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ABSTRACT

In this paper, two new multi-output kernel adaptive filtering al-
gorithms are developed that exploit the temporal and spatial cor-
relations among the input-output multivariate time series. They
are multi-output versions of the popular kernel least mean squares
(KLMS) algorithm with two different sparsification criteria. The
first one, denoted as MO-QKLMS, uses the coherence criterion in
order to limit the dictionary size. The second one, denoted as MO-
RFF-KLMS, uses random Fourier features (RFF) to approximate
the kernel functions by linear inner products. Simulation results
with synthetic and real data are presented to assess convergence
speed, steady-state performance and complexities of the proposed
algorithms.

Index Terms— Multi-input multi-output (MIMO) regression,
kernel adaptive filtering, Quantized Kernel Least Mean Square
(QKLMS), random Fourier features.

1. INTRODUCTION

Nowadays, many modern machine learning applications require
solving several decision making or prediction problems and, in
many cases, the key to obtain better results and cope with a lack
of data consists of exploiting the existing dependencies between
those problems [1–4], which is often broadly referred to as multitask
learning [5–7].

This paper focuses on the development of new kernel adaptive
filtering (KAF) algorithms for multitask learning and, more specifi-
cally, for multi-output online regression [8]. Kernel adaptive filters
that perform adaptive filtering in a high-dimensional reproducing
kernel Hilbert space (RKHS) have been successfully applied over
the past decades to a variety of nonlinear signal processing prob-
lems [9–11]. These algorithms have been extensively studied for
noise cancellation, channel estimation and nonlinear system identi-
fication in online manner due to its universal modeling capabilities
and modest computational complexity.

However, most of the multi-output KAF algorithms proposed in
the recent literature are based on Gaussian Processes or on kernel-
ized versions of the recursive-least square algorithm [12–14], which
entail a high computational complexity. In this paper, we attempt to
fill this gap by studying multi-output versions of the popular KLMS
that exploit the temporal (intra) and spatial (inter) correlations
among the input-output multivariate time series. A straightforward
multi-output KLMS filter is derived by concatenating the time-
embedded input time series and performing a matrix-valued kernel
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expansion to obtain the multivariate output. This is equivalent to
a multi-output LMS operating in a RKHS. We explore two sparsi-
fication methods to curb the linear growth of the KLMS with the
number of training data. The first one uses the coherence criterion
to limit the dictionary size and leads to a multi-output version of the
quantized KLMS [15] (MO-QKLMS). The second one uses random
Fourier features (RFF) [16] to approximate the kernel functions by
linear inner products and leads to a multi-output version of the RFF-
KLMS [17] (MO-RFF-KLMS). Simulation results with synthetic
and real data are presented to assess convergence speed, steady-state
performance and complexities of the proposed algorithms.

2. MIMO REGRESSION

We consider a multiple-input multiple-output (MIMO) real non-
linear system whose input consists of M time series, xmn , m =
1, . . . ,M , and produces P output signals, dpn, p = 1, . . . , P . We
assume the nonlinear MIMO system is causal with memory (time-
embedding)L taps. Let xm

n = [xmn , x
m
n−1, . . . , x

m
n−L+1]> represent

the time-embedded vector corresponding to the m-th input time se-
ries at time n. The input of the nonlinear MIMO system is denoted
as xn =

[
(x1

n)>, . . . , (xM
n )>

]>
, and the corresponding output is

dn =
[
d1n, . . . , d

P
n

]>
. Our goal is to learn a multi-output regression

model or function f from a training data set S = {xn,dn}Nn=1

f : RLM → RP

xn → dn.

Existing kernel least-mean square (KLMS) algorithms are
highly efficient learning machines for the identification of single-
output nonlinear systems, but their MIMO counterparts have not
yet been widely researched. Nevertheless, a suboptimal approach to
the problem could be to use P independent KLMS filters, each pre-
dicting or identifying one component of the P -dimensional output
vector dn. That is, we could apply standard KLMS filters to learn
independent single-input single-output regression models. However,
this approach does not exploit the existing correlation among the in-
put time series and therefore is clearly suboptimal. In the following
section, we propose two multi-output KLMS-like algorithms that
fully exploit the inter-series correlation with reduced complexity.

3. MULTI-OUTPUT KLMS

Kernel methods are based on a nonlinear transformation of the
data xi into a high-dimensional feature space. In this feature
space, inner products can be calculated by using a positive definite
kernel function satisfying Mercer’s condition [18]: κ (xi,xj) =
〈Φ (xi) ,Φ (xj)〉. This simple idea, also known as the kernel trick,



allows us to perform inner-product based algorithms implicitly in
feature space by replacing all inner products by kernel functions.
Many kernel functions exist, though the most commonly used is the
Gaussian kernel

κ (xi,xj) = exp

(
−‖xi − xj‖2

2σ2
k

)
. (1)

Thanks to the Representer Theorem [19], the output to a new
input at time instant n+ 1, xn+1, for a single-output KLMS can be
expressed as a kernel expansion in terms of the training data D =
{xi}ni=1

yn+1 =

n∑
i=1

αiκ (xi,xn+1) . (2)

A straightforward multi-output KLMS generalization to (2) is

yn+1 =

n∑
i=1

αiκ (xi,xn+1) = A>n kn, (3)

where A>n = [α1, . . . ,αn] is a P × n matrix with columns αi =

[α1i, . . . , αPi]
>, and kn = [κ (x1,xn+1) , . . . , κ (xn, xn+1)]>

represents the kernels vector.
It is well known that the functional representation of the KLMS

algorithm grows linearly with the number of processed data or dic-
tionary size, leading to a heavy computational burden and huge
memory requirements. Therefore, various online sparsification
criteria have been developed to curb the growth of the kernel ex-
pansion [11, 20]. In the following subsections, we explore two
sparsification approaches that are particularly well-suited to multi-
output scenarios.

3.1. MO-QKLMS

A single-output KLMS algorithm, named Quantized Kernel Least
Mean Squares (QKLMS), which applies the coherence criterion as a
way to achieve sparsification was proposed in [15]. Here we propose
a multi-output generalization of the QKLMS termed MO-QKLMS.

The MO-QKLMS sparsification procedure uses coherence as a
measure to characterize the dictionary, which is defined in a kernel
context as

ε = max
i 6=j

|〈Φ (xi) ,Φ (xj)〉|√
〈Φ (xi) ,Φ (xi)〉〈Φ (xj) ,Φ (xj)〉

. (4)

Using the unit-norm Gaussian kernel defined in (1) to compute
the inner products, (4) simplifies to

ε = max
i6=j
|〈Φ (xi) ,Φ (xj)〉| = max

i 6=j
|κ (xi,xj) |. (5)

When the coherence between the new datum xn+1 and the dic-
tionary elements at time n, Dn, is below a given threshold

max
i∈Dn

|κ(xi,xn+1)| ≤ εu, (6)

then, the MO-QKLMS includes xn+1 into the dictionary and the
filter coefficients are updated as

An+1 =

[
An

µe>n+1

]
, (7)

where en+1 = dn+1 − yn+1 is the multivariate error vector. When
the coherence is above the threshold, the new datum is not included

in the dictionary and the coefficients corresponding to the dictionary
element closest to xn+1, say xj , are updated as An+1,j = An,j +
µe>n+1, where µ is the step-size and An,j denotes the j-th column
of An. The MO-QKLMS algorithm is summarized in Algorithm 1.

Algorithm 1: MO-QKLMS

Input: Sequential multi-output training data {xn,dn}Nn=1,
Gaussian kernel width σk, step size µ, threshold εu

1 Initialize D1 = {x1}, A1 = µd>1
2 for n = 1 : N − 1 do
3 Select input-output training pattern (xn+1,dn+1)
4 Compute kernels vector

kn =
[
κ (x1,xn+1) . . . κ (xn,xn+1)

]>
5 Compute prediction yn+1 = A>n kn

6 Compute error en+1 = dn+1 − yn+1

7 Compute coherence ε = maxi∈Dn |κ(xi,xn+1)|
8 if ε ≤ εu then
9 New datum is included in the dictionary

Dn+1 = Dn ∪ {xn+1}

10 Update coefficients An+1 =

[
An

µe>n+1

]
11 else
12 Dictionary is maintained Dn+1 = Dn

13 Find the closest dictionary element
minj∈Dn ||xn+1 − xj ||

14 Update closest dictionary element coefficient
An+1,j = An,j + µe>n+1

15 end if
16 end for

3.2. MO-RFF-KLMS

Another alternative to limit the growth of the multi-output KLMS
thus reducing its computational complexity, called random Fourier
features KLMS (RFF-KLMS), was proposed in [17]. Here we pro-
pose a multi-output generalization of the RFF-KLMS named MO-
RFF-KLMS. This KLMS-type algorithm is based on finding good
finite-dimensional approximations of the kernel functions. That is, it
obtains a mapping Ψ : RLM → RD , with D > LM , such that [16]

〈Ψ (xi) ,Ψ (xj)〉 ≈ κ (xi,xj) . (8)

The feature vectors Ψ (x) are obtained using random Fourier
features (RFF) maps. The underlying idea is based on Bochner’s
theorem, which guarantees that the Fourier transform of an appro-
priately scaled, shift-invariant kernel is a probability density func-
tion [16], [21]

κ (xi − xj) =

∫
RLM

p (ω) ejω
T (xi−xj) dω

= Eω [Ψω (xi) Ψω (xj)
∗] .

(9)

Therefore, Ψω (xi) Ψω (xj)
∗ is an unbiased estimate of κ (xi,

xj) when ω is drawn from p(ω). To reduce the variance of
this estimate, a sample average of D randomly chosen Ψω (·) is
used. Hence, the D-dimensional inner product 1

D

∑D
k=1 Ψωk (xi) ·

Ψωk (xj) is a low variance approximation to the kernel evalua-
tion κ (xi,xj). This approximation improves exponentially fast in
D [16].



In general, the features Ψω (x) are complex. However, they can
be expressed using real valued cosine bases by exploiting the sym-
metry property of the kernel κ. Therefore, the mapping Ψω (x) =√

2 cos (ω>x + b), where ω is drawn from p(ω) and b is drawn
uniformly from [0, 2π], also satisfies (9).

The vector Ψ (x) = [Ψω1 (x) ,Ψω2 (x) , . . . ,ΨωD (x)]> is
thus aD-dimensional RFF of the input vector x. This mapping satis-
fies the approximation in (8). For approximating the Gaussian kernel
of width σk, we therefore draw ωi, i = 1, . . . , D, from the normal
N
(
0, Id/σ

2
k

)
distribution.

Since the RFF space is finite dimensional, it now becomes pos-
sible to directly work with the filter weights Ω in this space. There-
fore, the kernel expansion (3) in this case yields

yn+1 = Ω>n Ψ (xn+1) . (10)

Notice that the update equations in the RFF space become ex-
actly the same as the classical multi-output LMS algorithm

Ωn+1 = Ωn + µΨ (xn+1) e>n+1, (11)

where en+1 = dn+1 − yn+1 is the multivariate error vector and µ
is the step size. The MO-RFF-KLMS algorithm is summarized in
Algorithm 2.

Algorithm 2: MO-RFF-KLMS

Input: Sequential multi-output training data {xn,dn}Nn=1,
Gaussian kernel width σk, step size µ, RFF
dimension D

1 Draw i.i.d. {ωi}Di=1 fromN
(
0, Id/σ

2
k

)
, where d = LM is

the input space dimension
2 Draw i.i.d. {bi}Di=1 from U (0, 2π)

3 Initialize Ω1 = 0 ∈ RD×P

4 for n = 1 : N − 1 do
5 Select input-output training pattern (xn+1,dn+1)
6 Compute RFF vector

Ψ (xn+1) = [ψω1 (xn+1) , . . . , ψωD (xn+1)]>,
where each ψωi (xn+1) = cos

(
ω>i xn+1 + bi

)
7 Compute prediction yn+1 = Ω>n Ψ (xn+1)
8 Compute error en+1 = dn+1 − yn+1

9 Update Ωn+1 = Ωn + µΨ (xn+1) e>n+1

10 end for

4. SIMULATION RESULTS

In this section, we provide two simulation examples to assess the
performance of MO-QKLMS and MO-RFF-KLMS in comparison
to their single-output versions in stationary and non-stationary envi-
ronments. The first set of experiments is conducted using a synthetic
dataset and the second one using real data. The optimal kernel width
σk for both datasets is estimated from the first 200 samples using the
parameter estimation script included in the toolbox KAFBOX [22].
The curves for the synthetic dataset are averaged over 500 indepen-
dent Monte Carlo runs and the ones for the real dataset over 50 runs.
The mean squared error (MSE) shown in figures corresponds to the
MSE averaged over the P output time series. All the experiments
are conducted using MATLAB that runs on a laptop with an Intel(R)
Core(TM) i7-7500U 2.70GHz CPU and 8GB RAM.

4.1. Nonlinear MIMO System Identification

In the first experiment, we consider a MIMO 3x3 nonlinear system.
Firstly, 3 Gaussian white time-series of 4000 samples each are gen-
erated as input signals. Secondly, these signals are filtered through
a MIMO linear system that introduces intra- and inter-correlation
among the time-series. To achieve this, the MIMO filter is H =
C ⊗ h where h = [1, 0.6] determines the temporal (intra-) corre-
lation and the covariance matrix C, whose elements are cij = 1 if
i = j and cij = ρ if i 6= j, determines the spatial (inter-) correla-
tion. The time-embedding is L = 2. Finally, we apply a memoryless
quadratic nonlinearity with coefficient γ = 0.3 (fixed) and add white
Gaussian noise with variance σ2 = 0.01 that models the measure-
ment noise.

The values of the parameters used in the different adaptive fil-
ters under comparison are listed in Table 1, where µ is the step size,
m is the final dictionary size, εu is the coherence criterion threshold
and D is the RFF dimension. In order to make a fair comparison be-
tween the different KAF algorithms, SO-QKLMS and MO-QKLMS
parameter εu is chosen so that m = 1000.

Algorithm Parameters
SO-KLMS µ = 0.4, m = 1000
MO-KLMS µ = 0.4, m = 1000
SO-QKLMS µ = 0.4, εu = 0.1
MO-QKLMS µ = 0.4, εu = 1.22

SO-RFF-KLMS µ = 0.4, D = 1000
MO-RFF-KLMS µ = 0.4, D = 1000

Table 1. Algorithms’ parameters used in nonlinear MIMO system
identification example.

Figure 1 shows the convergence curves obtained for the nonlin-
ear MIMO system with spatial correlation coefficient ρ = 0.3. As
expected, MO-QKLMS and MO-RFF-KLMS provide much lower
steady-state MSE than their single-output counterparts. Moreover,
the two proposed algorithms outperform a multi-output version of
the standard KLMS without sparsification (denoted as MO-KLMS)
and its corresponding single-output version. Further, in this example
MO-QKLMS is slightly better than MO-RFF-KLMS. In this case,
the optimal value chosen via cross-validation for the kernel width is
σk = 2.23.

Figure 2 shows the convergence curves obtained for the nonlin-
ear MIMO system when we increase the spatial correlation coeffi-
cient to ρ = 0.6. For this system, the optimal value chosen via
cross-validation for the kernel width is σk = 1.67. Again, MO-
QKLMS and MO-RFF-KLMS show a better performance in terms
of steady-state MSE than that of their single-output counterparts and
the MO-KLMS algorithm.

Meanwhile, it should be pointed out that the gap between the
multi-output algorithms and their single-output versions increases
as the spatial correlation coefficient ρ is increased from 0.3 to 0.6.
This result supports the intuitive idea that multi-output algorithms
perform better than their single-output versions because they take
advantage of the spatial correlation among time series.

4.2. Lorenz Chaotic Time-Series Prediction

In the second experiment, we consider the Lorenz chaotic system
determined by the differential equations [23]:
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 dx1 (t) /dt = σ
(
x2 (t)− x1 (t)

)
dx2 (t) /dt = −x2 (t)− x1 (t)x3 (t) +Rx1 (t)
dx3 (t) /dt = x1 (t)x2 (t)− bx3 (t)

(12)

with σ = 10, R = 28 and b = 8/3. A prediction horizon of h = 1
and an embedding of L = 3 are used. The values of the parameters
used in the different algorithms are listed in Table 2. In this case, the
optimal value chosen for kernel width is σk = 1.94.

Algorithm Parameters
SO-QKLMS µ = 0.9, εu = 0.07
MO-QKLMS µ = 0.9, εu = 0.22

SO-RFF-KLMS µ = 0.4, D = 1000
MO-RFF-KLMS µ = 0.4, D = 1000

Table 2. Algorithms’ parameters for Lorenz time-series example.
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Fig. 3. Learning curves for Lorenz time-series example.

Figure 3 shows again that MO-QKLMS and MO-RFF-KLMS
have lower steady-state MSE than that of their single-output ver-
sions, with MO-QKLMS narrowly outperforming MO-RFF-KLMS.

Table 3 shows a comparison between the two proposed algo-
rithms in terms of training time, computational complexity (mea-
sured in FLOPS) and storage requirements for the Lorenz chaotic
time-series dataset. It can be observed that MO-RFF-KLMS out-
performs MO-QKLMS in terms of training time and computational
complexity, thus making MO-RFF-KLMS our preferred option for
real-time applications or systems with limited computing capabili-
ties.

Algorithm Training time FLOPS Storage
MO-QKLMS 0.35 s 79006 96 kB

MO-RFF-KLMS 0.15 s 50025 104 kB

Table 3. Training time and complexity for Lorenz time-series exam-
ple.

5. CONCLUSIONS

Two multi-output KLMS-like algorithms are proposed in this paper:
MO-QKLMS, which uses coherence as sparsification criterion to
limit the growth of the dictionary size, and MO-RFF-KLMS, which
uses random Fourier features to limit the complexity of the algo-
rithm. Both algorithms outperform their single-output counterparts
in terms of steady-state MSE and convergence speed. Both algo-
rithms provide similar performance in terms of steady-state MSE,
but the MO-RFF-KLMS proves to be a better choice in terms of
computational complexity and training time. Future work can har-
ness the proposed algorithms to solve multitask learning problems
over an underlying graph as in [24, 25].
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