
Experimental Evaluation of a

Cooperative Kernel-Based Approach

for Robust Spectrum Sensing

J. Manco-Vásquez, S. Van Vaerenbergh, J. Vı́a, I. Santamarı́a

Dept. of Communications Engineering, University of Cantabria, Spain

Abstract—The cognitive radio (CR) paradigm relies on ac-
curate spectrum sensing schemes. These schemes can benefit
from spatial or multiuser diversity, though they need to be
able to work under non-ideal scenarios, such as those affected
by impairments or interferences. In this paper, a cooperative
spectrum sensing (CSS) technique is experimentally evaluated by
means of a CR testbed. The proposed method is based on kernel
canonical correlation analysis (KCCA), which is performed at
the fusion center (FC) in a first cooperative stage. In particular,
the FC extracts the local test statistics for the different sensors,
without the need of any training signal or labeled data, after
which the sensors can operate in a completely autonomous
manner. The experiments are conducted on a cognitive radio
platform composed of several Universal Radio Peripheral (USRP)
nodes, and the measurements show that our scheme is able to
learn the surrounding environment by exploiting only the non-
linear correlation among the signals at each secondary user
(SU). Moreover, we illustrate the performance of the proposed
technique in the presence of local interferers, where we can
appreciate a significant performance gain over a conventional
energy-based cooperative detector.

Index Terms—Cooperative Spectrum Sensing, Kernel Canon-
ical Correlation Analysis, Hardware Testbed, USRP.

I. INTRODUCTION

Cognitive Radio (CR) systems allow sharing the spectrum

between primary users (PUs) and non-legacy users (secondary

users or SUs). This technology relies on a spectrum sensing

process for detecting exploitable holes in the spectrum, which

can be filled by subsequent SU transmissions.

In order to improve the performance of spectrum sensing

techniques, multiantenna and cooperative approaches have

been previously considered [1]. However, the need for robust

methods able to operate under the presence of interferers

[2], [3] and/or non-Gaussian noise [4], makes the design of

practical spectrum sensing approaches a challenging problem.

In this paper, we evaluate a recently proposed spectrum

sensing technique [5] by means of experimental measurements

using a CR testbed. The proposed method aims to extract, in

a completely unsupervised manner, the local decision rules to

be used at different sensors or SUs, and it is solely based on

the assumption of conditionally independent measures under

the null hypothesis (absence of PU). Specifically, in a first

cooperative stage, the different sensors transmit the estimated

energy measured over a sensing period to a FC, which retrieves

the non-linear transformations providing maximum correlation

by means of kernel canonical correlation analysis (KCCA).

The nonlinearly transformed observations will be used as local

test statistics at the sensors, which can then operate in a

completely autonomous manner.

Despite the vast amount of spectrum sensing techniques

proposed in the literature, only a few of them have been eval-

uated by means of experimental measurements [6]–[9]. In this

paper, we evaluate the performance of the proposed spectrum

sensing approach, taking into account the possible presence

of an external interferer. The experiments are conducted in

a hardware platform consisting of several USRP nodes. The

results show that the proposed approach is robust to interferers,

providing either local (at the SU) or global (at the FC) reliable

decisions.

II. COOPERATIVE SPECTRUM SENSING

Let us consider a scenario with M secondary users, in

which local interferences are (possibly) present under the null

hypothesis. The signal model can be written as

p(r|H1) 6=

M
∏

i=1

pi(ri|H1)

p(r|H0) =

M
∏

i=1

pi(ri|H0)

where ri denotes the received signal at the i-th SU, r is

a vector signal composed of all observations, H1 denotes

the alternative hypothesis (PU active) and H0 is the null

hypothesis (idle channel). That is, our signal model solely

relies on the assumption that the sensor measurements are

conditionally independent under H0, but not under H1. Thus,

the proposed model considers a very general scenario in which

the SUs might be affected by local and thus independent

interferences. Note also that the primary, interference and

noise signals can follow any distribution, since we do not make

any assumption (apart from independence when the channel

is idle) about them. A particular scenario where the described

assumptions hold is depicted in Fig.1, where a small cell

(shadowed) within a heterogeneous network (HetNet) receives

interference from neighboring cells during the time that the

channel is considered vacant.

In the considered model, there is an initial cooperative stage

in which all secondary users report their unlabeled energy
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Fig. 1. A spectrum sensing problem in a HetNet. Three SUs in a small
cell cooperate to detect the presence of a PU, while two of them receive
interference from other small cells. The interferences are independent of each
other.

measurements to a fusion center (FC) via orthogonal channels

[1]. The FC then exploits the statistical dependencies among

the SU measurements to obtain the local test statistics. Once

each SU knows its local statistic, the network is able to operate

in a distributed manner, with each SU taking its own decisions.

Nevertheless, a centralized version in which the SUs report

their statistics to the FC, which then takes the final decision,

is also possible.

III. COOPERATIVE SENSING VIA KCCA

The problem to be solved consists in finding test statistics

at each SU with the only assumption that they should be con-

ditionally independent under H0, but not under H1. To solve

this problem we exploit the fact that the local test statistics

should be approximately those non-linear transformations of

the input data that maximize the correlation among sensors. To

find these nonlinear transformations we apply kernel canonical

correlation analysis (KCCA) [5]. In this paper, as input data

of the KCCA approach we exclusively focus on the energy

of the received signals,1 and denote xin as the energy of the

received signal ri estimated over Ns samples during the n-th

sensing period.

Initial Cooperative Stage

During the first cooperative stage, M sets of data, each

one composed of N values (that is, for the i-th SU we have

{xi1, xi2, ...xiN}), are collected at the FC. The local test

statistics are then obtained at the FC by means of KCCA.

This kernel-based method obtains the sought non-linear trans-

formations as linear projections in a high dimensional (feature)

space (xin → Φ(xin)), where inner products can be calculated

without the explicit knowledge of the mapping Φ(xin) by

employing a kernel function κ(·, ·) on pairs of data points in

1Other choices are obviously possible, ranging from the processing of the
whole raw dataset, ri, to processing only a vector of extracted features (energy,
kurtosis, etc.). In practice, we can expect a tradeoff among performance,
number of features, and temporal coherence of the channels.

the input space. Specifically, the Gram (or “kernel”) matrices

for each dataset Ki are defined as

Ki(j, k) = Φ(xij)
⊤Φ(xik) = κ(xij , xik), (1)

In short, KCCA provides the projections of the transformed

data sets, zi = Kiαi, with maximal correlation [10]. For

reasons of simplicity, we consider a scenario with M = 2
SUs. Thus, the canonical correlation between the transformed

data sets is given by ρ = z
⊤

1
z2 = α

⊤

1
K1K2α2. The solution

of the KCCA problem can be found by solving the following

generalized eigenvalue problem (GEV) [10].
[

K1K1 K1K2

K2K1 K2K2

]

α = β

[

K1(K1 + cI) 0

0 K2(K2 + cI)

]

α,

(2)

where β = 1 + ρ, c is a regularization constant, α =
[α⊤

1
,α⊤

2
]⊤, and the canonical weights αi are retrieved as the

eigenvector corresponding to the largest eigenvalue of the GEV

problem (2). For a more detailed description, the reader may

refer to [5] and references therein.

KCCA Local and Global Tests

After the training stage, the local detectors at each SU are

given by the obtained non-linear transformations, which can

be easily computed as

Ti(x) =
N
∑

j=1

αijκ(x, xij) (3)

where αij refers to the j-th element of the canonical vector αi.

Notice that κ(x, xij) measures the similarity between the new

energy measurement, x, and the training data set for the i-th
SU. The final statistic is a weighted sum of these similarities.

Once the SUs compute their test statistics, local decisions

reduce to a comparison of (3) with a threshold. However, if the

communication with the FC is affordable, the local tests can

be combined in the FC by simply adding the test statistics.2

IV. TESTBED DESCRIPTION

A cognitive radio platform has been built by integrating

USRP devices. Each of these nodes work with a universal

hardware driver (UHD) as a host driver which includes a

set of Application Programming Interface (API) functions.

We have developed our own Universal Software Architecture

for Software Defined Radio (USASDR), which allows us to

control several USRP nodes simultaneously by means of a

unique controller identified by an IP address that receives

instructions from a remote PC. Both the transmitters and the

receivers are USRP N210 nodes, and the Radio Frequency

(RF) part is equipped with a XCVR2450 daughterboard, which

allows us to operate in the industrial, scientific, and medical

(ISM) band of 4.9GHz to 5.9GHz. A more detailed description

of these devices can be found in [9], [11]. Our CR testbed uses

four USRP nodes as shown in Fig. 2, where a PU, two SU

2This procedure is not simply a heuristic rule, but it represents the
best one-dimensional representation of the maximally correlated non-linear
transformations.
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Fig. 2. Two SUs as sensing nodes, an interfering node (INT), a PU, and
a FC in the middle of them. All USRP are synchronized by a pulse per
second signal (PPS) provided by Signal Generator. The SUs are located at
approximately 1 m from the PU and the interfering node.

nodes and an interfering node are configured and synchronized

in time by a pulse per second (PPS) signal for simultaneous

transmission and reception during the measurement procedure.

A. Measurement Procedure

All the measurements were tested in an indoor quasi-

static (the coherence time is rather long in comparison to the

measurement time) channel of 4 MHz centered at 5.6 GHz.

To recreate a scenario in which the interferences observed

by each SU are independent, we divide the 4 MHz channel

into 2 sub-channels of 2 MHz each. Each SU senses a

different sub-channel, whereas the PU transmits over the whole

4 MHz channel. On the other hand, the interfering node

randomly transmits on one of the two sub-channels, or on both

simultaneously following independent Bernoulli distributions

with a probability of sub-channel occupancy p = 0.5. In

this configuration, either both SUs, only one of them, or

neither of them will be affected by the interference, while

both SUs are able to detect a busy channel when the PU

is present. The transmission/sensing cycle is shown in Fig.

3, where the transmitted signal is an orthogonal frequency

division multiplexing (OFDM) waveform that follows the

IEEE 802.11a standard. This waveform is generated with a

rate of 9 Mbps using BPSK symbols, and resampled with a

rational factor to modify the bandwidth of the signal so as to

accomplish the described configuration. After multiple sensing

periods, two sets of data composed of the estimated energy

levels 3 at each SU, are collected in a central PC acting as a

FC. Finally, the canonical weights αi are calculated and used

to form the statistic Ti(x), whose performance is evaluated

during an off-line process.

V. EXPERIMENTAL RESULTS

In this section, we describe the obtained results and high-

light the more challenging cases where the interference is

present during the sensing period. The following results were

3Energy levels are measured in this work as the energy of the discrete-time
signal normalized by the maximum value found among all measurements.
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Fig. 3. Measurement procedure: the PU transmits over the two sub-channels
represented by two colors, each SU senses a different band, and the interfering
node transmits randomly on any of the channels, or in both.

obtained for M = 2, Ns = 50, and N = 300. 4 For

the KCCA detector, a Gaussian kernel function of the form

k(xi, xj) = exp(−(xi − xj)
2/2w2) is selected, the kernel

width w is fixed according to the Silverman’s rule [12], and

the regularization parameter in (2) is set to c = 10. We study

the decision functions, Ti, and their detection performance by

showing the Receiving Operating Characteristic (ROC) curves.

A. Decision functions for KCCA

In Figs. 4(a) and 4(b) the probability density function (PDF)

of the measured energy levels is shown for each SU under

both hypothesis, as well as the decision function Ti. The

signal-to-interference-plus-noise-ratio (SINR) for both SUs is

approximately 0.6 dB. It can be observed that the KCCA

decision function is able to separate the two hypotheses by

assigning small values to the primary signal and larger values

to the interference-plus-noise signal. A more interesting case

is depicted in Figs. 5(a) and 5(b), where the detection of

the primary, whose energy takes values between those of

the noise and the interference, requires strongly non-linear

decision functions. In this example, the SINR at SU 1 and

SU 2 are -6.3 dB and -5.1 dB, respectively.

B. Receiver Operating Characteristics

The corresponding ROC curves for the described examples

are depicted in Figs. 4(c) and 5(c), respectively. We compare

the results obtained by KCCA and a conventional energy

detector, both for local (at each SU) and global (at the FC)

decisions. In particular, the results for both detectors at the

FC are obtained by adding the local test statistics as a fusion

rule. Fig. 4(c) shows that the obtained performance of both

local detectors are similar, whereas a slight gain is attained by

the KCCA detector at the FC. In Fig. 5(c), we observe that

the proposed KCCA method clearly outperforms the energy

4During the learning stage it is assumed that the channel remains constant.
On the other hand, during the operational stage the pdfs under both hypotheses
should not change, otherwise the KCCA-based detector would fail unless some
updating procedure is implemented. The maximum transmission power is set
to 5 dBm, and it is attenuated by applying a constant factor to the signal’s
amplitude.
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Fig. 4. Scenario 1: KCCA decision function and PDF for the primary and the interference-plus-noise signal. (a) at SU 1. (b) at SU 2, both of them with an
estimated SINR ≈ 0.6 dB, (c) ROC curves for the KCCA and energy detector.
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Fig. 5. Scenario 2: KCCA decision function and PDF for the primary and the interference-plus-noise signal. (a) at SU 1 with an estimated SINR ≈ -6.3 dB,
(b) at SU 2 with an estimated SINR ≈ -5.1 dB (c) ROC curves for the KCCA and energy detector.

detector, which is unable to distinguish between the primary

and interference signals.

VI. CONCLUSIONS

This paper has illustrated the performance of a KCCA-

based spectrum sensing technique, by means of over-the-air

experiments in a hardware testbed. During a first cooperative

stage, the proposed technique extracts the local test statistics

to be used at each SU, which can then operate in a com-

pletely autonomous manner. The obtained results show that

the proposed method is robust to interferences, and it clearly

outperforms the energy detector in these scenarios.
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