned LMPIT is
particularized to the tests cyclostationarity vs. wide-sense sta-
tionarity and cyclostationarity vs. nonstationarity.

A. LMPIT for Block-Diagonality With Different Block Sizes
In this subsection we derive the LMPIT for the test in (30),

and we use this LMPIT to obtain the asymptotic LMPITs for
testing cyclostationarity vs. wide-sense stationarity and cyclo-
stationarity vs. nonstationarity. The first step is to find the in-
variances of the detection problem. First, we may restrict our
attention to linear operations since Gaussianity must be pre-
served. We may also multiply by any nonsingular block-di-
agonal matrix, with block size , without modifying the struc-
ture of the hypothesis test. Moreover, we can permute blocks of
size without modifying the block-diagonal structure of ,
and within these blocks, it is also possible to permute
blocks of size without modifying the block-diagonal struc-
ture of . Therefore, the invariance group is

(45)

where , , , denotes the set
of -dimensional permutation matrices and is the set of
nonsingular block-diagonal matrices with block size . Here,
is the ratio between the size of the covariance matrices and
, that is, the number of blocks of dimension , and

is the ratio between and , that is, the number of blocks of
dimension that forms a block of size .
Given this invariance group, Wijsman’s theorem [38] allows

us to write the ratio of the distributions of the maximal invariant
statistic shown in (46) at the bottom of the page. In (46) we
sum over all possible permutations since the permutation group
is a finite group. In its current form, is a function of the un-
known parameters, which prevents the derivation of the UMPIT
or LMPIT. In the following, we will simplify this expression to
derive the LMPIT.
Lemma 1: The ratio may be simplified to

(47)

where and

(48)

Here is the th block on the diagonal of , which
is also block-diagonal with blocks . The coherence
matrix is defined in the previous section, and it is a block-

(46)
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diagonal matrix, with block size . The th block is denoted
by1 , which is itself a block matrix with blocks
denoted by . Finally, is the th block on the
diagonal of

(49)
and denotes the th block of of size .

Proof: See Appendix B.
We may now present the LMPIT in the following theorem.
Theorem 6: The LMPIT statistic for the test in (30) is

(50)

Proof: See Appendix C.

B. LMPIT for Testing Cyclostationarity vs. Wide-Sense
Stationarity
We present next the asymptotic LMPIT for testing cyclosta-

tionarity vs. wide-sense stationarity.
Theorem 7: Asymptotically, as , the LMPIT statistic

for testing vs. is

(51)

where is the th block of , which is defined in
Section IV.

Proof: Particularize the LMPIT in Theorem 6 to
, and .
Again, the LMPIT is invariant to MIMO linear filtering (cir-

cular convolution) of the sequence , which shows that the
detection problem does not depend on the particular cross-spec-
tral matrix (CSM) of .
The LMPIT in Theorem 7 is similar in form to the LMPIT

in [30] but there are differences worth mentioning. First, the
derivations are different: We used the relationship between a
scalar-valued CS process and a vector-valued WSS process,
whereas [30] works in the frequency domain. Moreover, we
consider the general multivariate case and an arbitrary
CSM under , whereas [30] treats the scalar case and
assumes a white process under the null hypothesis.

C. LMPIT for Testing Cyclostationarity vs. Nonstationarity
Theorem 8: Asymptotically, as , the LMPIT statistic

for testing cyclostationarity vs. nonstationarity is

(52)

where the coherence matrix is defined in Section IV.
Proof: The proof is a direct application of Theorem 6. Al-

ternatively, it may also be proven using the results in [44].
Similarly to the GLRT, the LMPIT is invariant to MIMO

linear filtering (circular convolution) of , rather than .
This invariance allows us to whiten the cyclic CSM, which
shows that the detector cannot be a function of the cyclic CSM.

1Note that for the sake of notational simplicity, when there is no confussion,
we drop the super-index and sub-index .

VI. INTERPRETATION OF THE DETECTORS

In this section we give an insightful interpretation of the
GLRT and LMPIT in the frequency domain, for the test CS vs.
WSS signals. Unfortunately, the other hypothesis test CS vs.
NS signals does not easily admit an illuminating interpretation.
Let us start with the covariance matrix of , and its relationship
to the Loève spectrum and the cyclic CSM. Recall that the
transformation

(53)

is a column vector containing -dimensional DFTs
of the sequence , . Hence, its

covariance matrix contains samples of the Loève spectrum, with
the th block of dimension given by

(54)

where is the Loève spectrum of at fre-
quencies and . To study the effect of the commutation ma-
trix, let us rewrite the indices of the blocks of as

(55)

where , and .
According to [55], the commutationmatrix permutes the indices
as

(56)
(57)

and the blocks of become

(58)

where

(59)

Thus, the matrix is composed of blocks of size ,
where each element is a matrix of size .
Now we look at the matrices and . The former is a

block-diagonal matrix with block size and is composed by
the blocks of that correspond to , i.e., with

That is, the blocks of are the Loève spectrum with
the frequencies separated by a multiple of . On the other
hand, is also block-diagonal but with block size and it
corresponds to the set of indices and ,
which is . Let us now analyze the Loève spectrum for
these separations between the frequencies. The cyclic PSD

(60)

with cycle frequency and global frequency is the discrete-
time Fourier transform of the cyclic covariance function

(61)
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which in turn is the discrete Fourier series (DFS) in of the
periodic covariance sequence . For CS pro-
cesses, the Loève spectrum and the cyclic PSD are connected as
[33]

(62)

The support of is on the lines , that
is, harmonics of the fundamental cycle frequency. Moreover,
for we have , which is
the PSD. We conclude that contains samples of
for and

, and contains samples of for
.

Taking all of the above into account, the matrix contains
blocks of the form

(63)

which will allow an insightful interpretation.2 We start by
rewriting the cyclic PSD as [45]

(64)

where is an increment of the complex spectral process
that generates the time series

(65)

Thus, we conclude that is the coherence matrix of the
random vectors and , which is illustrated
in Fig. 2. For CS processes, frequencies that are separated by a
multiple of the cyclic frequency are correlated, and this coher-
ence matrix is therefore nonzero. On the other hand, for WSS
processes, the coherence matrix is zero for .
The test CS vs. WSS signals is thus a test for the strength

of the cyclic components relative to the WSS component in
the estimated Loève spectrum. The GLRT and LMPIT differ
in how they measure this relative strength, as they employ dif-
ferent functions of . The LMPIT uses the Frobenius norm

(66)

with

(67)

which, asymptotically, may be written as

(68)

2Unfortunately, it does not seem possible to rewrite the matrix (in-
volved in testing CS vs. NS signals) in a similarly insightful manner.

3This is actually a generalized almost cyclostationary process [56], [57],
which for our purposes may be considered as a NS process. For a more detailed
review of this kind of process, see [58].

Fig. 2. Graphical representation of the coherencematrix in the Loève spectrum.
Only the positive cycle frequencies are shown.

The GLRT, on the other hand, uses the determinant, which is
given by a complicated nonlinear function of .
We note that the detector in [23] uses (63) as its statistic, but

considers only the scalar case . More critically, [23] uses
only the fundamental cycle frequency and only one global
frequency , instead of combining the information from all
global frequencies and all harmonics of the fundamental cycle
frequency.

VII. NUMERICAL SIMULATIONS

In this section we evaluate the performance of our detec-
tors using computer simulations. We consider a cognitive radio
experiment. Our detectors can exploit the cyclostationarity in-
duced by the symbol rate and/or the carrier frequency provided
that the cycle period is known. This requires frequency synchro-
nization and knowledge of the symbol rate. Assuming frequency
synchronization and knowledge of the symbol rate, we may for-
mulate the problem as

(69)

and is additive Gaussian noise, which is a WSS
process generated by a moving average model of order 19. The
signal is a QPSK signal with rectangular shaping and
a symbol rate of . The channel
is a Rayleigh channel without correlation among antennas, it
has an exponential power delay profile with a maximum delay
of 24 , and a delay spread of 6.24 . The channel
is time-varying due to the Doppler effect, which we generate
with a normalized (to ) Doppler frequency of and a
Jakes spectrum. This makes NS under .3 The sampling
frequency is 1.2 MHz, which yields the cycle period , and



RAMÍREZ et al.: DETECTION OF MULTIVARIATE CYCLOSTATIONARITY 5403

Fig. 3. ROC curves for the test CS vs. WSS in a scenario with ,
, , , and .

the channel and noise coefficients are Gaussian and randomly
generated in each Monte Carlo simulation. One final comment
is in order. In these simulations we have considered a commu-
nications example. However, we have derived general detectors
that do not exploit all the properties present in communications
signals. For instance, our detectors do not exploit the fact that
the transmit pulse shape might be known or that the noise might
be temporally and/or spatially uncorrelated.

A. Cyclostationarity vs. Wide-Sense Stationarity

We first compare the performance of the LMPIT and the
GLRT with the detectors in [37] (see also [31]) and [28]. These
two detectors require selecting which lags and/or harmonics of
the cycle frequency to use. This is only possible if the cyclic
covariance function is known, which may not be a realistic
assumption. For a fair comparison, we decided to use lags 0, 1,
2 and 3 of the cyclic covariance but only one harmonic of the
cycle frequency in the detector [28]. However, for the detector
[37] we selected the lag that maximizes the cyclic covariance
(although this might be unrealistic in practice) because se-
lecting lag 0 would yield poor performance for a QPSK signal
with rectangular shaping. Finally, we used a Kaiser window
of length 1025 to estimate the cyclic CSM required for the
detector [28].
Fig. 3 shows the receiver operating characteristic (ROC)

curves for a scenario with global SNR of 16 dB,
antennas, and . Hence, the total number of
samples at each antenna is . As can be seen
in the figure, the best performance is provided by the LMPIT,
followed by the GLRT. Both LMPIT and GLRT outperform
the detectors [28], [37] because they exploit the information
at all lags and all harmonics of the cycle frequency. On the
contrary, the detector in [37] exploits only the information at
one harmonic and one lag. While the detector in [28] utilizes the
information at multiple lags and multiple harmonics (although
we used only one) they have to be specified a priori. In addition
to this, the detector in [28] does not take into account the
information provided by the cyclic cross-covariance sequences
because it is a collaborative detector. The probability of missed

Fig. 4. Probability of missed detection vs. SNR for the test CS vs. WSS in a
scenario with , , , and . The probability of false
alarm is fixed at .

Fig. 5. Probability of missed detection vs. SNR for the test CS vs. WSS in a
scenario with , , , and . The probability of false
alarm is fixed at .

detection against the SNR for a fixed false alarm probability
is depicted in Fig. 4, where similar conclusions

can be drawn. One would expect that for some scenarios the
performance of the LMPIT compared to the GLRT worsens.
Indeed that is the case in Fig. 5. In this experiment we consid-
ered a smaller problem in which the hypotheses are not as close
(the closeness of the hypotheses depends on the dimension
of the covariance matrices, the number of samples, the SNR,

). Concretely, we selected sensors, ,
(the symbol rate is ), and . In this
scenario, the performance of the GLRT is slightly better than
that of the LMPIT.

B. Null Distribution and Threshold Setting
So far we have not said anything about the threshold, re-

quired to fix a probability of false alarm. It is expected that de-
riving the distributions of the statistics, required for selecting
the threshold, is extremely difficult. However, in [59], [60], the



5404 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 20, OCTOBER 15, 2015

Fig. 6. Comparison between the distributions of the statistics under for
white noise (in blue) and colored noise (in red). (a) GLRT histogram ;
(b) GLRT histogram ; (c) LMPIT histogram ; (d) LMPIT
histogram .

authors were able to derive a stochastic representation under the
null hypothesis, which is applicable to our problem. However,
here we will follow a different approach since we want to ob-
tain a closed-form expression for the threshold, which we could
not do using the stochastic representation. First, our detectors
are invariant to filtering. This means we can obtain the thresh-
olds using numerical simulations for a white process under
and use these thresholds for any arbitrary CSM. But since our
LMPIT and GLRT are only asymptotically invariant to filtering,
this requires some further analysis. We obtained the histograms
of the test statistics of our detectors for white noise and col-
ored noise, shown in Fig. 6 for . The remaining
parameters are the same as in Fig. 3, unless otherwise stated.
Figs. 6(a) and 6(b) show the histograms of the GLR for
and , and Figs. 6(c) and 6(d) show the histograms of
the LMPIT statistic for and . The blue lines
correspond to white noise and the red lines to colored noise.
The differences between red and blue lines are small even for a
rather small , and they further decrease as increases.
Finally, Wilks’ theorem [61] states that the GLR is asymp-

totically (in ) -distributed. Because the log-det may be ap-
proximated as the Frobenius norm for close hypotheses [44],
[62], the LMPIT statistic is also asymptotically -distributed.
So the asymptotic distributions of the GLR and LMPIT statistic
are, respectively,

(70)

(71)

These distributions are shown in Fig. 7 for , 25, 40, 60,
and 100. These results show that the LMPIT statistic converges
much faster to the distribution than the GLR. This is an inter-
esting result since Wilks’ theorem was derived to compute the
asymptotic distribution of the GLRT. These results show that
we may also use it for the distribution of the LMPIT, and its

Fig. 7. Empirical cumulative distribution functions (ECDFs) of GLRT and
LMPIT statistic for , 25, 40, 60, and 100, and comparison with Wilks’
approximation. The LMPIT curve overlays Wilks’ approximation.

Fig. 8. ROC curves for the test CS vs. NS in a scenario with , ,
, , and .

convergence is even much faster. To conclude, for large enough
the distribution may be used to set the threshold for both

the GLRT and the LMPIT.

C. Cyclostationarity vs. Nonstationarity
Finally, we evaluate the performance of the GLRT and the

LMPIT for the test vs. . Fig. 8 shows the ROC curves
for these two detectors in an experiment with antennas,

, , and . At this SNR, the
LMPIT performs much better than the GLRT. It is to be ex-
pected, however, that at higher SNRs the GLRT will outperform
the LMPIT. As we are not aware of any competing detector, no
other comparisons are shown.

VIII. CONCLUSIONS
We have presented an asymptotic GLRT and LMPIT for

testing whether a multivariate discrete-time process is CS. Most
of the state-of-the-art detectors are imaginative but ad-hoc. Our
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detectors, on the other hand, are based on established statistical
principles. In the time domain, our detectors test the structure
of the covariance matrix of the observations. In the frequency
domain, the detectors “CS vs. WSS” compare the strength of
the CS components with the WSS component. This is also the
idea behind many of the state-of-the-art detectors, but the key
is to use the right function for this comparison, which optimally
fuses the information in the 2D frequency spectrum. Indeed,
simulation results have shown that our detectors outperform
previously published detectors.
Our hypothesis tests are binary, where the alternative hypoth-

esis is either a WSS or a NS process. We did not consider a mul-
tiple hypothesis test (CS, WSS, NS) but the technique proposed
in [63] could be directly applied to design a multiple hypothesis
GLRT. The main idea behind the technique in [63] is that the
sum of the log-GLR for testing CS vs.WSS and the log-GLR for
testing CS vs. NS signals is equal to the log-GLR for testing NS
vs. WSS signals. Using this relationship it is possible to divide
the space spanned by the two GLRs into three regions, where
each of these regions corresponds to a one of the hypotheses
(CS, WSS, NS). Since this approach is suboptimal, applying it
to design a multiple hypothesis LMPIT does not make as much
sense since the optimality of the LMPIT would be lost.

APPENDIX A
WIJSMAN’S THEOREM: AN ALTERNATIVE

DERIVATION FOR THE UMPIT
The derivation of the UMPIT usually requires the derivation

of the maximal invariant statistic and its distribution under both
hypotheses [49]. For many problems this is extremely difficult
or even impossible, preventing the derivation of the UMPIT.
There is, however, an alternative based on Wijsman’s theorem
[38], [64], [65]. This theorem states that, under some mild con-
ditions, the ratio of the distributions of the maximal invariant
statistic may be obtained as

(72)

where is the probability density function of the
transformed observations under the hypothesis , is the
group of invariant transformations, denotes the Jacobian
of the transformation and is an invariant group
measure, which we take as the usual Lebesgue measure. Even
thoughWijsman’s theorem is quite powerful, it has not received
much attention in the signal processing literature, with a few
notable exceptions [39], [41], [44], [66]–[70].
The main idea behind Wijsman’s theorem was first proposed

by Stein [40]. However, the conditions under which (72) is valid
were studied much later by Wijsman and other authors in [38],
[64], [66], [71]–[73]. For our problem it suffices to consider the
simplest conditions. These specify that the group of invariant
transformations must be a Lie group, a finite group or a com-
position of both, and the observations must belong to a linear
Cartan -space.4 Since the set of invertible block-diagonal ma-
trices is a Lie group, the permutation group is a finite group,

4A linear Cartan -space is a nonempty open subset (denoted as ) of the
Euclidean space such that, for every , there exists a neighborhood for
which the closure of is compact.

and the observations belong to a linear Cartan -space, we may
apply Wijsman’s theorem to our problem.

APPENDIX B
PROOF OF LEMMA 1

We first simplify the denominator. Ignoring the term
, which does not depend on data or the invariant

transformations, the integral in the denominator is given by

(73)
Taking into account the block-diagonal structure of and ,
with block size , and the fact that the permutation keeps
such structure, the integral may be rewritten as

(74)
Applying now the change of variables

, the integral becomes

(75)

which does not depend on the observations. Thus, the ratio does
not depend on the denominator, which means

(76)

where we have also removed . It is possible to substitute
by in due to the block-diagonal structure of

and , with block size in this case. Additionally, the change
of variables allows us to write

(77)

For every permutation we may find a matrix , such
that the diagonal blocks of are , which yields

(78)
It is clear that for any permutation in , the matrix is block-
diagonal, which allows us to simplify the exponent as

(79)

Finally, since the diagonal blocks of both and are the
identity matrix, the proof follows.
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APPENDIX C
PROOF OF THEOREM 7

For close hypotheses (for instance, the CS process is almost
WSS) the inverse of the whitened covariance matrix is

, which implies . We may therefore use a second
order Taylor’s series to approximate to obtain

(80)

We now prove that the linear term, given by

(81)
must be zero. To do so, let us apply the change of variables

for all possible values of and . Thus, the
integrals become equal to their opposites, which shows that they
are indeed zero. Using the same change of variables, it is easy
to show that the cross-products in the quadratic term must also
be zero, and becomes

(82)

By introducing another change of variables, which involves the
matrices of left and singular vectors of and , the
ratio of the distributions is only a function of the singular values,
that is,

(83)

where and are diagonal matrices that contain the
singular values of and , respectively. The change
of variables allows us to get rid of the
cross-terms in the square, which yields

(84)

where

(85)

For the considered values of and , the integral takes
the same value regardless of the indices, and the ratio simplifies
to

(86)

Noting that the sum of the squared singular values is the squared
Frobenius norm, the ratio therefore becomes

(87)

The sum over all possible permutations of the blocks
establishes that the term within parentheses is independent of
the indices and . Moreover, it can be shown that this sum
is given by

(88)

which yields

(89)

Finally, taking into account that and
, the proof follows.
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