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Abstract—This paper investigates the performance of im-
proper Gaussian signaling (IGS) for the K-user multiple-input,
multiple-output (MIMO) interference channel (IC) with hard-
ware impairments (HWI). HWI may arise due to imperfections
in the devices like I/Q imbalance, phase noise, etc. With I/Q
imbalance, the received signal is a widely linear transformation
of the transmitted signal and noise. Thus, the effective noise at
the receivers becomes improper, which means that its real and
imaginary parts are correlated and/or have unequal powers.

IGS can improve system performance with improper noise
and/or improper interference. In this paper, we study the
benefits of IGS for this scenario in terms of two perfor-
mance metrics: achievable rate and energy efficiency (EE).
We consider the rate region, the sum-rate, the EE region
and the global EE optimization problems to fully evaluate
the IGS performance. To solve these non-convex problems,
we employ an optimization framework based on majorization-
minimization algorithms, which allow us to obtain a stationary
point of any optimization problem in which either the objective
function and/or constraints are linear functions of rates. Our
numerical results show that IGS can significantly improve the
performance of the K-user MIMO IC with HWI and I/Q
imbalance, where its benefits increase with the number of users,
K, and the imbalance level, and decrease with the number of
antennas.

Index Terms—Achievable rate region, convex/concave pro-
cedure, energy efficiency, generalized Dinkelbach algorithm,
hardware impairments, improper Gaussian signaling, interfer-
ence channel, majorization-minimization, MIMO systems.

I. INTRODUCTION

Wireless communication devices are never completely
ideal in practice, which can significantly degrade the system
performance especially when the hardware non-idealities are
not adequately modeled and accounted for the system design.
In general, hardware impairments (HWI) may occur due
to imperfections such as quantization noise, phase noise,
amplifier nonlinearities, and I/Q imbalance [1]–[19]. In
addition to hardware non-idealities, communication systems
may suffer from strong interference because modern wire-
less communication systems are mostly interference-limited.
Thus, interference-management techniques will play a key
role in 5G and future generations of wireless communica-
tion systems [20]. In the last decade, the use of improper
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Gaussian signaling (IGS) has been proposed and extensively
studied as an interference-management technique [3], [21]–
[39]. The real and imaginary parts of complex improper
signals are correlated and/or have unequal powers, for a full
treatment of improper signals the reader is referred to [40]–
[42].

A. Related work

The impact of hardware imperfections has been studied for
various wireless communications scenarios in [1]–[19]. For
instance, [1]–[5] considered different interference-limited
networks with single-antenna transceivers subject to additive
hardware distortions (AHWD). When there is AHWD, the
noise distortion power is a linear function of the signal power
at the corresponding antenna [1]–[5]. In [1], the authors
investigated the effect of AHWD on the performance of a
dual-hop relay with both amplify-and-forward and decode-
and-forward protocols, and derived closed-form expressions
for the outage probabilities, as well as an upper bound for
the ergodic capacity. The outage probability for a device-to-
device millimeter wave communication system with complex
proper AHWD was derived in [2]. However, AHWD may be,
in general, improper due to I/Q imbalance1 [3]–[5], [43]–
[47]. The authors in [3] considered a relay channel with
improper AHWD and maximized the achievable rate of the
system by optimizing over complementary variances. In [4],
the authors considered a full-duplex multihop relay channel
with improper AHWD. The work in [5] considered the 2-
user single-input, single-output (SISO) IC with improper
AHWD and proposed two suboptimal IGS schemes to obtain
the achievable rate region of the 2-user SISO IC.

Hardware non-idealities can be even more critical in
multiple-antenna systems [6]–[17]. In [15], the authors stud-
ied the capacity limit and multiplexing gain of multiple-
input, multiple-output (MIMO) point-to-point systems with
AHWD at both transmitter and receiver sides. The papers
[6]–[8] studied secure communications for massive MIMO
systems with AHWD in different scenarios. The paper [9]
investigated the impact of AHWD on the performance of
cellular communication systems in which the base station
employs a massive number of antennas. The papers [10]–
[12] studied the performance of massive MIMO systems
with AHWD in fading channels in different scenarios. In

1In this paper, AHWD noise refers to the model in [1], [5], [6], [8]–[10],
[12], [15] in which the power of the AHWD noise is a linear function of the
power of the received signal. On the other hand, HWI with I/Q imbalance
refers to the model in [43], [44], where the received signal is a function
of the widely linear transform of the transmitted signal and noise, and the
variance of the noise is fixed and independent of signal powers.
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[13], the authors investigated the system performance of a
two-way massive MIMO relay channel with AHWD. In [14],
the authors considered beamforming designs for a dual-hop
massive MIMO amplify-and-forward relay channel in the
presence of AHWD and analyzed the outage probabilities
for the system.

In addition to AHWD, there might be other sources of
hardware imperfections like I/Q imbalance. When I/Q im-
balance occurs, the received signal can be modeled through a
widely linear transformation of the transmitted signal and the
aggregated noise. Hence, the received signal can be improper
even if the transmitted signal and additive noise are both
proper [43]. It has been shown that IGS can improve the
system performance in the presence of improper noise or
interference-plus-noise [3]–[5], [43]–[47]. For example, it is
shown in [46] that IGS is the optimal signaling for a point-
to-point single-input, multiple-output (SIMO) system with
asymmetric or improper AHWD.

Improper signaling can be also used as an interference-
management technique in modern wireless communications
systems [3], [21]–[39]. It was shown that IGS can improve
several performance metrics of different interference-limited
systems. First, interference-alignment techniques transmit-
ting IGS can increase the degrees of freedom (DoF) of
different ICs, as proved in [21]–[23]. Second, IGS can
provide significant gains in terms of achievable rate and/or
power/energy-efficiency perspectives when treating interfer-
ence as noise (TIN) is the decoding strategy [24]–[39]. IGS
was considered as an interference-management technique
for the first time in [21], where it was shown that IGS
can increase the DoF of the 3-user IC. The papers [24]–
[27] showed the superiority of IGS in the 2-user SISO IC
in terms of achievable rate. A robust IGS design for the
2-user IC with imperfect channel state information (CSI)
was proposed in [26]. The ergodic rate of IGS and proper
Gaussian signaling (PGS) schemes in the 2-user IC with
statistical CSI was studied in [27]. The works [28]–[31]
investigated performance improvements by IGS in the Z-
IC. In [33], the authors showed that IGS can decrease the
outage probability of the secondary user (SU) in an overlay
cognitive radio (CR) for a given rate target. The work [32]
showed that IGS can increase the achievable rate of the
SU in an underlay CR (UCR) if the power gain of the
interference link is greater than a threshold. Energy-efficient
designs for IGS were proposed in [34] for UCR and in [35]
for the K-user SISO IC. In [38], the authors showed that
IGS can increase the minimum achievable rate of the users
in the MIMO broadcast channel. The paper [39] investigated
the performance improvements by IGS in non-orthogonal
multiple access systems.

The papers [21], [22], [24]–[39] studied the performance
of IGS with ideal devices, which is not a realistic scenario.
The papers [3]–[5], [45]–[47] consider the performance of
IGS with AHWD as indicated before. However, to the best of
our knowledge, there is no work on IGS in multiple-antenna
interference-limited systems in the presence of HWI with
I/Q imbalance.

The performance of IGS in the 2-user and/or K-user SISO
ICs has been vastly studied, e.g., in [21], [24]–[28], [35].
However, the performance of IGS in the K-user MIMO IC
still requires further investigation. In SISO systems, it is
known that the benefits of IGS are greatly reduced when the

number of resources, e.g., time or frequency channel uses,
increases. For instance, in [48], we showed that IGS does not
provide a significant gain in orthogonal frequency division
multiplexing (OFDM) UCR systems when the number of
subcarriers grows. The same behavior is observed in [49],
where PGS is proved to be optimal in the 2-user IC if coded
time-sharing is allowed in which the average power con-
sumption is constrained instead of the instantaneous power.
Hence, it seems that increasing the number of temporal or
frequency dimensions provides a more flexible power allo-
cation for PGS, which might lead to minor improvements by
IGS. In MIMO systems, the number of resources increases
by allowing more antennas at the transceivers. Thus, the
following questions arise: how does IGS perform in the K-
user MIMO ICs? Is IGS still beneficial when the number of
spatial dimensions (antennas) increases? In this paper, we
answer these questions and analyze the performance of IGS
by considering different rate and energy-efficiency metrics
and solving various optimization problems.

B. Contribution

This paper investigates the performance of IGS in the
K-user MIMO IC. To the best of our knowledge, this is
the first work to study IGS in the K-user MIMO IC with
HWI including I/Q imbalance. We employ the HWI model
in [43] and assume non-ideal transceivers, which generate an
additive proper white Gaussian noise. Moreover, we assume
that the upconversion (at the transmitter side) and/or the
downconversion (at the receiver side) chains suffer from I/Q
imbalance, which makes the received signal a function of
the widely linear transform of the transmitted signal and
the aggregated noise. Thus, the aggregated noise becomes
improper, which also motivates us to consider improper
signals and improper signaling.

It is known that by making signals improper, we introduce
structure into them by correlating their real and imaginary
parts [40]–[42], which can bring benefits to the performance
of interference-limited systems. Indeed, on the one hand,
interference can be mitigated or suppressed more effectively
at the receiver side when it has more structure. On the
other hand, the differential entropy of a Gaussian signal
decreases if the signal is more structured (e.g., non-circular).
Improper signaling schemes can improve the overall sys-
tem performance when the gain we get by receiving an
improper interference at the non-intended receivers over-
comes the rate loss caused by transmitting improper signals.
Additionally, IGS provides more optimization parameters
and hence brings more flexibility than PGS schemes to
the design of interference-limited wireless communication
systems. This feature can be exploited to improve the system
performance. Note that IGS includes PGS as a special case,
where the complementary variances are zero. Hence, PGS
never outperforms the optimal IGS scheme. In this paper,
we investigate whether this flexibility in design leads to
performance improvement for the K-user MIMO IC with
HWI.

Throughout this paper, we consider two main performance
metrics: the achievable rate and the energy efficiency (EE).
The EE of a user is defined as the ratio of its achievable
rate to its total power consumption [50]. There are only a
few works that study the energy-efficiency of IGS in SISO
networks [34], [35], but the question of how these results
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translate to the K-user MIMO IC remains unanswered. In
this paper, we provide an answer and show that IGS can
be beneficial in MIMO systems in terms of achievable rate
and EE as well. Interestingly, IGS provides more relative
gain in terms of achievable rate than in terms of energy
efficiency. This is in agreement with our previous findings
on energy-efficient IGS schemes for SISO systems [34], [35].
For instance, in [34], we derived the necessary and sufficient
conditions for optimality of IGS in SISO UCR from an
EE point of view and showed that these conditions are
more restrictive than those obtained when the achievable rate
is used as performance metric instead. Moreover, although
there are some benefits for IGS in terms of global EE
(defined as the ratio of the total achievable rate of the
network to the total power consumption of the network)
for the K-user MIMO IC, as we will show, these benefits
may not be significant. In other words, our numerical results
suggest that IGS does not provide a significant gain in terms
of global EE for the K-user MIMO IC.

In order to analyze the performance of IGS, we con-
sider different optimization problems such as achievable
rate region, maximum sum-rate, energy-efficiency region and
global energy efficiency. To solve these non-convex prob-
lems, we first formulate a general optimization problem that
encompasses all performance metrics under study and then,
employ a majorization-minimization framework to obtain
solutions for each problem. The main idea of this framework
is based on the structure of the achievable rate or energy-
efficiency functions in interference-limited systems when
interference is treated as noise. Specifically, the achievable
rate with TIN is a difference of two concave/convex func-
tions. We exploit this feature and employ a majorization-
minimization (MM) approach to derive a stationary point2

of every optimization problem in interference-limited sys-
tems with TIN in which the objective function and/or the
constraints are linear functions of the rates.

Our numerical results show that IGS can improve the
performance of the K-user MIMO IC with HWI. Addi-
tionally, the results show an interesting behavior of IGS
as an interference-management technique. We observe that
the IGS benefits decrease with the number of antennas
either at the transmitter or receiver sides for a fixed number
of users. This is due to the fact that interference can be
managed more effectively by PGS when there are more
available spatial dimensions, and consequently, IGS provides
less gain as an interference-management technique in MIMO
systems. Note however that with I/Q imbalance, IGS always
performs better than PGS even if its benefits can be minor
when the number of antennas increases. We also observe
that, for a fixed number of antennas, the benefits of IGS
increase when the number of users grows. The reason is
that the interference level increases with K, and the higher
the level of interference, the better the performance for
IGS. Additionally, our results show that the benefits of IGS
increase with the imbalance level. The more improper the
noise is, the more benefits can be achieved by IGS.

The main contributions of this paper can be summarized
as follows:
• We propose HWI-aware IGS schemes for the K-user

MIMO IC. We study two general performance metrics,

2In a constrained optimization problem, a stationary point of satisfies the
corresponding Karush-Kuhn-Tucker (KKT) conditions [51].

TABLE I: List of frequently used abbreviations.

CCP Convex-Concave Procedure
DCP Difference of Convex Programming
EE Energy Efficiency
GDA Generalized Dinkelbach Algorithm
HWI Hardware Impairment
IC Interference Channel
IGS Improper Gaussian Signaling
MIMO Multiple-Input Multiple-Output
MM Majorization Minimization
OFDM Orthogonal Frequency Division Multiplexing
PGS Proper Gaussian Signaling
QoS Quality of Service
SNR Signal to Noise Ratio
TIN Treating Interference as Noise
UCR Underlay Cognitive Radio

i.e., the achievable rate and EE, and solve four different
optimization problems. We derive a stationary point of
the rate region, sum-rate maximization, EE region and
global EE maximization problems.

• To solve these optimization problems, we cast them as
a general optimization problem in which the objective
function and/or the constraints are linear functions of
the rates. We then apply a unified framework to obtain
a stationary point of these optimization problems by
majorization-minimization algorithms.

• Our results show that IGS can improve the performance
of the K-user MIMO IC with HWI in terms of achiev-
able rate and EE. We show that IGS provides more
benefits in terms of achievable rate than in terms of
energy efficiency.

• Our numerical simulations suggest that the benefit of
IGS schemes increases with K and with the level of
impairment for a fixed number of antennas. However,
IGS provides minor gains with respect to PGS when
the number of antennas grows for a fixed number of
users.

C. Paper organization and notations

This paper is organized as follows. In Section II, we
present some background on improper random signals, as
well as the system model considered in this work. We define
the optimization framework for the MIMO IC with HWI at
the transceivers in Section III. We solve the corresponding
optimization problems in Section IV. Finally, Section V
provides some numerical examples along with an extensive
discussion of them.

Notations and abbreviations: In this paper, matrices are
denoted by bold-faced upper case letters, bold-face lower
case letters denote column vectors, and scalars are denoted
by light-face lower case letters. Furthermore, Tr(X) and
det(X) denote, respectively, the trace and determinant of
matrix X. The notations R{·} and I{·} return, respectively,
the real and imaginary part of {·} and can be applied to
scalars, vectors and matrices. Additionally, (·)H , (·)T and
(·)∗ denote, respectively, Hermitian, transpose and conjugate
operations. We represent the N ×N identity matrix by IN .
Moreover, CN (0, 1) denotes a proper complex Gaussian dis-
tribution with zero mean and unit variance, x ∼ CN (0,R)
denotes a proper complex Gaussian vector with zero mean
and covariance R. Finally, we provide a list of the most
frequently used abbreviations in Table I.
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Fig. 1: The transceiver model of a point-to-point communications link with imperfect devices.

II. PRELIMINARIES AND SYSTEM MODEL

We provide some preliminaries on the real-decomposition
method in Section II-A, and on improper signaling in Section
II-B. We then describe the HWI model in Section II-C. We
finally present the considered scenario in Section II-D.

A. Real decomposition of a complex system

Consider the following point-to-point MIMO communica-
tion system

y = Hx + n, (1)

where y ∈ CNR×1, x ∈ CNT×1, n ∈ CNR×1, and
H ∈ CNR×NT are, respectively, the received signal, trans-
mitted signal, noise vector, and the channel matrix. The real
decomposition model for the link is[

R{y}
I{y}

]
=

[
R{H} −I{H}
I{H} R{H}

] [
R{x}
I{x}

]
+

[
R{n}
I{n}

]
.

(2)
Assume n is a random vector with Gaussian distribution as
n ∼ CN (0,Cn). The achievable rate of the system is [52]

Rk =
1

2
log2 det

(
Cn + HPHT

)
− 1

2
log2 det (Cn) , (3)

where Cn is the covariance matrix of [ R{n}T I{n}T ]T ,
P is the covariance matrix of [ R{x}T I{x}T ]T , and H
is

H =

[
R{H} −I{H}
I{H} R{H}

]
. (4)

B. Preliminaries of IGS

A zero-mean complex Gaussian random variable x with
variance pt = E{|t|2} is called proper if E{t2} = 0;
otherwise, it is improper [40], [41]. When the variable t
is improper, its real and imaginary parts are not independent
and identically distributed (i.i.d). We can extend the defi-
nition of improper scalar variables to vectors. A zero-mean
complex Gaussian random vector t ∈ CN×1 with covariance
matrix P = E{ttH} is called proper if E{ttT } = 0;
otherwise, it is improper [40], [41].

To deal with improper signals, there are generally two
approaches: augmented covariance matrix [41] and real
decomposition method [53]. In the augmented-covariance-
matrix approach, complex-domain signals are considered,
and the optimized variables are covariance and complemen-
tary covariance matrices. However, in the real-decomposition
method, every variable is written in the real domain, and
the optimization variable is the covariance matrix of the
real decomposition of the signals. The main differences of
these two approaches are in the structure of the optimiza-
tion variables as well as in the corresponding optimization

problems. That is, a complementary covariance matrix has
to follow a specific structure for improper signals, while
the real covariance matrices are required to be only positive
semi-definite. On the one hand, the use of the augmented-
covariance-matrix approach can provide insights in some
problems. For example, we might be able to derive some
conditions for optimality of proper or improper signaling by
considering complementary variances. On the other hand,
depending on the scenario, the optimization over the real
domain might be simpler. For instance, in MIMO systems,
the achievable rate by IGS is a complicated function of the
covariance and complementary covariance matrices (please
refer to [25, Eq. (10)] or [43, Section III]). Then, using the
standard complex formulation, it is not possible to express
the rates as a concave/convex function or a difference of
two concave functions in the optimization parameters, which
makes the analysis intractable. This is in contrast to the
real-decomposition method by means of which the rates
can be written as a difference of two concave functions,
as will be shown in Section II-D. Therefore, the real-
decomposition method is used to simplify the optimization
problems throughout this paper.

It is worth emphasizing that, in the real decomposition
model, an improper random vector can have any arbitrary
symmetric and positive semi-definite covariance matrix.
However, a proper Gaussian signal has a covariance matrix
patterned as [40]

P = E
{[

R{t}T I{t}T
]T [

R{t}T I{t}T
]}

=

[
A B
B A

]
, (5)

where A ∈ RN×N is symmetric and positive semi-definite,
and B ∈ RN×N is skew-symmetric, i.e., B = −BT , which
implies that its diagonal elements are zero.

C. HWI model for MIMO systems

In this subsection, we present the HWI model for a MIMO
system with NT transmitter antennas and NR receiver anten-
nas (see Fig. 1). We employ the non-ideal-hardware model
in [43] and assume that the transceivers suffer from I/Q
imbalance and generate additive distortion noise. For the
sake of completeness, we briefly present the model in [43]
in this subsection.

The I/Q imbalance at the transmitter side is modeled as
a widely linear transformation of the transmit signal x ∈
CNT×1 as

x1 = V1x + V2x
∗, (6)
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where the matrices V1 ∈ CNT×NT and V2 ∈ CNT×NT

capture the amplitude and rotational imbalance and can be
expressed as [43]

V1 =
INT

+ AT e
jθT

2
, (7)

V2 = INT
−V∗1 =

INT
−AT e

−jθT

2
. (8)

Moreover, the matrices AT and θT are diagonal and, respec-
tively, reflect the amplitude and phase errors of each branch
at the transmitter side [43]. There are different methods to
estimate the parameters of I/Q imbalance [54]–[57]. There
is no I/Q imbalance if AT = I and θT = 0 or equivalently,
V1 = I and V2 = 0.

We also assume that the transmitter is not perfect and may
generate an additive proper Gaussian noise in addition to the
I/Q imbalance with probability distribution dT ∈ CNT×1 ∼
CN (0,CT ) [43]. Hence, the transmitted signal is

xtx = x1 + dT . (9)

The transmitted signal is delivered to the receiver over a
MIMO channel with additive white Gaussian noise. Hence,
the received signal is

yrx = Hxtx + dR, (10)

where the vector dR ∈ CNR×1 ∼ CN (0,CR) accounts for
the aggregate effect of the additive white Gaussian noise of
the channel and the additive distortion of the receive devices.
The receiver can suffer from an I/Q imbalance similar to the
transmitter. Thus, the received signal after I/Q imbalance is

y = Γ1yrx + Γ2y
∗
rx, (11)

where the matrices Γ1 ∈ CNR×NR and Γ2 ∈ CNR×NR are,
respectively, given by

Γ1 =
INR

+ ARe
jθR

2
(12)

Γ2 = INR
− Γ∗1 =

INR
−ARe

−jθR

2
. (13)

Similar to AT and θT , the matrices AR and θR are
diagonal and, respectively, reflect the amplitude and phase
errors of each branch at the receiver side [43]. The following
lemmas present the aggregate effect of the impairments at
the transmitter and receiver sides.

Lemma 1 ( [43]). The transceiver of a MIMO system with
HWI can be modeled as

y = H̄1x + H̄2x
∗ + z, (14)

where

H̄1 = Γ1HV1 + Γ2H
∗V∗2 ∈ CNR×NT , (15)

H̄2 = Γ1HV2 + Γ2H
∗V∗1 ∈ CNR×NT , (16)

z = Γ1(HdT + dR) + Γ2(HdT + dR)∗ ∈ CNR×1.
(17)

Proof. Please refer to [43, Lemma 1].

Lemma 2. The real decomposition of the MIMO system with
HWI in Lemma 1 is

y = H̃x + z, (18)

where y =
[
R{y}T I{y}T

]T
, x =[

R{x}T I{x}T
]T

, and z =
[
R{z}T I{z}T

]T
are,

H̃11 +

z1 ∼ CN (0,Cz,1)x1 ∼ CN (0,P1)

H̃22 +

z2 ∼ CN (0,Cz,2)x2 ∼ CN (0,P2)

H̃KK

+

zK ∼ CN (0,Cz,K)xK ∼ CN (0,PK)

H̃ 2K
H̃
K
2

H̃
1K

H̃
K
1

H̃12
H̃
21

Fig. 2: The equivalent real-decomposition channel model for the
K-user MIMO IC.

respectively, the real decomposition of y, x, and z in (14).
Moreover, H̃ is

H̃ =

[
R{H̄1 + H̄2} −I{H̄1 − H̄2}
I{H̄1 + H̄2} R{H̄1 − H̄2}

]
. (19)

The statistics of the vector z ∈ R2NR×1 are E{z} = 0, and

E{z zT } = Cz = ΓCdΓ
T , (20)

where Cd = H CTHT + CR, and

Γ ,

[
R{Γ1 + Γ2} −I{Γ1 − Γ2}
I{Γ1 + Γ2} R{Γ1 + Γ2}

]
. (21)

Additionally, H, CT , and CR are, respectively, the real
decomposition of H, CT , and CR. For example, if CT =
σ2INT

, then CT = 1
2σ

2I2NT
.

Proof. We can easily construct the real decomposition model
in (18) from the complex model in (14). Now we would like
to derive the statistics of z in (18). To this end, we first write
the real decomposition of z in (17) as[

R{z}
I{z}

]
=

[
R{Γ1 + Γ2} −I{Γ1 − Γ2}
I{Γ1 + Γ2} R{Γ1 + Γ2}

]
×
[

R{HdT + dR}
I{HdT + dR}

]
, (22)

which can be represented as z = Γ (H dT + dR), where
dT and dR are, respectively, the real decomposition of dT
and dR. The average of z is simply 0, since dR and dT
are zero-mean random vectors. Furthermore, the covariance
matrix of z can be derived as (20).

D. System model

We consider a K-user MIMO IC with imperfect
transceivers, as shown in Fig. 2. Without loss of generality,
we assume that the transceivers have the same number of
antennas and produce a noise with the same statistics to
simplify the notation and the expressions. Obviously, it is
very straightforward to extend this model to the most general
case with asymmetric devices. According to Lemma 2, the
real decomposition of the received signal at the receiver of
user k is

y
k

=

K∑
i=1

H̃kixi + zk (23)
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where xi is the real decomposition of the transmitted signal
of user i, and

H̃ki =

[
R{H̄1,ki + H̄2,ki} −I{H̄1,ki − H̄2,ki}
I{H̄1,ki + H̄2,ki} R{H̄1,ki − H̄2,ki}

]
,

(24)
where H̄1,ki and H̄2,ki can be derived, respectively, by
replacing Hki in (15) and (16). Note that Hki is the channel
matrix for the link between transmitter i and receiver k.
Moreover, zk is the real decomposition of the noise vector
zk, which is given by

zk=Γ1

(
K∑
i=1

HkidT,i+ dR,k

)
+Γ2

(
K∑
i=1

HkidT,i+ dR,k

)∗
.

(25)
According to Lemma 2, the covariance matrix of zk is

Cz,k = Γ

(
K∑
i=1

HkiCTHT
ki + CR

)
ΓT , (26)

where Hki is the real decomposition of Hki, and Γ is given
by (21). Treating interference as noise, we can derive the
rate of user k ∈ {1, 2, ...,K} as [40], [52], [58]

Rk =
1

2
log2 det

(
Cz,k +

K∑
i=1

H̃kiPiH̃
T
ki

)
︸ ︷︷ ︸

, rk,1

− 1

2
log2 det

Cz,k +

K∑
i=1,i6=k

H̃kiPiH̃
T
ki


︸ ︷︷ ︸

, rk,2

. (27)

As can be observed through (27), the rate of user k is a
difference of two concave functions, i.e., Rk = rk,1 − rk,2,
where rk,1 and rk,2 are concave. This feature allows us to
employ MM and convex/concave procedure (CCP) for opti-
mization problems in which the objective and/or constraints
are linear functions of the rates as will be shown in Section
III and Section IV.

III. OPTIMIZATION FRAMEWORK FOR MIMO SYSTEMS
BASED ON MM

In this section, we present a framework based on MM to
solve a family of optimization problems in which either the
objective function and/or the constraints are linear functions
of the rates. In this approach, we exploit the fact that the
rate is a difference of two concave functions and solve the
corresponding optimization problem iteratively. To this end,
we apply the CCP to the rates and approximate the convex
part of the rates, −rk,2, by a linear function through a first-
order Taylor expansion.

This framework can be applied to both IGS and PGS
schemes. The only difference of IGS and PGS schemes in the
framework is the feasibility set of the covariance matrices.
As indicated in Section II-B, an improper Gaussian random
variable can have an arbitrary symmetric and positive semi-
definite covariance matrix. Thus, the feasibility set of the
covariance matrices of users {Pk}Kk=1 for IGS is

PIGS =
{
{Pk}Kk=1 : Tr(Pk) ≤ Pk, Pk < 0,∀k

}
, (28)

where Pk is the power budget of user k. It is in contrast with
a proper Gaussian signal, which has a covariance matrix with

the specific structure in (5). In this case, the feasibility set
is

PPGS=
{
{Pk}Kk=1:Tr(Pk) ≤ Pk,Pk = Pxk

,Pk < 0,∀k
}
,

(29)
where Pxk

has the structure in (5). In order to include both
IGS and PGS schemes in the derivations to follow, we denote
the feasibility set of the covariance matrices as P hereafter.

Consider the following optimization problem

max
{Pk}Kk=1∈P

f0

(
{Pk}Kk=1

)
(30a)

s.t. fi

(
{Pk}Kk=1

)
≥ 0, i = 1, 2, ..., I. (30b)

If f0(·) and fi(·) for i = 1, 2, ..., I are concave, the optimiza-
tion problem (30) is known to be convex3 and can be solved
in polynomial time. If f0(·) and fi(·) for i = 1, 2, ..., I are
neither concave nor pseudo-concave, it is not straightforward
to derive the global optimal solution of (30) in polynomial
time [59]–[62]. A way to solve non-convex optimization
problems is to employ iterative optimization algorithms such
as MM. The MM algorithm consists of two steps at each
iteration: majorization and minimization. In the majorization
step, the functions f0(·) and fi(·) for i = 1, 2, ..., I are ap-
proximated by surrogate functions. Then, the corresponding
surrogate problem is solved in the minimization step. In the
following lemma, we present convergence conditions of MM
iterative algorithms.

Lemma 3 ([59]). Let us define f̃ (l)i (·) for l ∈ N as surrogate
functions of fi(·) for i = 0, 1, 2, ..., I such that the following
conditions are fulfilled:

• f̃
(l)
i

(
{P(l)

k }Kk=1

)
= fi

(
{P(l)

k }Kk=1

)
for i =

0, 1, 2, · · · , I .

•
∂f̃

(l)
i

(
{P(l)

k }
K
k=1

)
∂Pk

=
∂fi

(
{P(l)

k }
K
k=1

)
∂Pk

for i = 0, 1, 2, · · · , I
and k = 1, 2, · · · ,K.

• f̃
(l)
i (·) ≤ fi(·) for i = 0, 1, 2, · · · , I for all feasible
{Pk}Kk=1,

where {P(l)
k }Kk=1 is the initial point at the l-th iteration of

the MM algorithm, which is obtained by solving

max
{Pk}Kk=1∈P

f̃
(l−1)
0

(
{Pk}Kk=1

)
(31a)

s.t. f̃
(l−1)
i

(
{Pk}Kk=1

)
≥ 0, ∀i. (31b)

Then, the sequence of {P(l)
k }Kk=1 converges to a stationary

point of (30).

Remark 1. The surrogate optimization problem (31) is
not necessarily convex; however, we can obtain the global
optimal solution of (31) much more easily than (30).

Note that finding surrogate functions depends on the
structure of the objective and constraint functions. In general,
there might be different approaches to obtain a surrogate
function (see, e.g., [62]). As indicated in Section II-D, the
rate of each user is a difference of two concave functions,
which allows us to apply CCP to obtain a suitable surrogate
function. That is, we approximate the convex part of the rate
expressions in (27) by its first-order Taylor series expansion,

3In [59], it is defined as a concave optimization problem. However, we
call it convex since such an optimization problem is also widely known as
a convex optimization problem [60].
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which is a linear function. By MM and CCP, we are able
to obtain a stationary point of optimization problems in
which either the objective or constraint functions are linear
functions of the rates of the users, as will be discussed
in Section IV. In the following lemmas, we present the
surrogate functions for the rates.

Lemma 4. Using CCP, we can obtain an affine upper bound
for log det(Q) as

log2 det(Q)≤ log2 det
(
Q(l)

)
+

1

ln 2
Tr((Q(l))−1(Q−Q(l))),

(32)
where Q(l) is any feasible fixed point.

Proof. A concave function can be majorized by an affine
function if the two functions have the same value and the
same derivative in a point [62]. The logarithmic function
is concave. Furthermore, the left-hand and the right-hand
sides of (32) hold these conditions at Q = Q(l). Thus, the
upper-bound in (32) holds for all feasible Q. Note that the
derivative of log det(Q) with respect to Q is Q−1.

Lemma 5. A concave approximation of the rates in (27) can
be obtained by CCP as

Rk ≥ R̃(l)
k = rk,1 − rk,2

(
{P(l)

i }Ki=1

)
− Tr

 K∑
i=1,i6=k

∂rk,2

(
{P(l)

i }Ki=1

)T
∂Pi

(Pi −P
(l)
i )


(33)

where rk,1 and rk,2 are, respectively, the concave and

convex parts of Rk in (27). Moreover,
∂rk,2

(
{P(l)

i }
K
i=1

)
∂Pi

is the
derivative of rk,2 with respect to Pi at the previous iteration
as

∂rk,2

(
{P(l)

i }Ki=1

)
∂Pi

=

1

ln 2
H̃T
ki

Cz,k +

K∑
i=1,i6=k

H̃kiP
(l)
i H̃T

ki

−1 H̃ki. (34)

Note that rk,2
(
{P(l)

i }Ki=1

)
is constant and is given by rk,2

at the previous step. Additionally, Rk and R̃
(l)
k fulfill the

conditions in Lemma 3.

IV. OPTIMIZATION PROBLEMS

In this section, we obtain a stationary point of the rate
region, sum-rate maximization, EE region and global EE
maximization problems by the framework described in Sec-
tion III.

A. Achievable rate region

The rate region for the K-user MIMO IC with HWI can
be derived by the rate-profile technique as [25]

max
R,{Pk}Kk=1∈P

R s.t. Rk ≥ αkR, ∀k, (35)

where αk ≥ 0 for k = 1, 2, · · · ,K are given constants,
and

∑K
k=1 αk = 1. The boundary of the achievable rate

region can be derived by solving (35) for different values
of the αks. The optimization problem (35) is not convex;

however, we can obtain its stationary point by the framework
proposed in Section III. That is, we solve (35) iteratively,
and in each iteration, we employ the surrogate function in
Lemma 5 for the rates. Since the corresponding surrogate
optimization problem is convex, we can efficiently derive
the global optimal solution of each surrogate optimization
problem and consequently, obtain a stationary point of (35).

B. Maximizing sum-rate

The sum-rate of the K-user MIMO IC with HWI can be
obtained by solving

max
{Pk}Kk=1∈P

K∑
k=1

Rk (36a)

s.t. Rk ≥ Rth,k, ∀k, (36b)

where (36b) is the quality of service (QoS) constraint, and
Rth,k is a given threshold for the rate of user k. Note that the
Rth,ks have to be set to make (36) feasible. Similar to (35),
we can solve (36) by the framework in Section III and obtain
its stationary point. Note that each surrogate optimization
problem is convex, which can be solved efficiently.

C. Energy-efficiency region

Now we consider the EE of the K-user MIMO IC with
HWI. The EE of user k is defined as the ratio of its
achievable rate to its power consumption [50]

Ek =
Rk

ηkTr(Pk) + Pc,k
, (bits/Joule) (37)

where η−1k , and Pc,k are, respectively, the power transmis-
sion efficiency of user k, and the constant power consump-
tion of the k-th transceiver. The EE function is a linear
function of the rates, which allows us to apply the framework
in Section III to optimize the EE. EE function has a fractional
structure, which makes its optimization more difficult than
the rate analysis, as will be discussed in the following.

The EE region of the K-user MIMO IC with HWI can
be derived by solving [50]

max
E,{Pk}Kk=1∈P

E (38a)

s.t. Ek =
Rk

ηkTr(Pk) + Pc,k
≥ αkE, ∀k,

(38b)
Rk ≥ Rth,k, ∀k, (38c)

where the constraint (38c) is the QoS constraint, similar to
(36b), and Rth,k has to be chosen such that the feasible set
of parameters is not empty. Similar to (35), the boundary of
the EE region can be derived by solving (38) for all possible
αks. Since Ek is a linear function of Rk, we can apply the
framework in Section III to derive a stationary point of (38).
The surrogate optimization problem at the l-th iteration is

max
E,{Pk}Kk=1∈P

E (39a)

s.t. Ẽ
(l)
k =

R̃
(l)
k

ηkTr(Pk) + Pc,k
≥ αkE, ∀k,

(39b)

R̃
(l)
k ≥ Rth,k, ∀k. (39c)
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Note that we can rewrite (39) as a maximin fractional
optimization problem by removing E as

max
{Pk}Kk=1∈P

min
1≤k≤K

{
Ẽ

(l)
k

αk

}
s.t. R̃

(l)
k ≥ Rth,k, ∀k.

(40)
The optimization problem (39) (or equivalently (40)) is not
convex; however, its global optimum can be derived by
employing the generalized Dinkelbach algorithm (GDA).
The GDA is a powerful tool to solve maximin fractional
optimization problems and is presented in the following
Lemma.

Lemma 6. Consider the following fractional optimization
problem

max
{X}∈X

min
1≤k≤K

{
vk (X)

uk (X)

}
, (41)

where vk (·) is a concave function in X, uk (·) is a convex
function in X, and X is a compact set. The global optimal
solution of (41) can be derived, iteratively, by the GDA, i.e.,
by solving

max
t,{X}∈X

t s.t. vk (X)− µ(m)uk (X) ≥ t, ∀k, (42)

where µ(m) is

µ(m) = min
1≤k≤K

{
vk
(
X(m−1))

uk
(
X(m−1)

)} , (43)

where X(m−1) is the solution of (42) at the (m − 1)th
iteration. The GDA converges to the global optimum of (41)
linearly.

Proof. Please refer to [5], [50], [63].

Remark 2. In order to apply the GDA, it is not necessary
that vk and −uk are concave in X. However, the GDA is
ensured to obtain the global optimum if vk and −uk are
concave in X.

Applying the GDA to (39), we have

max
E,{Pk}Kk=1∈P

E (44a)

s.t. R̃
(l)
k − µ(m) (ηkTr(Pk) + Pc,k) ≥ αkE, ∀k,

(44b)

R̃
(l)
k ≥ Rth,k, ∀k, (44c)

where

µ(m) = min
1≤k≤K

Ek
(
{P(l,m−1)

i }Ki=1

)
αk

 , (45)

where {P(l,m−1)
i }Ki=1 is the solution of (44) at the (m −

1)th iteration. Note that the GDA converges to the global
optimum of (39) linearly, and the whole algorithm converges
to a stationary point of (38).

D. Global energy-efficiency

In this subsection, we consider the global EE of the K-
user MIMO IC with HWI, which can be cast as [50]

max
{Pk}Kk=1∈P

G =

∑K
k=1Rk∑K

k=1 (ηkTr(Pk) + Pc,k)
(46a)

s.t. Rk ≥ Rth,k, ∀k. (46b)

Similar to (38), since the EE is a linear function of the
rates, we can apply the framework in Section III to obtain
a stationary point of (46). Thus, the surrogate optimization
problem at the l-th iteration is

max
{Pk}Kk=1∈P

G̃ =

∑K
k=1 R̃k∑K

k=1 (ηkTr(Pk) + Pc,k)
(47a)

s.t. R̃k ≥ Rth,k, ∀k. (47b)

Similar to (39), the optimization problem is not convex;
however, its global optimal solution can be derived by the
Dinkelbach algorithm. That is, we obtain P

(l,m)
i by solving

max
{Pk}Kk=1∈P

K∑
k=1

R̃k − µ(m)
K∑
k=1

(ηkTr(Pk) + Pc,k)

(48a)

s.t. R̃k ≥ Rth,k, ∀k, (48b)

where µ(m) = G̃
(
{P(l,m−1)

i }Ki=1

)
, in which {P(l,m−1)

i }Ki=1

is the solution of (48) at the (m− 1)th iteration. The global
optimal solution of (47a) can be achieved by iteratively
solving (48) and updating µ(m) until a convergence metric is
met. Moreover, as indicated, the whole algorithm converges
to a stationary point of (46).

V. NUMERICAL EXAMPLES

In this section, we provide some numerical examples. We
employ Monte Carlo simulations and average the results
over 100 independent channel realizations. In each channel
realization, the channel entries are drawn from a zero-mean
complex proper Gaussian distribution with unit variance, i.e.,
CN (0, 1). For all simulations, the maximum number of the
iterations of the MM algorithm is set to 40. We also consider
CT = σ2

T INT
and CR = σ2

RINR
[43], or equivalently

CT = 1
2σ

2
T I2NT

and CR = 1
2σ

2
RI2NR

. In all simulations,
we assume σ2

T = 0.2 and σ2
R = 1. We assume that the

I/Q imbalance by each antenna is the same. In other words,
the matrices AT = aT INT

, θT = φT INT
, AR = aRINR

,
and θR = φRINR

are scaled identity matrices. We consider
φT = φR = 5 degrees in all simulations. We also define the
signal-to-noise ratio (SNR) as the ratio of the power budget
to σ2, i.e., SNR= P

σ2 .
To the best of our knowledge, there are no other IGS algo-

rithms in the literature that optimize EE or rate functions in
the K-user MIMO IC. Therefore, we compare our proposed
algorithms for PGS and IGS with the PGS algorithm for
ideal devices. The considered schemes in this section are as
follows:

• IGS: The IGS scheme.
• PGS: The PGS scheme.
• I-PGS: The PGS scheme for K-user IC without con-

sidering the I/Q imbalance in the design.

Note that the performance of MM algorithms depend
on the initial point. In PGS and I-PGS algorithms, we
start with a uniform power allocation Pk = P

2NT
I2NT

for
k = 1, · · · ,K for optimization problems (35) and (36);
and Pk = 0.3P

2NT
I2NT

for k = 1, · · · ,K for optimization
problems (38) and (46). On the other hand, the IGS algorithm
takes the solution of the PGS algorithm as an initial point.
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Fig. 3: Average fairness rate versus SNR for the 2-user SISO and
MISO IC.

A. Achievable rate region

In this subsection, we consider a specific point of the rate
region, which maximizes the minimum rate of users. The
minimum rate of the K-user MIMO IC is maximized for
αk = 1

K . This point is also referred as the maximin point
or the fairness point. Hereafter, we call the maximin rate
the fairness rate. We show the fairness rate of the 2-user
SISO and MISO IC for aT = 0.6 and different number
of antennas at the transmitter side in Fig. 3. As can be
observed, there is a huge performance improvement by IGS
in the 2-user SISO IC, especially at high SNR. However,
the benefits of employing IGS become less substantial when
the number of antennas increases. This is due to the fact
that, by increasing the number of spatial resources (e.g.
antennas) for a fixed number of users, the interference of
PGS schemes can be managed more easily, and hence, IGS
as an interference-management tool does not provide an
additional significant gain. As indicated, this is in line with
the results in [48], in which it was shown that IGS might
not provide significant benefits in OFDM UCR systems due
to the existence of multiple parallel channels over which
interference can be managed efficiently without resorting to
IGS. Moreover, in [49], it was shown that the IGS does not
provide any benefit in comparison to PGS with time sharing
when the average power consumption is constrained instead
of the instantaneous power, which allows a more flexible
power allocation. To sum up, the benefits of IGS decrease
or even vanish when increasing the number of resources
either by increasing the number of antennas or number of
time slots, by time sharing, and/or the number of parallel
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Fig. 4: Average fairness rate versus SNR for the K-user 2 × 2
MIMO IC.

channels by OFDM. Nevertheless, it is worth mentioning
that, even with a large number of antennas, IGS and HWI-
aware PGS outperform PGS, which is designed for ideal
devices. Furthermore, IGS always performs not worse than
PGS since IGS includes PGS as a particular case. With I/Q
imbalance, IGS performs better than PGS even in the MISO
case with NT = 4. However, the benefits of IGS as an
interference-management technique are not significant in this
case.

Figure 4 shows the fairness rate of the K-user 2×2 MIMO
IC versus the SNR for aT = 0.6. As can be observed, the
benefit of IGS is minor when K = 2. However, by increasing
the number of users, the performance improvement of IGS
increases. The reason is that, by increasing the number of
users, the interference level increases as well, which results
in more performance improvements by transmitting improper
signals. Moreover, IGS performs much better at high SNR
for K = 6, similar to the 2-user SISO IC as depicted in Fig.
3a.

Figure 5 shows the fairness rate versus the level of the
I/Q imbalance, 1− aT , for SNR= 0 dB and NT = NR = 2.
As can be observed, the IGS design is less affected by the
HWI level for different K. When K = 2, the IGS and PGS
schemes perform very similarly in low HWI level. However,
the performance of the PGS scheme drastically decreases
with the HWI level, while the fairness rate of the IGS scheme
decreases only slightly. When K = 4 and K = 6, the same
trend is observed, but the relative performance of the IGS
scheme over the PGS scheme increases with K. Moreover,
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Fig. 5: Average fairness rate versus the I/Q imbalance level for the
K-user 2× 2 MIMO IC with SNR= 0 dB.

for a given K, the benefits of IGS increase with the level of
the I/Q imbalance, as expected.

Figure 6 considers the effect of the number of users on the
fairness rate as well as on the performance of IGS for SNR=
10 dB, aT = 0.6 and NT = NR = 2. As can be observed,
the fairness rates decreases when K increases. Additionally,
the relative performance improvement by IGS increases with
the number of users. For K = 10, the relative improvement
of IGS over PGS is more than 80%. The reason is that more
users provoke more interference, which results in turn in
more improvements by IGS, as indicated before.

B. Achievable sum-rate

In Fig. 7, we show the effect of the number of users on
the achievable sum-rate of the K-user 2 × 2 MIMO IC for
SNR= 10 dB, and aT = 0.6. In this figure, we set the
threshold in (36) to Rth,k = 0. We can observe that the
sum-rate and also the relative performance improvement of
IGS over PGS are increasing with respect to K. Since we
maximize the sum-rate without considering a QoS constraint,
the rate of some users with weak direct links might be even
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Fig. 6: Average fairness rate versus the number of users for the
K-user 2× 2 MIMO IC with SNR= 10 dB.
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Fig. 7: Average achievable sum-rate and relative performance of
IGS versus the number of users for the K-user 2 × 2 MIMO IC
with SNR= 10 dB.

0, which causes less interference. As a result, the relative
performance improvement of IGS is less significant than the
improvements for the fairness rate observed in Fig. 6.
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versus Pc for the 6-user 2× 2 MIMO IC.

C. Energy efficiency region

In this subsection, we consider the EE region in (38). In
general, IGS provides less EE benefits than rate benefits. For
example, in [34], it was shown that the conditions for the
optimality of IGS over PGS in an UCR network are more
stringent for EE than for rate. In other words, it might happen
that IGS must be used for the SU rate to be maximized, while
PGS must be used for the EE to be maximized.

In Fig. 8, we show the fairness EE of the 6-user 2 × 2
MIMO IC versus Pc for SNR= 10 dB, and aT = 0.6. As can
be observed, the fairness EE decreases with Pc. Moreover,
the proposed IGS scheme outperforms the PGS scheme as
well as I-PGS. Figure 9 shows the relative performance
improvement by the IGS scheme with respect to the PGS
and I-PGS schemes for the results in Fig. 8. As can be
observed in these figures, the fairness EE decreases with
Pc; however, the benefits of employing IGS is increasing in
Pc. The reason is that when Pc is very large, the EE-region-
optimization problem becomes equivalent to the achievable-
rate-region problem, and as indicated, IGS can provide more
gain in achievable-rate optimizations.

D. Global Energy efficiency

Figure 10 shows the global EE of the 6-user 2×2 MIMO
IC versus Pc for SNR= 10 dB, and aT = 0.6. In this figure,
we assume Rth,k = 0 in (46). As can be observed, IGS
provides minor benefits in terms of the global EE. Since
the QoS constraint is not considered, it might happen that
some users are switched off, thus reducing the total level of
interference. Moreover, the lower the interference level, the
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Fig. 10: Average global EE of the 6-user 2× 2 MIMO IC versus
Pc.

less need for advanced interference-management techniques.
Thus, we can expect that the benefits of employing IGS
decrease in global EE with respect to per-user EE. Note
that IGS still performs slightly better than PGS, which can
be due to the I/Q imbalance.

VI. CONCLUSION

This paper studied the performance of IGS of a K-
user MIMO IC with HWI including I/Q imbalance at the
transceivers. In the presence of I/Q imbalance, the received
signal is a function of the widely linear transform of the
transmitted signal and the aggregated noise. Hence, the
effective noise is modeled as improper at the receiver side,
which motivated us to consider the use of IGS. Consider-
ing achievable rates and EE as performance metrics, we
proposed HWI-aware IGS schemes for the K-user MIMO
IC. We employed an optimization framework, which can
obtain a stationary point of any optimization problem for
interference-limited systems with TIN in which the objec-
tive function and/or constraints are linear functions of the
achievable rate. In this paper, we derived a stationary point
of the achievable rate-region, sum-rate maximization, EE
region and global EE maximization problems. Our numerical
results showed that IGS can improve the performance of the
K-user MIMO IC with HWI from both achievable rate and
EE points of view. We observed that the benefits of IGS
as an interference-management technique increase with the
number of users and decrease with the number of anten-
nas. This is due to the fact that higher interference levels
result in an increased need for interference management and
consequently, more improvements by IGS. We also observed
that the benefit of employing IGS increases with impairment
level.

As future work, it may be interesting to find out how
close the solution of this algorithm is to the corresponding
global optimum solutions. Additionally, our scheme is a
centralized approach, which might not be applicable in some
practical scenarios. Hence, distributed algorithms should also
be developed.
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