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Alignment in Arbitrary MIMO X Networks
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Abstract—In this paper we propose an algorithm to design
interference alignment (IA) precoding and decoding matrices for
arbitrary MIMO X networks. The proposed algorithm is rooted
in the homotopy continuation techniques commonly used to solve
systems of nonlinear equations. Homotopy methods find the
solution of a target system by smoothly deforming the solution
of a start system which can be trivially solved. Unlike previously
proposed IA algorithms, the homotopy continuation technique
allows us to solve the IA problem for both unstructured (i.e.,
generic) and structured channels such as those that arise when
time or frequency symbol extensions are jointly employed with
the spatial dimension. To this end, we consider an extended
system of bilinear equations that include the standard alignment
equations to cancel the interference, and a new set of bilinear
equations that preserve the desired dimensionality of the signal
spaces at the intended receivers. We propose a simple method
to obtain the start system by randomly choosing a set of
precoders and decoders, and then finding a set of channels
satisfying the system equations, which is a linear problem.
Once the start system is available, standard prediction and
correction techniques are applied to track the solution all the
way to the target system. We analyze the convergence of the
proposed algorithm and prove that, for many feasible systems
and a sufficiently small continuation parameter, the algorithm
converges with probability one to a perfect IA solution. The
simulation results show that the proposed algorithm is able to
consistently find solutions achieving the maximum number of
degrees of freedom (DoF) in a variety of MIMO X networks with
or without symbol extensions. Further, the algorithm provides
insights into the feasibility of IA in MIMO X networks for which
theoretical results are scarce.

Index Terms—Degrees of freedom, homotopy continuation,
interference alignment, MIMO X networks, feasibility.

I. INTRODUCTION

THE key idea of interference alignment (IA) consists of
designing precoding matrices that reduce the dimension
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of the interference subspace, in such a way that it can be zero-
forced by applying the decoding matrices at the receivers.
The concept originated from the study of the degrees of
freedom (DoF) for the 2-user X channel [2], [3] and the K-
user interference channel (IC) [4]. More generally, an M ×N
multiple-input multiple-output (MIMO) X network (XN)
represents the most general single-hop network model with
M transmitters and N receivers, each of them equipped with
multiple antennas. Many other well-known network topologies
such as the interference channel (IC), the interference multiple-
access channel (IMAC), the interference broadcast channel
(IBC) and the X channel, can be viewed as particular cases
of X networks.

A large number of IA algorithms have been proposed for
the IC when the channels are generic, which happens for
instance when the channel coefficients are drawn from a
continuous distribution and hence the MIMO channel matrices
have no particular structure. Widely known examples are the
alternating minimization algorithm in [5], [6], as well as the
rank minimization method in [7]. Many other algorithms using
different cost functions (mean-squared error, average sum-rate)
[8], [9], or applying different optimization criteria have been
proposed for this particular network topology [10]–[13]. More
recently, a Gauss-Newton IA method was proposed in [14] to
improve the convergence speed of previous approaches.

On the other hand, when time or frequency symbol exten-
sions are used together with the spatial dimension, the resulting
MIMO channels are not generic anymore and therefore specific
IA algorithms that preserve the rank of the desired signal
subspaces are needed. A couple of examples are the methods
in [15], [16], which are applicable only to the IC.

Regarding the application of IA schemes to cellular
networks, outer bounds for the DoF of IMAC and IBC
networks have been derived in [17]. IA algorithms for cellular
networks have been proposed in [18], [19]. Also, the sum-rate
performance of IA under imperfect channel state information
(CSI) for the IBC is studied in [20]. More recently, the focus
has been shifted to the study of the so-called heterogeneous
networks (HetNets) [21]. Although work in this area is still
scarce, some techniques to obtain IA solutions in HetNets
have already been developed. For instance, [22] describes a
set of schemes that allow to obtain IA precoders and decoders
for downlink MIMO HetNets with partial connectivity. As
another example, the feasibility of interference alignment for
reverse time division duplex (R-TDD) MIMO two-cell systems
is analyzed in [23].

Despite its broad scope, existing theoretical results for

https://gtas.unican.es/homotopyIATSP


2

X networks are also scarce, most of them focusing on
the 2-user X channel. In particular, the total number of
DoF when both users are equipped with the same number
of antennas (symmetric 2-user X channel), along with an
outer bound for the asymmetric case, were obtained in [2].
Recently, the authors in [24] proposed a scheme achieving the
aforementioned bound. A DoF bound for the M ×N -user X
network when all nodes are equipped with the same number of
antennas and have symmetric message demands was proposed
and shown to be achievable in [25] and [26], respectively. In
the case of asymmetric demands, the results in [27] apply.
Finally, [26] extended the properness condition in [28] to
provide an upper bound on the linear DoF without channel
extensions, although the tightness of the proposed bound was
not analyzed.

A few algorithms for computing IA solutions have also
been proposed for the 2-user X channel. First, Jafar and
Shamai [2] proposed the so-called JS-scheme for the 2-user
MIMO X channel, which is able to achieve the outer bound
for some antenna configurations. Later, Agustı́n and Vidal
[24], [29] presented an algorithm based on the generalized
singular value decomposition that attains the outer DoF bound
for any antenna configuration including channel or symbol
extensions. However, these algorithms are again limited to
the 2-user X channel and are not easily generalizable to
arbitrary X networks. Similarly, IA algorithms originally
developed for other topologies (IC, IMAC or IBC) cannot be
straightforwardly adapted to X networks. The reason for this
is that in the X network every link acts as both a desired and
an interfering link and, due to this coupling, these algorithms
are not able to guarantee the rank of the signal in the desired
links at the same time they null out the interference.

A. Summary of Contributions

In this paper we propose an algorithm, which extends and
generalizes our previous work in [1], to compute interference
alignment solutions for general asymmetric X networks. It is
based on homotopy continuation, a numerical method which
is frequently used to solve multivariate systems of nonlinear
equations [30]–[33]. More specifically, the main contributions
are as follows:
• In comparison to [1], which was proposed only for generic

channels, in this work we explicitly enforce the rank
constraints on the direct channels by representing them
as an additional set of bilinear equations. In this way,
the new algorithm is able to find alignment precoders
and decoders also in scenarios with symbol extensions,
which result in non-generic (structured) MIMO channels.
Also, the additional set of rank conditions allows to apply
this method to rank-deficient channels, such as the ones
studied in [34], [35].

• We describe a simple procedure to obtain a start system
for the homotopy continuation method.

• We prove that for many feasible systems and for a
sufficiently small step size in the prediction and correction
steps, the homotopy continuation algorithm converges to
an IA solution for the target system with probability one.

• We show that the proposed algorithm can be applied to
a large number of scenarios ranging from conventional
network topologies such as the IC, IMAC or IBC [5]–[7],
[11], [12], [14]–[17], [20], to new scenarios that appear
in the context of HetNets [21]–[23] such as reverse TDD
systems, with or without symbol extensions.

• By means of Monte Carlo simulations, we show that
the proposed algorithm clearly outperforms alternating
minimization-based algorithms in terms of achieved DoF,
and it is able to find the maximum DoF IA solution with
high success probability1.

B. Paper Organization

This paper is organized as follows. In Section II we
present the general X network system model. In Section
III, the proposed algorithm is described in detail, including
several implementation details within Section III-C. Section
IV is dedicated to the theoretical convergence analysis of
the homotopy continuation method. In Section V, we study
some well-known network topologies as particular cases of X
networks. In Section VI the homotopy continuation method
is compared to other existing IA algorithms in terms of DoF
performance for different network topologies. Finally, we
summarize the main conclusions of this work in Section VII.

C. Notation

Uppercase (lowercase) boldface letters will be used for matri-
ces (column vectors); (·)H for conjugate transpose (Hermitian)
and (·)+ for the Moore-Penrose pseudoinverse. ⊗ denotes the
Kronecker product and Im,n and 0m,n the m×n identity and
zero matrices, respectively. {Vk} ∀k ∈ {1, . . . ,K} will be
used to denote a collection of K matrices (precoders, decoders
or channel matrices, for instance). Following the definition
in [36], the Jacobian of a matrix function G(A) at A will
be denoted as DG(A), and we will write an increment in
variable A as ∆A. Further, we use vecA to represent the
column-wise vectorization of a matrix A, and we define the
operator

cat
s

(As)

as the horizontal concatenation of the indexed matrices As

where the members s of the set S are taken in reflected
lexicographic order. For instance, consider the set of tuples
S = {(1, 2), (2, 2), (1, 1), (2, 1)}; then

cat
s

(As) =
[
A1,1 A2,1 A1,2 A2,2

]
.

Let dk` denote the elements of a matrix D. Occasionally,
we write some elements of D in a more compact way in order
to facilitate a clean reading, hence defining the following
equivalence:

dk,i:j =
[
dk,i dk,i+1 · · · dk,j

]
.

1Even though the DoF are known to be an appropriate figure of merit only
for high signal-to-noise ratio (SNR) regimes, they provide the number of
interference-free data streams that can be transmitted in a given scenario and
therefore they are of fundamental importance to analyze the performance of
any IA algorithm.
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Fig. 1. General MIMO X network model. Dash-dotted lines indicate that
both desired signal and interference coexist in the corresponding link.

Similarly, a vector di:j,k will have an analogous structure,
but as a column vector. Additionally, Dk:`,i:j represents a
submatrix of D consisting of the elements in rows k to ` and
columns i to j.

II. SYSTEM MODEL

A. X Network

An M × N user MIMO X network is a single-hop
communication network with M transmitters and N receivers,
where transmitter ` and receiver k are equipped with A`

and Bk antennas, respectively. Let us introduce the demands
matrix, D, defined as follows:

D =



d11 d12 · · · d1M

d21
. . .

... dk`
...

. . .
dN1 · · · dNM


,

where dk` determines the number of independent data streams
that transmitter ` wishes to send to receiver k, where ` ∈
{1, 2, . . . ,M}, k ∈ {1, 2, . . . , N}. This setting is depicted in
Figure 1, where dash-dotted lines indicate that both desired
signal and interference coexist in the corresponding link.

Let Vj` ∈ CA`×dj` be the precoding matrix used by
transmitter ` to send its dj` independent data streams to
receiver j. At the other side of the link, receiver k applies a
decoding matrix Uk ∈ CBk×dRx

k , where dRx
k =

∑
` dk` is the

total number of streams that receiver k wants to decode. Thus,
the signal after decoding at the k-th receiver can be expressed
as

rk = UH
k

∑
`

Hk`Vk`sk` +
∑
`

∑
j 6=k

Hk`Vj`sj` + nk

 ,

(1)

where sk` ∈ Cdk` contains the information that transmitter
` is sending to receiver k, Hk` ∈ CBk×A` is the flat-fading
MIMO channel from transmitter ` to receiver k and nk ∈ CBk

is the additive and spatially white Gaussian noise at receiver
k.

B. IA Conditions
As we have previously mentioned, the key idea of inter-

ference alignment consists of designing precoding matrices
to reduce the dimension of the interference subspace. In this
way, the interference can be zero-forced by the decoders at
the corresponding receivers, but at the same time the desired
signals at each receiver should be linearly independent. More
formally, solving the IA problem amounts to finding a set of
precoders and decoders satisfying the following conditions:

UH
k Hk`Vk`

= 0, ∀k, ` (2)

rank
(
UH

k

[
Hk1Vk1 · · · HkMVkM

])
= dRx

k , ∀k,
(3)

where V
k`

represents the horizontal concatenation of all Vj`

such that j 6= k, i.e.,

V
k`

def
= cat

j 6=k

(
Vj`

)
.

Notice that UH
k

[
Hk1Vk1 · · · HkMVkM

]
in (3) is

a dRx
k × dRx

k matrix formed by the concatenation of all
equivalent channels (after precoding and decoding) for the
k-th user. Condition (2) guarantees that all interferences are
properly zero-forced, while (3) preserves the desired signal
dimensionality at the intended receivers.

In order to provide some insight into the necessary condi-
tions for the feasibility of the IA problem, we follow the usual
approach in the literature [26], [28]. Note that, given the sets
of precoders and decoders, {Vj`} and {Uk}, satisfying (2),
we can right-multiply them by arbitrary invertible matrices
and (2) still holds. Therefore, a total of d2k` ((dRx

k )2) elements
can be arbitrarily fixed in each precoder (decoder) leaving a
total of

Nv =

N∑
k=1

M∑
`=1

(A` − dk`) dk` +

N∑
k=1

(
Bk − dRx

k

)
dRx
k

free variables. The total number of scalar equations in (2)
relating those variables is

Ne =

N∑
k=1

dRx
k

 N∑
j=1,j 6=k

dRx
j

 .

Hence, a natural condition for (2) to be solvable is
Ne ≤ Nv. Given an antenna configuration such that
A` = A, Bk = B, ∀k, `, and assuming symmetric demands,
dk` = d, ∀k, `, we can obtain a simplified condition, as
established in [26]:

d ≤ A+B

MN + 1
. (4)

A network that satisfies Ne ≤ Nv is said to be proper [28].
Although proper systems are not always feasible, it has been
proved for different topologies that improper systems are
always infeasible [26], [28], [37], [38].
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III. HOMOTOPY CONTINUATION FOR VECTOR SPACE IA

In this section we present a general IA algorithm based
on homotopy continuation, which can be applied to arbitray
MIMO X networks, possibly including symbol extensions.
Homotopy continuation is a numerical method for solving
systems of nonlinear equations: the basic idea consists of
gradually deforming a trivially solvable system or start system
into the original problem or target system [39]–[42]. This is
made by defining a parametrized transformation, which is
controlled by a continuation parameter. In the particular case
of IA, our goal is to start from a system composed of channels,
precoders and decoders that trivially satisfy (2) and (3), and
then track the IA solution until the desired precoding and
decoding matrices for the target channel.

A. Proposed algorithm

In our previous work [1], we proposed a homotopy function
based solely on the interference cancellation conditions (2).
However, when symbol or channel extensions are used, we
have to explicitly enforce the rank conditions (3) as well.
To this end, in this work we propose a different homotopy
function that reformulates the rank conditions as a new set of
bilinear equations which then can be easily combined with
the alignment bilinear equations (2). We start by changing (3)
to

UH
k

[
Hk1Vk1 · · · HkMVkM

]
= IdRx

k
, ∀k. (5)

Note that a solution to (2), (5) is a solution of (2), (3), and
reciprocally if a solution to (2), (3) is known then a solution
to (2), (5) is produced by right–multiplying each precoder
by an appropriate invertible square matrix2. We can therefore
substitute (2), (3) by (2), (5), and in this way the IA problem
now amounts to solving an extended set of bilinear equations.
In order to include both (2) and (5), this extended set of
equations can be written more compactly as follows:

UH
k Hk`Vk` = Pk` ∀k, `, (6)

where Pk` is a block of dk` columns extracted from the
dRx
k =

∑
` dk` identity matrix, IdRx

k
, i.e.,

Pk` =
[
ei+1 ei+2 · · · ei+dk`

]
,

where ei is a column vector with all zero elements except for
a 1 in the i-th position, and i =

∑k−1
n=1 dn`.

Let dTx
` =

∑
k dk` be the total number of messages that

the `-th user wishes to transmit, and let V` be the horizontal
concatenation of all Vj`,

V`
def
= cat

j

(
Vj`

)
.

With this notation, the alignment equations in (6) can be
rewritten as

UH
k Hk`V` = Ak` ∀k, `, (7)

2This trick is used later in (13) to obtain a start system for the homotopy
continuation method. Notice that the decoders obtained this way are not
necessarily given by matrices with orthogonal columns.

where, again, Uk ∈ CBk×dRx
k is the decoding matrix for

receiver k, Hk` ∈ CBk×A` is the flat-fading MIMO channel
from transmitter ` to receiver k, and V` ∈ CA`×dTx

` is the
precoding matrix applied by transmitter `. Additionally, Ak` =[
0 · · · Pk` · · · 0

]
is a dRx

k × dTx
` matrix such that

Pk` is the only block in Ak` containing non-zero elements.
Therefore, Ak` includes all interference cancellation and rank
preservation equations related to channel Hk`.

According to these compacted bilinear equations, we define
the function that will allow us to obtain the precoders, V`,
and decoders, UH

k . Let us first consider a parametrized
channel matrix, Hk` (t), as a convex combination of a start
channel, Hk`, and the target channel, Hk`. This combination
is controlled by the continuation parameter, t, leading to a
homotopy function given by

Gk`(U
H
k ,V`, t) = UH

k

(
(1− t)Hk` + tHk`

)︸ ︷︷ ︸
Hk`(t)

V` −Ak`,

(8)
∀k, ` and t ∈ [0, 1]. Our goal is to move the solution along the
path Gk`(U

H
k ,V`, t) = 0 ∀k, ` from t = 0 to t = 1 in a finite

number of steps ∆t. Usually, this path tracking procedure is
accomplished by an iterative predictor/corrector method [42],
which is commonly known as simple path tracker. In particular,
a first order approximation of the homotopy function in (8),
which is given by

Gk`(U
H
k + ∆UH

k ,V` + ∆V`, t+ ∆t) =

UH
k Hk`(t)V` + ∆UH

k Hk`(t)V`

+UH
k Hk`(t)∆V`

+UH
k (Hk` −Hk`)V`∆t−Ak`, ∀k, `

(9)

gives rise to the basic Euler prediction and Newton correction
steps. Assuming that there is a point ({UH

k }, {V`}, t) close
enough to the path (i.e., UH

k Hk`(t)V` ≈ Ak` ∀k, `), we
may predict an approximate solution at t + ∆t by setting
Gk`(U

H
k + ∆UH

k ,V` + ∆V`, t+ ∆t) = 0:

∆UH
k Hk`(t)V` + UH

k Hk`(t)∆V` =

−UH
k (Hk` −Hk`)V`∆t ∀k, `.

(10)

Updates ∆V` and ∆UH
k ∀k, ` are obtained by solving –if

possible– the system of linear equations in (10). Further details
on this point are relegated to Subsection III-C.

Additionally, if the current point ({UH
k }, {V`}, t) is not

as close to the path as required, i.e., the elements in
Gk`(U

H
k ,V`, t) are greater than a predefined tolerance, we

may hold t constant by setting ∆t = 0 and obtain the Newton
correction step:

∆UH
k Hk`(t)V` + UH

k Hk`(t)∆V` =

Ak` −UH
k Hk`(t)V`, ∀k, `.

(11)

Analogously to the prediction procedure, precoder and
decoder updates, ∆V` and ∆UH

k ∀k, `, are calculated by
solving –if possible– the system of linear equations in (11).
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This step leads to a new set of precoding and decoding
matrices, {V`+∆V`} and {UH

k +∆UH
k }, which are expected

to lie closer to the tracked path.

B. Start system

As we have already mentioned, one important step in
homotopy continuation methods is the choice of a start system
composed of a set of precoders

{
V`

}
, decoders

{
Uk

}
and

channels
{
Hk`

}
, which satisfies (7) and that it is easy to

compute.
A first idea is to look at (7) as if we were given

{
Uk

}
and

{
V`

}
(for instance, we might use randomly generated

precoders and decoders) and we had to solve it for
{
Hk`

}
.

This is naturally called the inverse IA problem in [38], and it is
an easily solvable linear problem for some network topologies
such as the MIMO-IC without symbol extensions. However,
for general MIMO X networks it is unlikely that a randomly
chosen collection of precoders and decoders will satisfy (7)
for some channel. The three objects (channel, precoders and
decoders) must be chosen simultaneously. To this end, in this
paper we propose an alternative procedure that first obtains a
start system composed of precoders, decoders and channels
satisfying the zero-forcing alignment conditions (2), and then
modifies this start system to fulfill the extended set of equations
in (7).

First, we randomly generate a set of precoders and decoders;
second, we obtain the channels as follows

Hk` = Xk` − FkF
H
k Xk`Ck`

CH

k`
, ∀k, ` (12)

where Fk and C
k`

are orthonormal bases of Uk and V
k`

,
respectively, and Xk` is a non-zero arbitrary random matrix.
Notice that by calculating Hk` as in (12), the interference
cancellation conditions (2) are trivially satisfied. Now, as
mentioned in Section II, we can right-multiply either the
precoders or the decoders by arbitrary invertible matrices and
(2) still holds. Therefore, by applying the transformation

U
′
k = Uk

((
U

H

k

[
Hk1Vk1 · · · HkMVkM

])H)−1
, ∀k,

(13)
(if the inverse exists) the new system comprised of the sets{
Vk`

}
,
{
U
′
k

}
and

{
Hk`

}
satisfies (2) and (5), and thus

(7). We can then use it as a start system for the homotopy
continuation procedure.

C. Implementation details

In this section, we discuss some important implementation
aspects of the proposed algorithm.

The expressions for the Euler prediction and New-
ton correction steps are given by (10) and (11), respec-
tively. Now, in order to simplify the algorithm imple-
mentation, it is convenient to define a new vector w =[
cat
`

((vecV`)
T ), cat

k
((vecUH

k )T )
]T

by stacking all precod-
ing and decoding matrices. Both (10) and (11) represent
systems of linear equations which can be conveniently solved
as large sparse linear systems. Starting with the prediction

step, our goal is to write the set of linear equations in (10) as
a single linear equation, DG (w) ∆w = −DG (t). Applying
the identity

vec(ABC) = (CT ⊗A) vec(B), (14)

we first vectorize (10) as(
(VT

` H
T
k`(t))⊗ IdRx

k

)
︸ ︷︷ ︸

DGk`(UH
k )

∆vecUH
k

+
(
IdTx

`
⊗ (UH

k Hk`(t))
)

︸ ︷︷ ︸
DGk`(V`)

∆vecV`

=− vec
(
UH

k (Hk` −Hk`)V`

)︸ ︷︷ ︸
DGk`(t)

∆t, ∀k, `.

(15)

Once the equations have been vectorized, we can stack them
together to represent the Euler prediction step:

DG(w)∆w = −DG(t)∆t ⇒ ∆w = −DG(w)+DG(t)∆t,
(16)

where DG (w) is the Jacobian matrix of the system of matrix
equations in (7), comprising all the derivatives with respect to
the variables {Vj`} and {UH

k } in the order specified in (19).
It is a block partitioned matrix with as many row partitions as
channel matrices and as many column partitions as precoding
and decoding matrices. Sparsity comes from the fact that each
equation involves a subset of the variables and, therefore,
many blocks in (19) are zero. Specifically, DGk` (Vjp) = 0
when p 6= `, and DGk`

(
UH

j

)
= 0 when j 6= k. The solution

vector ∆w contains the updates for all the variables in both
precoders and decoders, and the derivate with respect to the
continuation parameter is built from all partial derivatives as

DG (t) = cat
(k,`)

(
DGk` (t)

T
)T

.

Following the same steps, the Newton correction expres-
sions can be rewritten as the solution of a linear equation,
DG (t) ∆w = g, obtained by vectorizing all the equations in
(11),

DGk`(U
H
k )∆vecUH

k +DGk`(V`)∆vecV`

= vec
(
Ak` −UH

k Hk`(t)V`

)︸ ︷︷ ︸
gk`

, ∀k, `, (17)

and then stacking up all the equations together,

DG(w)∆w = g ⇒ ∆w = DG(w)+g, (18)

where g = cat
k,`

(gT
k`)

T .

Theoretically, the Newton step should be executed iteratively
for a fixed t until a point below the predefined tolerance
has been obtained. Since the Newton method converges
quadratically to a point in the path, a common strategy is
to run the correction step a few times establishing a limit on
the number of executions to a maximum of MaxNwtIter
or until all the entries of g are below a predefined tolerance
NwtTol, whatever happens first. Nevertheless, in those cases
in which the step size, ∆t, is too large, the precoders and
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DG(w) =


DG11(V11) DG11(V21) · · · DG11(VNM ) DG11(UH

1 ) · · · DG11(UH
N )

DG21(V11)
... DGk`(Vjp)

...
... DGk`(U

H
j )

...

DGNM (V11) · · · DGNM (VNM ) DGNM (UH
1 ) · · · DGNM (UH

N )


(19)

Algorithm 1: Interference alignment via homotopy con-
tinuation in MIMO X networks.

Input: {Hk`}, ∆t, NwtTol, MaxNwtIter,
MinStepSize, NumHitsToDoubleStep

Output: {V`} and {Uk} satisfying (2) and (3), and a
convergence indicator, PathFailed

/* Inverse IA */

Obtain
{
Vk`

}
,
{
U
′
k

}
, {Hk`} as shown in (12), (13);

t = 0, NumHits = 0, PathFailed = false

w =
[
cat
(`)

((vecV`)
T ), cat

k
((vecUH

k )T )
]T

t∗ = t, w∗ = w // backup variables
while t < 1 do

t = min(t+ ∆t, 1)
/* Euler prediction */
w = w −DG(w)+DG(t)∆t as indicated in (16)
/* Newton correction */
NewtonFailed = true
for iter = 1 to MaxNwtIter do

w = w +DG(w)+g as shown in (18)
if ||g||2 < NwtTol then

NumHits = NumHits + 1
NewtonFailed = false
break

/* Step size adaptation routine */
if NumHits == NumHitsToDoubleStep then

∆t = 2∆t
t∗ = t, w∗ = w, NumHits = 0

else if NewtonFailed then
∆t = ∆t/2
t = t∗, w = w∗, NumHits = 0
if ∆t < MinStepSize then

PathFailed = true
return

Find orthonormal basis for the precoders and decoders
satisfying VH

k`Vk` = I, UH
k Uk = I, ∀k, `

return

decoders after the Euler prediction might be so far from the
path that the Newton correction step could require several
iterations to reach the tolerance value, or it might escape
from the basin of attraction of Newton’s operator and thus be
unable to follow the correct path. In this sense, although there
is theoretical evidence proving that there is always a step size,
∆t, small enough to assure convergence [41], a fixed step size

strategy might not be efficient in practice.
To deal with this issue, we have provided the simple path

tracker with an additional feature, allowing our algorithm to
adapt the continuation step size depending on the Newton
corrector success or failure. A common practice is to halve
the step size if we detect that the Euler prediction has
failed, and then repeat it. If a number of repeated failed
predictions is obtained –i.e. if the step size becomes smaller
than a predefined minimum step size, MinStepSize– we
stop the path tracking procedure and no output is pro-
duced. Conversely, if the correction step is successful for
NumHitsToDoubleStep consecutive iterations, we can
double the step size in order to reduce the total number of
iterations of the path tracking routine. Algorithm 1 describes
the proposed method in full detail3. Let us finally remind
the reader that a Matlab implementation of this algorithm is
available at https://gtas.unican.es/homotopyIATSP.

IV. CONVERGENCE ANALYSIS

In this section, we analyze the convergence of the homotopy
continuation method and provide some important details
regarding the implementation of the algorithm.

Let us define the two following spaces:

I = {(Hk`) : ` ∈ {1, . . . ,M}, k ∈ {1, . . . , N}},

O = {(Uk,Vj`) : ` ∈ {1, . . . ,M}, j, k ∈ {1, . . . , N}},

which can be thought of as the space of possible “inputs”
(channel matrices) and the set of possible “outputs” (precoders
and decoders) of the algorithm. Note that an element of I or
O is just a concatenation of complex matrices. We assume
that the order of such concatenation is fixed and we can thus
identify

I ≡ Ca, O ≡ Cb,

where

a =
∑
k,`

A`Bk, b =
∑
k

Bkd
Rx
k +

∑
`

A`d
Tx
` .

Note that alternatively to (7) we can consider the same
equations but changing Hermitian transpose to transpose:

UT
kHk`V` = Ak` ∀k, `. (20)

Mathematically, it is more simple to deal with this case since
the functions involved are then (complex) analytic, so we

3For our actual implementation of the proposed method, the input
parameters of the algorithm take the following values: ∆t = 10−3,
NwtTol = 10−10, MaxNwtIter = 5, MinStepSize = 10−15 and
NumHitsToDoubleStep = 3

https://gtas.unican.es/homotopyIATSP
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consider these equivalent equations in this section. Obviously,
a solution to (20) produces and answer to (7) and viceversa, so
there is no harm in this change. In the rest of this section, we
will focus on the most challenging case that happens when the
solution set for any given H = (Hk`) ∈ I (out of some zero–
measure set) is finite [43]. In words, this is the situation of a
tightly-feasible scenario in which removing a single antenna
at any transmitter or receiver turns the system unfeasible [44].

Recall that, for fixed H ∈ I, a point (Uk,Vj`) ∈ O is a
nonsingular solution of (20) if the linear mapping given by
the derivative:

(U̇k, V̇k`)→ U̇T
kHk`(t)V` + UT

kHk`(t)V̇` ∀k, ` (21)

is invertible. It is thus easy to check if a solution of (20) is
nonsingular (up to numerical errors).

We now state our convergence result
Theorem 1: Let H ∈ I and let (Uk,Vj`) be a nonsingular

solution of
U

T

kHk`V` = Ak` ∀k, `. (22)

Then, for almost all H ∈ I, the solution (Uk,Vj`) can be
smoothly continued using the homotopy H(t) = (1−t)H+tH
to a nonsingular solution of (20).

Proof: See Appendix A.
In general, we cannot guarantee in advance that the start

system in Section III-B satisfies the nonsingularity hypothesis
of Theorem 1. However, as pointed out above, checking
whether it satisfies the hypothesis is an elementary task, which
implies that there are two possibilities regarding the starting
pair described in Section III-B:

1) Case 1: our starting alignment solution (Uk,Vj`)
defines a nonsingular solution of (22). Then, with
probability 1 a channel H ∈ I admits at least one
nonsingular alignment solution and we can consider
the problem as feasible. Moreover, we can construct a
solution for almost all possible inputs by continuing the
known one.

2) Case 2: our starting alignment solution (Uk,Vj`)
defines a singular solution of (22). In this case, the
derivative (21) is singular and hence we cannot continue
the solution to the target system using the generated
start system. Although the singularity of (21) does not
determine if the problem is feasible or unfeasible, in
this work we assume that the networks under study are
feasible systems. Therefore, it may suffice to perform
the procedure in Section III-B again in order to generate
a new start system which might define a nonsingular
solution of (22) (see Case 1).

Therefore, in the worst scenario we may just have to discard
the start system after a simple linear algebra test, and then
generate a new starting point as described in Section III-B.
This contrasts with other iterative methods such as Alternating
Minimization or simply applying Newton’s method where one
must make a (possibly very long) number of iterations on an
initial guess with no a priori guarantee on the convergence of
the method.

Of course, the algorithm being a numerical method, there
is a chance that, even knowing that a continuation exists, it

T1

T2

TK

R1

R2

RK

Fig. 2. Interference channel. Solid line arrows represent desired information,
and dashed line arrows are associated to interference.

cannot be found in reasonable time or the homotopy step is
too small to be used in practice, see the discussion in Section
III-C. Theorem 1 gives however a strong theoretical support to
the use of homotopy techniques for the problem under study.

V. APPLICATION TO COMMON NETWORK TOPOLOGIES

As we mentioned in Section I, many well-known network
topologies can be viewed as particular cases of the general X
network considered in this paper. To make this point clear, in
this section we specialize the general X network to IC, IMAC
and IBC topologies.

A. Interference channel

An interference channel (cf. Fig. 2) is a particular case of
the MIMO X network in which the following conditions are
satisfied:

• The number of transmitters is equal to the number of
receivers, i.e. M = N = K.

• Each transmitter sends its information only to its corre-
sponding receiver. This fact is reflected in the demands
matrix, D, by making dk` = 0, ∀k 6= `.

Consequently, the alignment conditions (2) and (3) simplify
to

UH
k Hk`V`` = 0, ∀k, ∀` 6= k (23)

rank
(
UH

k HkkVkk

)
= dkk, ∀k. (24)

Notice that, for generic MIMO interference channels (i.e.,
without symbol extensions), the rank condition (24) is auto-
matically satisfied as long as both precoders and decoders are
full column rank. This is clear by noticing that the channel
matrices involved in (24) are independent of those appearing
in (23). The alternating minimization algorithm in [6] relies on
this fact to solve (23) by restricting the precoding and decoding
matrices to lie in the Stiefel manifold, i.e. VH

``V`` = I and
UH

k Uk = I.
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Cell 1

Cell M

BS1

BSM

MS1

MS2

MSN1

MS1

MS2

MSNM

Fig. 3. Interference multiple-access channel. Solid line arrows represent
desired information, and dashed line arrows are associated to interference.

Cell 1

Cell M

BS1

BSM

MS1

MS2

MSN1

MS1

MS2

MSNM

Fig. 4. Interference broadcast channel. Dashed line arrows are associated to
interference, and dash-dotted lines indicate that both desired and interfering
signals coexist in the same link.

B. Cellular networks

Cellular networks can also be viewed as particular cases
of X networks. More specifically, two dual topologies have

Cell α

Cell β

BSα

BSβ

MS1

MS2

MSK

MS1

MS2

MSL

Fig. 5. Reverse TDD model. Solid line arrows represent desired information,
and dashed line arrows are associated to interference. Dash-dotted lines
indicate that both desired and interfering signals coexist in the same link.

been traditionally used to characterize both the uplink and
downlink channels in cellular systems, namely the interference
multiple-access channel (IMAC) and interference broadcast
channel (IBC) models, which are depicted in Figs. 3 and 4
respectively. Whereas in traditional cellular systems all cells
operate synchronously either in uplink or dowlink mode, in
this paper we also consider a heterogeneous network (HetNet)
scenario in which some cells may operate in uplink mode
while the rest of them operate in downlink. This configuration
is known as reverse time division duplex (R-TDD), and it
has been shown to increase the number of achievable DoF
in some scenarios [23]. An example of an R-TDD, two-cell
network is shown in Fig. 5.

An IMAC, IBC, or reverse TDD cellular network with M
cells and N =

∑
kNk users per cell can be viewed as an X

network with the following characteristics.
1) Interference multiple-access channel (IMAC):
• The demands matrix, D = DIMAC , has a block-diagonal

structure, as shown in (25).
• The number of transmitters will be equal to the total

number of mobile stations within the network, and the
number of receivers will correspond to the number of
base stations.

2) Interference broadcast channel (IBC):
• The demands matrix, D = DIBC , has a block-diagonal

structure, as shown in (26).
• The number of transmitters coincides with the number of

base stations, and the number of receivers is the number
of mobile stations.

3) Reverse TDD:
• Since this type of networks consists of both multiple-

access channels and broadcast channels, the demands
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DIMAC =



d1,1:N1
01,N2

0 · · · 0 01,NM

01,N1 d2,N1+1:N2 0 · · · 01,NM

. . .
... 0 dk,

∑k−1
`=1 N`+1:

∑k
`=1 N`

0
...

. . .
01,N1 01,N2 0 · · · 0 dM,N−NM+1:N


(25)

DIBC =



d1:N1,1 0N1,1 0 · · · 0 0N1,1

0N2,1 dN1+1:N2,2 0 · · · 0N2,1

. . .
... 0 d∑k−1

`=1 N`+1:
∑k

`=1 N`,k
0

...
. . .

0NM ,1 0NM ,1 0 · · · 0 dN−NM+1:N,M


(26)

matrix, D, will be a combination of (25) and (26), de-
pending on the particular uplink/downlink configuration.

• The number of transmitters will be the number of
downlink base stations plus the uplink mobile stations.
The number of receiving nodes will be the sum of base
stations in uplink mode and mobile stations in downlink
mode.

VI. SIMULATION RESULTS

In this section we evaluate the performance of the homo-
topy continuation IA algorithm by means of Monte Carlo
simulations in a number of different network topologies. More
specifically, the performance of the method is evaluated on
the following scenarios:
• A 4-user MIMO X network including three different

antenna configurations (Scenarios 1, 2, and 3).
• An interference channel (IC) and a 2-user X channel

(Scenarios 4 and 5, respectively), both with symbol
extensions.

• An interference multiple-access channel (IMAC) and an
interference broadcast channel (IBC).

• Finally, the proposed algorithm will be tested on a reverse
time division duplex (R-TDD) scenario. IMAC, IBC
and R-TDD settings are evaluated for the same cellular
network (Scenario 6).

For each configuration, the results of 1000 independent
Rayleigh channel realizations were averaged.

A. 4-user MIMO X network
We consider a 4-user MIMO X network as our first scenario

and evaluate the sum-rate performance of the proposed method
(denoted as HC) in comparison to the minimum interference
leakage (MinIL) alternating minimization algorithm proposed
in [6], which has been conveniently adapted to operate in
MIMO X networks.

The comparison scenario is a MIMO X network comprised
of M = 4 transmitters and N = 4 receiver nodes, satisfying

M = N = K, equipped with A and B antennas, respectively.
Each transmitter wishes to send one stream to each receiver,
i.e., dk` = d = 1 ∀k, `. As shown in Table I, three different
antenna configurations were simulated. Notice that the bound
in (4) holds with equality for Scenario 1, which has the
minimum number of antennas to ensure feasibility.

Although there exists numerical evidence that for feasible
systems the MinIL method always converges to the global
minimum for generic interference channels, it does not
guarantee the rank conditions in (3) for an X network. This
is due to the fact that, as it was mentioned before, in an X
network every link acts as both a desired and an interfering
link. Since the proposed algorithm takes both interference
cancellation and rank preservation conditions into account, it
clearly outperforms the results achieved by MinIL in terms
of degrees of freedom, especially in the tightest scenarios,
as Fig. 6 shows. Note that the sum-rate slope in the high
signal-to-noise-ratio (SNR) regime attained by HC in Scenario
1 is even higher than that achieved by MinIL in Scenario 3,
with the advantage of HC using fewer antennas than MinIL.
As the number of antennas is increased, the performance of
MinIL improves, requiring at least 10 antennas at both ends
of the link to obtain the requested DoF.

Of course, the probability of attaining the requested DoF
affects the average sum-rate performance. As shown in Table
I, we observe that the probability of achieving the maximum
of K2d = 16 DoF is significantly higher for the HC algorithm,
being close to 1 for the 3 considered scenarios. This is in
agreement with the theoretical convergence result proved in
Theorem 1, and provides strong support for the use of the
homotopy continuation algorithm in MIMO X networks.

B. Channel Extensions

In the second example, we evaluate the performance of the
HC algorithm when symbols extensions are used. To this end,
two different network configurations, namely, an interference
channel and a 2-user X channel are considered.
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TABLE I
Prob[DOF = K2d = 16] OR PROBABILITY OF ACHIEVING THE

REQUESTED NUMBER OF DEGREES OF FREEDOM FOR K = 4 AND d = 1.

Scenario 1 2 3

(A,B) = (8, 9) (9, 9) (10, 10)

HC 0.98 0.99 1.00

MinIL 0.00 0.00 0.44
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HC, Scenario 1

HC, Scenario 2

HC, Scenario 3

Fig. 6. Average sum-rate achieved by MinIL and HC in the three considered
scenarios.

Regarding the IC, the scenario under test is comprised
of K = 6 users, each transmitter is equipped with A = 2
antennas, and each receiver has a single antenna, i.e., B = 1.
The first three transmitter nodes wish to send 2 indepen-
dent messages to their corresponding receivers, whereas the
remaining three want to send 3 messages, leading to a
demands matrix given by D = diag

[
2 2 2 3 3 3

]
.

Moreover, 6 channel extensions are used, giving rise to
a block-diagonal channel matrix. Following the notation
introduced in [28],[16], the scenario of interest corresponds
to a [(2× 1, 2)

3
, (2× 1, 3)

3
, 6] interference network with a

total of 15 independent streams.
Since the aforementioned system model has been previously

studied in [16], we compare the sum-rate slope achieved by
homotopy continuation to that obtained by the algorithm in
[16], which is denoted here as StructMinIL. This method
is a modification of the MinIL algorithm that explicitly
enforces a given rank for the signal subspaces while the
transmitters satisfy a power budget constraint. Although the
StructMinIL method improves the performance of MinIL
with symbol extensions, the optimization problem in [16] is
non-convex and therefore convergence to the desired solution
cannot be guaranteed.

Figure 7 shows the complementary cumulative distribution
function (CCDF) of the sum-rate slope achieved by both
algorithms at several SNR values. From this figure, it is clear
that the DoF performance of HC is better than that of the
StructMinIL.
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Fig. 7. CCDF of the sum-rate slope at SNR = {5, 10, 20, 55} dB in
Scenario 4.
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Fig. 8. CCDF of the sum-rate slope at SNR = {0, 5, 20, 35} dB in Scenario
5.

Now, we focus on a 2-user X channel, with transmitters
having A1 = 5 and A2 = 8 antennas, and with receivers
equipped with B1 = 6 and B2 = 7 antennas, respectively.
According to [24], this network configuration is capable of
transmitting a maximum of 29 independent data streams when
using a total of 3 channel extensions. Hereinafter, we will
refer to this setting as Scenario 5. The only feasible demands
allocation was numerically found to be given by

D =

[
5 8
5 11

]
.

The CCDF of the sum-rate slope achieved by HC at different
SNR values in Scenario 5 is represented in Fig. 8, which shows
that the proposed algorithm always obtains the maximum DoF
for SNRs larger than 35 dB, in agreement with the results in
[24]. Additionally, we have compared the HC method with two
alternative algorithms: for high SNR values (20 and 35 dB) we
used again the MinIL method, whereas for low SNR regimes
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Fig. 9. Average sum-rate achieved by the HC method in three different
network configurations.

(0 and 5 dB) we used the maximum signal-to-interference-plus-
noise ratio (Max-SINR) algorithm [6][45] adapted to work
in MIMO X networks. Note that, given the characteristics of
Max-SINR algorithm, it fits well within the low SNR regime
whilst providing a performance similar to MinIL for the rest
of SNR values. As shown in Fig. 8, the proposed algorithm
outperforms both Max-SINR and MinIL methods, hence
being the most appropriate choice for the whole range of SNR
values.

C. Cellular networks

The final scenario considered in the simulations comprises
M = 2 cells, containing N1 = 4 and N2 = 3 users,
respectively. In cell 1, the base station (BS) has 12 antennas,
whereas each mobile station (MS) is equipped with 8 antennas.
Regarding the second cell, its base station has 18 antennas
and the mobile stations have 4 antennas each.

In Figure 9, we compare the average sum-rate achieved
by the homotopy continuation algorithm in three different
configurations of the cellular network: two cells in downlink
(IBC), two cells in uplink (IMAC), or cell 1 in downlink
and cell 2 in uplink (R-TDD). For both the IBC and IMAC
scenarios, in which the two cells operate synchronously as
downlink or uplink channels, a maximum of 12 independent,
interference-free data streams can be transmitted. However,
according to [23], a total of 18 DoF can be achieved by
applying the reverse TDD scheme, in which one of the cells
operates in downlink mode while the other cell operates in
uplink mode. This result is corroborated by our experiments,
thus confirming that reverse TDD can enlarge the DoF region
in some scenarios.

For the R-TDD scenario, we have further analyzed the
probability of attaining the requested number of DoF for
the HC method in comparison to the MinIL algorithm.
Homotopy continuation reaches the maximum of 18 streams
with a probability of 0.98, while the alternating minimization
algorithm is only capable of obtaining the requested DoF with

TABLE II
AVERAGE NUMBER OF ITERATIONS AND AVERAGE TIME PER ITERATION.

Scenario
Number of iterations Time per iteration (ms)
HC MinIL HC MinIL

3 40.55 356.15 43.228 5.788

6 (R-TDD) 314.59 2410.24 66.123 7.200

a probability of 0.24. As mentioned in previous sections, the
alternating minimization technique often fails to attain the
requested DoF in those scenarios where some links act as
both desired and interfering link. On the contrary, the HC
method explicitly considers both (2) and (3), hence achieving
the maximum DoF.

We finally compare the computational complexity of the
HC and MinIL algorithms. For this comparison, we have
considered the X network in Scenario 3 and the reverse TDD
mode of Scenario 6. Table II shows the average number of
iterations required by each algorithm to achieve convergence
in the considered scenarios, as well as the average time per
iteration. We can see that the number of iterations for the HC
method is significantly lower than that of the MinIL. However,
the average time per iteration is considerably higher4, resulting
in a similar overall convergence time for both algorithms.

VII. CONCLUSION

In this paper we have presented a new algorithm, based
on homotopy continuation, to design interference alignment
precoders and decoders for MIMO X networks. The rank
constraints on the direct channels are explicitly taken into
account and reformulated as new bilinear equations to be
solved by the homotopy continuation method together with
the conventional interference alignment equations. In this way,
the proposed method is able to provide perfect alignment
solutions even when time or frequency symbol extensions
are used. Unlike competing algorithms, the proposed method
has provable convergence guarantees when the IA problem
is feasible. Moreover, the proposed algorithm outperforms
other existing algorithms, such as the well-known alternating
minimization scheme, for a wide variety of channel models
including the IC, IBC and IMAC cellular networks, and the
X-channel. Finally, the proposed technique has allowed us to
provide some insights into the potential benefits of the reverse
TDD configuration in comparison to the conventional IMAC
and IBC cellular topologies.

APPENDIX A
PROOF OF THEOREM 1

Our argument is standard in Numerical Algebraic Geometry.
We consider the solution variety

V = {(Hk`,Uk,Vj`) : (20) holds} ⊆ I ×O,

that is the set of possible pairs (input, output). We also
consider the projection π1 : V → I. Note that for an input

4The average number of Newton corrections for Scenarios 3 and 6 are
3.37 and 4.23, respectively.
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H = (Hk`) ∈ I, the inverse image π−11 (H) of H by π1 is
just a copy of the set of possible solutions to (20). Of course,
that set can be empty.

Lemma 1: Let (H,Uk,Vj`) ∈ V , and assume that
(Uk,Vj`) is a nonsinguar solution of (20) (that is, the linear
mapping (21) is invertible). Then, the derivative of π1 at
(H,Uk,Vj`) is invertible.

Proof: First, since (21) is an invertible (thus, surjective)
mapping, from the Regular Value Theorem, we have that V is
a smooth manifold in a neighborhood of (H,Uk,Vk`), and
the tangent space T to V at (H,Uk,Vj`) is the set of vectors
(Ḣ, U̇k, V̇k`) such that(

UT
k Ḣk`(t)V` + U̇T

kHk`(t)V` + UT
kHk`(t)V̇`

)
k,`

= 0.
(27)

The derivative of π1 sends (Ḣ, U̇k, V̇k`) in T to Ḣ. Thus, it
is surjective (i.e. invertible since the dimensions of V and I
are equal by assumption) if and only if for any Ḣ one can
find (U̇k, V̇k`) satisfying (27). This is clear since the linear
mapping (21) is surjective.

Note that the solution variety is the zero set of the mapping

F : I × O → Cb(
H, (Uk,Vj`),

)
7→

(
UT

kHk`V` −Ak`

)
k,`

We now use [41, Theorem 7.1.1], a somehow classical result
in Numerical Algebraic Geometry which follows mainly from
Chevalley’s Theorem (see for example [46, p. 395]) applied
to the projection π1 and from the Inverse Function Theorem.
Instead of recalling [41, Theorem 7.1.1] in its full generality,
we just write down its consequence for our problem.

Theorem 2: There exists a non–negative integer N ∈ Z
such that for every H ∈ I out of some proper algebraic set Σ,
the system F

(
H, (Uk,Vj`)

)
= 0 (with variables (Uk,Vj`))

has exactly N nonsingular solutions. Moreover, if H ∈ I and
if

H(t) = (1− t)H + tH 6∈ Σ for t ∈ (0, 1],

then the homotopy F
(
H(t), (Uk,Vj`)

)
has N smooth, non-

singular solution paths, and the limit of these paths as t→ 0
include all the nonsingular zeros of F

(
H, (Uk,Vj`)

)
.

Note that in Theorem 2 we may have N = 0, which
corresponds to the case that π−11 (H) = ∅ for (almost all)
H ∈ I, that is the case that the alignment is unfeasible. We
also recall [41, Lemma 7.1.2] (adapted to our notation):

Lemma 2: Fix H ∈ I. Then, for almost all H ∈ I, the
one–real–dimensional half–open line segment

H(t) = (1− t)H + tH, t ∈ (0, 1],

is contained in I \ Σ.
We are now ready to prove Theorem 1.

Proof: In the notations of the theorem, from Lemma 2
for almost all H ∈ I the segment H(t) does not intersect Σ
for t ∈ (0, 1] (although it might happen that H(0) = H ∈ Σ).
From Theorem 2 we then know that there is at least one smooth
path (Uk(t),Vk`(t)), t ∈ (0, 1], of nonsingular solutions to
H(t), such that the limit as t→ 0 includes (Uk,Vk`). Now,
by hypothesis this last is a nonsingular solution of (22), which

in particular implies that it is an isolated solution and hence
the limit as t → 0 of (Uk(t),Vk`(t)) is exactly (Uk,Vk`)
(and does not contain more points), so it is a curve which
is well–defined in the closed interval t ∈ [0, 1]. On the other
hand, from Lemma 1 and the Inverse Function Theorem there
exists a local inverse (that we denote by Θ) of π1 close to H
whose image is locally equal to V in some neighborhood of
(H,Uk,Vk`). In other words, for some ε > 0 the segment
H(t), t ∈ [0, ε) can be lifted to V in a unique way, given by
Θ(H(t)), in such a way that the lift starts at (H,Uk,Vk`).
Namely, no more than one of the smooth paths of nonsingular
solutions to H(t) can arrive at (H,Uk,Vk`).

We have proved that there exists a unique solution path
(H(t),Uk(t),Vk`(t)) (which, at t = 1, defines a unique solu-
tion of (20)) that arrives at t = 0 to the point (H,Uk,Vk`).
One can thereby follow the homotopy backwards, and starting
at the known solution at t = 0 thus arrive to t = 1 getting the
solution to the target system H.
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