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Abstract—In this work, we consider a two-channel multiple-
input multiple-output (MIMO) passive detection problem, in
which there is a surveillance array and a reference array. The
reference array is known to carry a linear combination of
broadband noise and a subspace signal of known dimension,
but unknown basis. The question is whether the surveillance
channel carries a linear combination of broadband noise and a
subspace signal of the same dimension, but unknown basis, which
is correlated with the subspace signal in the reference channel.
We consider a second-order detection problem where these
subspace signals are structured by an unknown, but common, p-
dimensional random vector of symbols transmitted from sources
of opportunity, and then received through unknown M × p
matrices at each of the M -element arrays. The noises in each
channel have spatial correlation models ranging from arbitrarily
correlated to independent with identical variances. We provide a
unified framework to derive the generalized likelihood ratio test
(GLRT) for these different noise models. In the most general
case of arbitrary noise covariance matrices, the test statistic
is a monotone function of canonical correlations between the
reference and surveillance channels.

Index Terms—Passive detection, MIMO channels, passive
radar, generalized likelihood ratio, canonical coordinates, geo-
metric mean of eigenvalues, arithmetic mean of eigenvalues.

I. INTRODUCTION

This paper is motivated by a passive radar [1] application,
where the problem is to determine if there are complex demod-
ulations and synchronizations in several surveillance antennas
(or antenna arrays) that bring signals in the surveillance anten-
nas into coherence with signals in the reference antennas. This
coherence is manifested in the synchronous sharing of transmit
symbols from several opportunistic transmitters (e.g. digital
television, digital audio broadcast, or mobile communication
systems), and as a consequence there is correlation between
signals observed at the MIMO surveillance array and the
MIMO reference array. So the problem is to detect correlated
subspace signals in two MIMO channels. In passive radar the
signal paths for the reference and the surveillance channels are
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typically separated by digital beamforming using directional
antennas.

Passive radar systems have been studied for several decades
due to their simplicity and low cost of implementation in
comparison to systems with dedicated transmitters [2]. The
conventional approach for passive detection uses the cross-
correlation (CC) between the data received in the reference
and surveillance channels as the test statistic [3]. Using also
cross-correlations as local test statistics, the authors of [4] con-
sider a decentralized detection approach and propose a linear
scheme that fuses local detection statistics to form a global
detection statistic with improved performance. The authors in
[4] consider a multistatic passive radar system composed of K
receivers (each receiver composed in turn of a one-dimensional
surveillance channel and a one-dimensional reference channel)
paired with K non-cooperative illuminators. However, the
noise in the reference signal renders these CC-based detection
schemes suboptimal, especially in MIMO scenarios for which
the inherent subspace structure of the received signals can be
exploited [5].

Passive MIMO target detection with a noisy reference chan-
nel has recently been considered in [6], where the transmitted
waveform is considered to be deterministic, but unknown.
The authors of [6] derive the generalized likelihood ratio test
(GLRT) for this deterministic target model under spatially
white noise of known variance. The work in [7] derives the
GLRT in a passive radar problem that models the received
signal as a deterministic rank-one waveform scaled by an
unknown single-input single-output (SISO) channel. The noise
is white of either known or unknown variance. In another line
of work, a passive detector that exploits the subspace structure
of the received signal has been proposed in [8]. Instead of
computing the cross-correlation between the surveillance and
reference channel measurements, the ad-hoc detector proposed
in [8] cross-correlates the dominant left singular vectors of the
matrices containing the observations acquired at both channels.

Detection of a subspace signal of dimension-one with a
single array of sensors under white noise of unknown level has
been addressed in [9], [10] and extensions to diagonal noise
covariance matrices and dimension-p signals can be found
in [11], and [12], [13], respectively. Other variants of this
problem, motivated by cognitive radio and multi-static radio
applications, have been considered in [14]–[20]. References
[16], [17] are noteworthy for their use of a noninformative
prior, in this case the Haar measure on the space of dimension-
p subspaces, followed by integration for a marginal measure-
ment density. Different from these detection problems, which
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except for [17] are solved with a single array of sensors
at the surveillance channel (for radar applications) or at the
secondary user (for cognitive radio applications), the model
considered in this paper is solved with the assistance of an
additional multi-antenna reference channel which acquires a
noisy and distorted version of the transmitted signal.

In this paper, we address the MIMO passive detection
problem in a multivariate normal model when the surveillance
and reference channels are equipped with M antennas. The
received signals are subspace signals of known dimension-
p, but unknown basis. The noises at the surveillance and
reference channels are uncorrelated between channels, but they
may otherwise have spatially-structured covariance models. It
turns out that this is a problem in factor analysis [21], where
there are constraints on the factor loadings and the factors.
The problem may be viewed as a one-channel factor analysis
problem with constraints on the factor loadings under the null
hypothesis, or as a two-channel factor analysis problem, with
constraints on the factor loadings under the null, and with
common factors under the alternative.

There are four plausible additive noise models for the
problems we study, with spatial correlations ranging from
arbitrary correlation to independent and identically distributed
(i.i.d.) noises across antennas. All lead to a ratio of deter-
minants of estimated covariance matrices as the generalized
likelihood ratio test (GLRT). The covariance matrices are
maximum likelihood (ML) estimates of covariance, under the
constraints of the measurement model, which is determined by
the additive noise model and the dimension of the subspace
signal in each array. This result is based on a new result for
ML estimation showing that the ML estimate of a covariance
matrix, constrained to a cone, forces the trace term in Gaussian
likelihood to be a constant equal to 2M , the measurement
dimension. The ML estimates of factor loadings are deter-
mined by using a noise-whitening trick, [22], [21] to construct
a noise-whitened version of the sample covariance matrix,
and then using a result from [21] to optimize over factor
loadings. The ML estimate of noise covariance is then found
by maximizing the geometric mean of trailing eigenvalues of
this covariance matrix, under a constraint that the arithmetic
mean of these eigenvalues sums to 2M − p.

The paper is organized as follows. Section II presents the
two-channel passive detection problem. Invariance consider-
ations are advanced in III. A common framework to obtain
the ML estimates of the covariance matrices under the four
noise models considered in this paper, as well as to derive
the corresponding GLRTs, is described in Section IV. Two
of the four problems we study have closed-form solutions
for the GLRT (which are described in Section V), and two
require numerical optimization, for which we use an alternat-
ing minimization algorithm which is described in Section VI.
Numerical simulations under each of the four additive noise
models demonstrate performance of each detector against data
that is matched to the detector, and to data that is mismatched
to the detector. These results are given in Section VII and
reviewed in Section VIII, which concludes the paper.

A. Notation

The superscripts (·)T and (·)H denote transpose and Hermi-
tian, respectively. The determinant, trace and Frobenius norm
of a matrix A will be denoted, respectively, as det(A), tr(A)
and ||A||F . IM is the identity matrix of dimensions M ×M ,
and 0 denotes either a column vector with M zeros, or the
zero matrix of appropriate dimensions (the difference should
be clear from the context). We use A1/2 (A−1/2) to denote
the square root matrix of the Hermitian matrix A (A−1);
diagM (A) is a block-diagonal matrix formed by M × M
blocks on the diagonal of A. The expectation operator will
be denoted by E[·], and x ∼ CNM (0,R) indicates that x is
an M -dimensional complex circular Gaussian random vector
of zero mean and covariance R.

II. PROBLEM FORMULATION

A. Signal Model

We consider the problem of target detection in a passive
network consisting of a reference channel and a surveillance
channel, both equipped with M antennas as shown in Fig. 1.
The perceptive reader will note that everywhere we assume
M antenna elements at the surveillance array and M antenna
elements at the reference array, these may be replaced by Ms

in the surveillance array and by Mr in the reference array.
Then by replacing M in the resulting detector equations by
Ms for the surveillance channel and by Mr for the reference
channel, all results remain valid for this more general case.
This is clear from the derivations. However, there remains
the question of performance. We address this question with
simulation results for unequal numbers of sensors in Section
VII-E.

The system consists of p non-cooperative illuminators (e.g.
digital TV stations), transmitting uncorrelated signals over a
common bandwidth. We assume that the target path signals
received at the surveillance array (solid lines in Fig. 1) have
been synchronized in delay τ and Doppler, ν with respect to
the reference signal. Therefore, there is a scanning process
in the range-Doppler plane to select the matched (τ, ν) that
attempts to bring the reference and surveillance channel into
coherence, and hence our test statistics are actually ambiguity
scores. This synchronization with respect to delay and Doppler
is typically assumed in other recent works on passive detection
[4], and maximization can be implemented using the method
described in [23].

In this work we also assume that the direct-path signals from
the non-cooperative transmitters to the surveillance channel
(dotted lines in Fig. 1) have been cancelled by directional
antennas or spatial filtering. Admittedly, this is an idealized
assumption and, in practice, some direct-path residual due to
leakage from beampattern sidelobes or to vibrations of the
radar platform may still exist in the surveillance channel [24].
The inclusion of a non-negligible direct signal-path in the
surveillance channel has been considered in [4], [23].

With these simplifying assumptions, our two-channel mea-
surement model is[

xs[n]
xr[n]

]
=

[
θHs

Hr

]
s[n] +

[
vs[n]
vr[n]

]
; n = 1, . . . , N (1)
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Fig. 1. Passive MIMO radar system: The dashed lines represent the direct
link between the non-cooperative sources of opportunity and the reference
array, whereas the solid lines represents the illuminator-target-surveillance
array path. The dotted lines represent the direct path signals between the non-
cooperative illuminators and the surveillance channel, which are assumed to
be cancelled.

where xs[n] ∈ CM and xr[n] ∈ CM are the surveillance
and reference measurements; s[n] ∈ Cp contains the signal
transmitted by p opportunistic illuminators, Hs ∈ CM×p
and Hr ∈ CM×p represent the M × p channels from the
transmitter(s) to the surveillance and reference multiantenna
receivers, respectively. The parameter θ ∈ {0, 1} determines
whether or not there is a signal Hss[n] in the surveillance
channel.

We treat the symbol sequence s as a sequence of cir-
cular, Gaussian random vectors with unknown covariance
E[s[n]sH [m]] = Cδ[n − m]. The Gaussian assumption is
an accurate approximation of orthogonal frequency-division
multiplexing (OFDM) signals with high number of subcarriers
[25], as is the case for the European DVB-T (digital video
broadcasting-terrestrial) system [26], which has a 2k mode
with 1705 subcarriers and a 8k mode with 6817 subcarri-
ers. Although the Gaussian assumption is not realistic when
the transmitted sequence belongs to multilevel constellations
such as quadrature-amplitude modulation (QAM), it has been
shown in [27] that assuming Gaussianity still provides accurate
maximum likelihood estimators when the signal-to-noise-ratio
is low (which is always the case in passive radar). Simulation
results in Section VII show that our detectors, derived for
Gaussian symboling, are robust to symboling with OFDM and
DVB-T modulations.

As in most works on passive sensing [3], [4], [6], [8],
we have assumed in (1) that the channel remains constant
over the duration of a sensing period N . This is a rea-
sonable approximation for many signals transmitted by non-
cooperative illuminators. Taking again the European DVB-T
as an example, the OFDM symbol duration is 256 µsecs and a
new full channel estimate is available every 4 OFDM symbols
(1.024 msecs), which gives us a rough estimate for the channel
coherence time. Typically, the sensing period duration will be
less that the channel coherence time even when moving targets
are present, and therefore the channel can be safely assumed
to remain constant.

The factor loadings Hs and Hr are unknown, to be iden-
tified in a maximum likelihood procedure. Without loss of

generality, the symbol covariance may be absorbed into these
factor loadings and thus we assume C = Ip. The vectors
vs[n] and vr[n] model the additive noise. For notational con-
venience, the signal, noise, and channel vectors can be stacked
as x[n] = [xs[n]T ,xr[n]T ]T , v[n] = [vs[n]T ,vr[n]T ]T and
H = [HT

s ,H
T
r ]T , respectively.

The covariance model for the signal component of equation
(1) is

E

[[
θHs

Hr

]
s[n]sH [n]

[
θHH

s HH
r

]]
=

[
θ2HsH

H
s θHsH

H
r

θHrH
H
s HrH

H
r

]
.

(2)
For the covariance of the noise component, we consider four
different models. Under all models, the additive noise is as-
sumed to be temporally white, zero-mean Gaussian distributed,
and uncorrelated between the surveillance and reference chan-
nels. The noise covariance matrix can then be written as

E[v[n]vH [n]] = Σ =

[
Σss 0
0 Σrr

]
∈ E (3)

E[v[n]vH [m]] =

[
0 0
0 0

]
, for m 6= n, (4)

where E is a set of structured covariances. We study four
different structuring sets.
• Model 1: Independent and identically distributed (i.i.d.)

noises with identical variance at both channels; Σss =
Σrr = σ2IM :

E1 =
{
Σ � 0 | Σ = σ2I2M

}
, (5)

where σ2 > 0.
• Model 2: White noises, but with different variances

at the surveillance and reference channels; Σss =
σ2
sIM ,Σrr = σ2

rIM :

E2 =

{
Σ � 0 | Σ =

[
σ2
sIM 0
0 σ2

rIM

]}
, (6)

with σ2
s > 0, σ2

r > 0.
• Model 3: Uncorrelated noises across antennas, thus yield-

ing a diagonal noise covariance matrix with unknown
elements along its diagonal; Σss and Σrr are diagonal
positive definite (psd) matrices:

E3 = {Σ � 0 |

Σ =

[
diag(σ2

s,1, · · · , σ2
s,M ) 0

0 diag(σ2
r,1, · · · , σ2

r,M )

]}
,

(7)

with all σsm, σrm > 0.
• Model 4: Noises with arbitrary spatial correlation; Σss

and Σrr are arbitrary psd matrices:

E4 =

{
Σ � 0 | Σ =

[
Σss 0
0 Σrr

]}
, (8)

with Σss � 0,Σrr � 0.
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B. Detection problem

The passive detection problem is to test the hypothesis
that the surveillance channel contains no signal, versus the
alternative that it does:

H0 : θ = 0
H1 : θ = 1

(9)

Denote by R0,j and R1,j the set of measurement covariance
matrices for model j under the null hypothesis and alternative
hypothesis, respectively. We have

R0,j =

{[
0 0
0 HrH

H
r

]
+ Σ, for Σ ∈ Ej

}
(10)

R1,j =

{[
HsH

H
s HsH

H
r

HrH
H
s HrH

H
r

]
+ Σ, for Σ ∈ Ej

}
. (11)

For example, R1,2 is the set of 2M×2M matrices of structure

R1,2 =

{
HHH +

[
σ2
sIM 0
0 σ2

rIM

]}
, (12)

for some 2M × p matrix H; whereas R0,4 is the set of psd
matrices with structure

R0,4 =

{[
0 0
0 HrH

H
r

]
+

[
Σss 0
0 Σrr

]}
, (13)

with Σss and Σrr arbitrary psd matrices.
This detection problem essentially amounts to testing be-

tween two different structures for the composite covariance
matrix under the null hypothesis and alternative hypothesis. It
can be written as

H0 : x[n] ∼ CN 2M (0,R), R ∈ R0,j

H1 : x[n] ∼ CN 2M (0,R), R ∈ R1,j .
(14)

There are two possible interpretations of this model: (1) it
is a one-channel factor model with special constraints on the
loadings under H0; or (2) it is a two channel factor model
with loading constraints under H0 and common factors in the
two channels.

C. The Generalized Likelihood Ratio

Let us now consider N consecutive array snapshots under
a model with generic covariance matrix R

X =
[
x[1] . . . x[N ]

]
∈ C2M×N , (15)

which are assumed to be i.i.d. realizations of x[n] ∼
CN 2M (0,R). The likelihood may be written as

f(X; R) =
1

π2MN det(R)N
exp

{
−N tr

(
SR−1

)}
, (16)

where S = 1
NXXH is the sample covariance matrix, parti-

tioned as
S =

[
Sss Ssr
SHsr Srr

]
. (17)

Here Sss is the sample covariance matrix of the surveil-
lance channel and the other blocks are defined similarly.
The likelihood depends on unknown nuisance parameters
and consequently standard Neyman-Pearson hypothesis testing
does not apply. That is, there is no Neyman-Pearson Lemma
for constructing a likelihood ratio. A common approach to

derive practical detectors when the distributions under both
hypotheses are not completely specified is the generalized
likelihood ratio test (GLRT), which replaces the unknowns
in the likelihood ratio by their maximum likelihood estimates
under each hypothesis [28], [29].

The generalized likelihood ratio (GLR) is

Λj =
f(X; R̂1,j)

f(X; R̂0,j)
,

where R̂0,j and R̂1,j are, respectively, the maximum likeli-
hood (ML) estimates of the covariance matrix for model j
under H0 and H1. They maximize the log-likelihood function

L(R) = logdet(SR−1)− tr
(
SR−1

)
, (18)

The GLRT for noise model j reduces to

log(Λj) = log

(
det(R̂0,j)

det(R̂1,j)

)
− tr

(
S
(
R̂−11,j − R̂−10,j

))H1

≷
H0

η,

(19)
with η a suitable threshold.

III. INVARIANCE CONSIDERATIONS

Consider the random vector x ∈ C2M , distributed as x ∼
CN 2M (0,R),R ∈ R. The data matrix X = [x[1], . . . ,x[N ]]
is a set of independent and identically distributed such vectors.
Define the transformation group G = {G | G(X) = TXQ}.
The group action on the measurement matrix X is TXQ,
where T ∈ T , the complex linear group of nonsingular
2M × 2M matrices, and Q ∈ Q, the unitary group of N ×N
unitary matrices. This group action leaves TXQ distributed as
iid vectors, each distributed as CN 2M (0,TRTH). The distri-
bution of X is said to be invariant-G, and the transformation
group on the parameter space induced by the transformation
group G is G = {G | G(R) = TRTH}.

We are interested in those cases where the group G leaves
a set R invariant-G, which is to say G(R) = R. We say the
hypothesis testing problem for model j is invariant-G when,
for all R ∈ Ri,j , i = 0, 1,TRTH ∈ Ri,j . That is, G(Rij) =
Rij . When an hypothesis testing problem is invariant-G, we
shall insist that any test of it be invariant-G. It is known that
the GLRT will be invariant-G when the testing problem is.
(See, for example, the discussion in [30], based on a standard
result like Proposition 7.13 in [31].)

In the itemized paragraphs below, we record the transforma-
tion groups that leave each of our hypothesis testing problems
invariant-. These results are easy to verify, so we leave it to
the reader to do so.
• Model 1: The sets R0,1 and R1,1 are invariant-G for

group actions

G(X) = TXQ, T =

[
βQs 0

0 βQr

]
(20)

where β 6= 0, and Q,Qs,Qr are unitary matrices of
respective dimensions 2M × 2M,M ×M,M ×M . The
corresponding group actions on R are G(R) = TRTH ∈
Ri,1, i = 0, 1 when R ∈ Ri,1, i = 0, 1.
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• Model 2: The sets R0,2 and R1,2 are invariant-G for
group actions

G(X) = TXQ, T =

[
βsQs 0

0 βrQr

]
(21)

where βs, βr 6= 0, and Q,Qs,Qr are unitary matrices of
respective dimensions 2M × 2M,M ×M,M ×M . The
corresponding group actions on R are G(R) = TRTH ∈
Ri,2, i = 0, 1 when R ∈ Ri,2, i = 0, 1.

• Model 3: The sets R0,2 and R1,2 are invariant-G for
group actions

G(X) = TXQ (22)

with

T =

[
diag(βs1, . . . , βsM ) 0

0 diag(βr1, . . . , βrM )

]
where βsm, βrm 6= 0. The corresponding group actions
on R are G(R) = TRTH ∈ Ri,3, i = 0, 1 when R ∈
Ri,3, i = 0, 1.

• Model 4: The sets R0,4 and R1,4 are invariant-G for
group actions

G(X) = TXQ, T =

[
Ts 0
0 Tr

]
(23)

where Ts,Tr are nonsingular M × M matrices. The
corresponding group actions on R are G(R) = TRTH ∈
Ri,4, i = 0, 1 when R ∈ Ri,4, i = 0, 1.

We shall say a detector Λj is invariant-G if Λj(X) =
Λj(G(X)) for Model j. As a check on our derivations, we shall
verify that each of our GLRT detectors is in fact invariant-G.

IV. A COMMON OPTIMIZATION FRAMEWORK FOR GLR
DETECTION

Recall that R0,j and R1,j are sets of structured covariance
matrices for the measurements under noise model j, and
under the null hypothesis H0, and alternative hypothesis H1,
respectively.

Proposition 1. The sets Ri,j are cones.

Proof. A set R is a cone [32] if for any R ∈ R and a ≥ 0,
we have

aR ∈ R.

It is easy to check that this condition is satisfied by all
covariance matrices formed by a rank-p signal component plus
a noise covariance matrix with the structure specified by any
of the models described in Section II; then, all sets Ri,j are
cones.

A. The unified constraint on trace
The following Lemma proves that, for all positive-definite

covariance models, the trace term in (19) is zero.

Lemma 1. Let R̂ be the ML estimate for R that maximizes
the likelihood (16) within a cone R, and let S be the sample
covariance matrix. Then,

tr
(
SR̂−1

)
= 2M and L(R̂) = log det[SR̂−1]− 2M. (24)

Proof. Let R̃ ∈ R be an estimate (not necessarily the ML
estimate) of a covariance matrix within R. Since the set R
is a cone, we can get a new scaled estimate aR̃ with a ≥ 0,
which also belongs to the set. The log-likelihood as a function
of the scaling factor may be written as

g(a) = logdet(
1

a
SR̃−1)− 1

a
tr
(
SR̃−1

)
= −2M log(a) + logdet(SR̃−1)− 1

a
tr
(
SR̃−1

)
.

(25)

Taking the derivative of (25) with respect to a and equating
to zero, we find that the optimal scaling factor that maximizes
the likelihood is

a∗ =
tr
(
SR̃−1

)
2M

,

and thus g(a∗) ≥ g(a) for a ≥ 0. Let R∗ = a∗R̃. Plugging
this value into the trace term of the likelihood function we
have

tr
(
SR−∗

)
=

1

a∗
tr
(
SR̃−1

)
= 2M.

Since this result has been obtained for any estimate belong-
ing to a coneR, it also holds for the ML estimate, thus proving
the lemma. To re-iterate, the Rij are cones, so the result of
this lemma holds for all covariance models considered in this
paper.

The following theorem establishes that the GLRT for a sub-
space signal of dimension p under all noise models considered
in this paper is a ratio of determinants.1

Theorem 1. The GLRT for the detection problem (14) under
noise model j is given by

Λj =
det(R̂0,j)

det(R̂1,j)

H1

≷
H0

η, (26)

where R̂i,j = arg maxR∈Ri,j
log det(SR−1) such that

tr(SR−1) = 2M .

Proof. From Lemma 1 we know that the trace term of the like-
lihood function, when evaluated at the ML estimates, is a con-
stant under both hypotheses. Then, substituting tr

(
SR̂−1i,j

)
=

2M into (18) and taking into account the monotonicity of the
log function, (26) follows.

As we will see in Section V, under noise models 1 and 4 we
can obtain closed-form expressions for the ML estimates of
the covariance matrix under each hypothesis. However, this is
not the case for the alternative hypothesis under noise models
2 and 3, for which we resort to numerical methods (e.g.
alternating optimization as described in Section VI). In the
subsections to follow we describe two new statements of the
ML estimation problem for the structured covariance matrices,
which provide interesting insights into the problem.

1In fact, this results extends to all models such that the structure of the
covariance matrices under both hypotheses is defined by a cone.
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B. ML estimation in two-channel passive detection problems

As a by-product of Lemma 1, the ML estimates of covari-
ance may be obtained by solving the following optimization
problem:

Problem 1: maximize
R∈Ri,j

logdet
(
SR−1

)
subject to tr

(
SR−1

)
= 2M.

(27)

The following theorem illuminates the problem of deter-
mining R in Problem 1, and leads also to an alternative
formulation to be given in Problem 2.

Theorem 2. For a given block-diagonal noise covariance Σ,
we define the noise-whitened sample covariance matrix

S̃ = Σ−1/2SΣ−1/2 =

[
S̃ss S̃sr
S̃Hsr S̃rr

]
(28)

with eigenvalue decomposition S̃ = W̃Λ̃W̃H , and Λ̃ =

diag
(
λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃2M

)
; S̃rr = W̃rrΛ̃rrW̃

H
rr, and

Λ̃rr = diag
(
λ̃rr,1 ≥ λ̃rr,2 ≥ . . . ≥ λ̃rr,M

)
. Then, under the

alternative H1, the value of HHH that maximizes the likeli-
hood (18) is

HHH = Σ1/2W̃D̃W̃HΣ1/2 (29)

with D̃ = diag (d1 ≥ d2 ≥ dp ≥ 0 . . . 0) and di = max(λ̃i −
1, 0).

Under the null H0 (θ ≡ 0), and assuming that the noise
covariance matrix in the reference channel, Σrr, is given, the
value of HrH

H
r that maximizes the likelihood (18) is

HrH
H
r = Σ1/2

rr W̃rrD̃rrW̃
H
rrΣ

1/2
rr (30)

with D̃rr = diag (drr,1 ≥ drr,2 ≥ drr,p ≥ 0 . . . 0) and drr,i =
max(λ̃rr,i − 1, 0).

Proof. The proof for H1 is identical to Theorem 9.4.1 in [21]
(cf. pages 264-265). The proof for H0 is straightforward after
we rewrite the log-likelihood function using the blockwise de-
composition in (28) and use the fact that the noise covariance
Σ is block diagonal.

Theorem 2 can be used to derive Problem 2 for the
ML estimate of covariance, under the alternative H1.
For a given Σ, Theorem 2 gives the value of HHH

that maximizes the log-likelihood function with respect
to R = HHH + Σ. Thus, we have the solution
R = Σ1/2W̃D̃W̃HΣ1/2 + Σ. Straightforward calculation
shows that det(SR−1) =

∏p
i=1 min(λ̃i, 1)

∏2M
j=p+1 λ̃j and

tr(SR−1) =
∑p
i=1 min(λ̃i, 1) +

∑2M
j=p+1 λ̃j . Therefore Prob-

lem 1 may be re-written as

Prob. 2: maximize
Σ∈Ej

 p∏
i=1

min(λ̃i, 1)

2M∏
j=p+1

λ̃j

 1
2M

subject to
1

2M

 p∑
i=1

min(λ̃i, 1) +

2M∑
j=p+1

λ̃j

 = 1

(31)

Recall that λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃2M ≥ 0 is the set of ordered
eigenvalues of the noise-whitened sample covariance matrix.
Thus, the trace constraint in (31) directly implies λ̃k ≥ 1 for
k = 1, . . . , p.2 In consequence, Problem 2 can be written more
compactly as

Problem 2 : maximize
Σ∈Ej

 2M∏
i=p+1

λ̃i

 1
2M−p

subject to
1

2M − p

2M∑
i=p+1

λ̃i = 1.

(32)

That is, the ML estimation problem under the alternative
hypothesis comes down to finding the noise covariance matrix
with the required structure that maximizes the geometric
mean of the trailing eigenvalues of the noise-whitened sample
covariance matrix, subject to the constraint that the arithmetic
mean of these trailing eigenvalues is 1. For some specific
structures, Problem 2 may significantly simplify derivation of
the ML solution, as shown in the next section.

The general formulation of the ML estimation problem for
covariance under the null H0 is more involved. In particular,
a similar derivation will result in

Problem 3: maximize
Σ∈Ej

 p∏
i=1

min(λ̃rr,i, 1)

M∏
j=p+1

λ̃rr,j

M∏
k=1

λ̃ss,k

 1
2M

subject to
1

2M

 p∑
i=1

min(λ̃rr,i, 1) +
M∑

j=p+1

λ̃rr,j +
M∑
k=1

λ̃ss,k

 = 1,

(33)
where the eigenvalues λ̃ss,k of the surveillance channel are
defined, for k = 1, . . . ,M , analogously to λ̃rr,k. Here, it is
important to note that in general we can not get rid of the
min(·) operator, which complicates the analysis and solution
of the ML estimates under the null. However, in the case of
noise models 2, 3, and 4,3 the estimation of the unknowns
in the surveillance, Σss, and reference channel, (Σrr,Hr), is
decoupled. In particular, the ML estimates of Σss under the
null H0 for noise models 2, 3, and 4 are given by 1

tr(Sss)
IM ,

diag(Sss), and Sss, respectively, whereas the ML estimation
of (Σrr,Hr) under the null H0 may be found as the solution
to

Problem 4 : maximize
Σrr∈Ej

 M∏
i=p+1

λ̃rr,i

 1
M−p

subject to
1

M − p

M∑
i=p

λ̃rr,i = 1,

(34)

where we recall that in this case λ̃rr,i are the eigenvalues of
the noise-whitened sample covariance matrix in the reference
channel S̃rr = Σ

−1/2
rr SrrΣ

−1/2
rr .

2Moreover, a value λ̃k = 1 would mean that the observations could
be explained by a covariance model with a lower rank, which under the
assumption of data drawn from a continuous distribution and a sample size
N > p, will have zero probability.

3For noise model 1, the unknowns under the null are coupled because
Σrr = Σss = σ2IM . Therefore, we relegate the study of this model to
Section V-A.
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V. GLRTS FOR MODELS 1 AND 4

In this section we present closed-form GLRTs for noise
models 1 and 4.

A. GLR detector for Model 1

We focus here on the case where p ≤ 2M − 1; otherwise
the spatial structure of the target plays no role and the GLRT
detector is given by the well-known sphericity test [33].
Suppose the sample covariance matrices have these eigen
decompositions: S = WΛWH , Sss = WssΛssW

H
ss and

Srr = WrrΛrrW
H
rr. Under noise model 1, Problem 2 in (32)

directly gives the ML solution for σ2 under the alternative
hypothesis H1 by realizing that (2M − p)−1

∑2M
p+1 λ̃i =

(2M − p)−1
∑2M
p+1 σ

−2λi, which returns the ML estimate
σ̂2
1 = (2M − p)−1

∑2M
p+1 λi. Therefore, the ML estimates of

the covariance matrix under the alternative H1 is

R̂1,1 = WDWH + σ̂2
1I2M , (35)

where σ̂2
1 , the ML estimate of the noise variance under H1, is

σ̂2
1 =

1

2M − p

2M∑
i=p+1

λi, (36)

and D = diag(d1, . . . , dp, 0, . . . , 0) is an 2M × 2M diagonal
matrix with di = λi − σ̂2

1 ≥ 0, by virtue of the eigenvalue
ordering.

Let us now consider the ML estimate of the covariance
matrix under the null. For a given Σrr = σ2

0IM , the result in
Theorem 2 gives us the value of HrH

H
r that maximizes the

likelihood. Then, we can write R0,1 as a function solely of
σ2
0 ,

R0,1 =

[
0 0

0 ĤrĤ
H
r

]
+ σ2

0I2M , (37)

where ĤrĤ
H
r = WrrD0W

H
rr, D0 =

diag(d1, . . . , dp, 0, . . . , 0) is an M ×M diagonal matrix, and
di = max(λrr,i − σ2

0 , 0). Taking the inverse of (37) it is
straightforward to show that the trace constraint in (33) is

tr(SR−10,1) = pr +
1

σ2
0

M∑
i=pr+1

λrr,i +
1

σ2
0

tr(Sss) = 2M, (38)

where pr = min(p, p0), and p0 is the number of eigenvalues
satisfying λrr,i ≥ σ2

0 . Therefore, the ML estimate of the noise
variance is readily obtained as

σ̂2
0 =

1

2M − pr
(

M∑
i=1

λss,i +

M∑
i=pr+1

λrr,i), (39)

and the covariance matrix under the null is

R̂0,1 =

[
0 0

0 ĤrĤ
H
r

]
+ σ̂2

0I2M . (40)

Plugging (40) - (36) into (26), the GLRT under noise
model 1 is given by

Λ1 =
(
∏pr
i=1 λi(Srr)) (σ̂2

0)2M−pr

(
∏p
i=1 λi(S)) (σ̂2

1)2M−p

H1

≷
H0

η, (41)

where pr is the largest value of i between 1 and p such that
λrr,i > σ̂2

0 .

Remark 1. In practice, the procedure for obtaining the ML
estimate of σ2

0 starts with pr = p and then checks whether
the candidate solution satisfies λrr,pr ≥ σ2

0 . If the condition
is not satisfied, the rank of the signal subspace is decreased
to pr − 1, which implies in turn a decrease in the estimate
of the noise variance until the condition λrr,pr ≥ σ2

0 is
satisfied. The intuition behind this behavior, which is caused
by the coupling between the estimates in the reference and
surveillance channels (see Problem (33)), is clear. If the
assumed dimension of the signal subspace is not compatible
with the estimated noise variance σ̂2

0 , that is, if the number
of signal mode powers above the estimated noise level σ̂2

0 is
lower than expected, then the dimension of the signal subspace
is reduced and the noise variance is estimated based on a
smaller signal subspace, and correspondingly a larger noise
subspace. Thus, the potential solutions for the ML estimates
under the null range from the case pr = p (meaning that it
is possible to estimate a signal subspace of dimension p in
the reference channel), to the case pr = 0 when the sample
variance in the surveillance channel is larger than the sample
variance in the reference channel, which makes us conclude
that all the energy in the reference channel is due to the effect
of noise.

Remark 2. Scaling of the surveillance and reference channels
by a common β scales S accordingly. Consequently all of the
eigenvalues in the formula for Λ1 scale commonly, making
Λ1 invariant-G. The detector is CFAR with respect to com-
mon scaling of the surveillance and reference channels. This
scaling scales the noise power in the surveillance channel and
signal-plus-noise power in the reference channel.

B. GLR detector for Model 4

Under noise model 4, the ML estimate of the covariance
matrix under the null is given by

R̂0,4 = diagM (S) =

[
Sss 0
0 Srr

]
. (42)

Under the alternative, the ML estimate has been derived for
p = 1 in [5] and for general p in [34]. To present this result,
let C = Sss

−1/2SsrSrr
−H/2 be the sample coherence matrix

between the surveillance and reference channels, and let C =
FKGH be its singular value decomposition (SVD), where the
matrix K = diag (k1, · · · , kM ) contains the sample canonical
correlations 1 ≥ k1 ≥ · · · ≥ kM ≥ 0 along its diagonal. With
these preliminaries, the ML estimate of the covariance matrix
under H1 is given by

R̂1,4 =

[
Sss S

1/2
ss CpS

1/2
rr

S
1/2
rr CH

p S
1/2
ss Srr

]
= (43)

=

[
S
1/2
ss 0

0 S
1/2
rr

] [
F 0
0 G

] [
IM Kp

Kp IM

] [
FH 0
0 GH

][
S
1/2
ss 0

0 S
1/2
rr

]
.



8

where Kp = diag (k1, · · · , kp, 0, . . . , 0) is a rank-p truncation
of K. Plugging the ML estimates into (26), it is easy to check
that the GLRT under noise model 4 is

Λ4 = det(I−K2
p)
−1 =

p∏
i=1

1

(1− k2i )

H1

≷
H0

η, (44)

where ki is the i-th sample canonical correlation between
the surveillance and reference channels, and η is a suitable
threshold. This formula was also derived in [35] for a differ-
ent problem. Equation (44) has an interesting interpretation:
1−Λ4

−1 is the coherence statistic, 0 ≤ 1−
∏p
i=1(1−k2i ) ≤ 1,

which has the interpretation of a soft OR detector, based on
squared canonical correlations.

Remark 3. Independent transformation of the surveillance
channel by a non-singular transformation Ts and the reference
channel by a non-singular transformation Tr, leaves the co-
herence matrix C invariant. Consequently its singular values
ki are invariant, and as a consequence the detector Λ4 is
invariant-G. As a special case, Λ4 is CFAR with respect to
noise power in the surveillance channel and signal-plus-noise
power in the reference channel.

Remark 4. From the identified model for R̂1,4 in
equation (43) it is a standard result in the theory
of MMSE estimation that the estimator of a measure-
ment xs in the surveillance channel can be orthogo-
nally decomposed as xs = x̂s + ês, where x̂s =

S
1/2
ss FKpG

HS
−1/2
rr xr ∼ CNM (0,S

1/2
ss FKpK

H
p FHS

H/2
ss ),

and ês ∼ CNM (0,S
1/2
ss [IM−FKpK

H
p FH ]S

H/2
ss ). The matrix

S
1/2
ss FKpG

HS
−1/2
rr is the MMSE filter in canonical coordi-

nates, and the matrix S
1/2
ss [IM − FKpK

H
p FH ]S

H/2
ss is the

error covariance matrix in canonical coordinates. The matrix
Kp is the MMSE filter for estimating the canonical coordinates
FHS

−1/2
ss xs from the canonical coordinates GHS

−1/2
rr xr,

and the matrix [IM − FKpK
H
p FH ] is the error covariance

matrix when doing so. As a consequence, we may interpret
the coherence, or canonical coordinate detector Λ−14 as the
volume of the error concentration ellipse when predicting the
canonical coordinates of the surveillance channel signal from
the canonical coordinates of the reference channel signal.
When the channels are highly correlated, then this prediction
is accurate, the volume of the error concentration ellipse is
small, and 1− Λ−14 is near to one, indicating a detection.

Remark 5. Connection to Generalized Coherence. If the co-
variance matrix under H0 were assumed only block diagonal
and under H1 it were assumed an arbitrary psd matrix, the
GLRT statistic would be the following generalized Hadamard
ratio:

H =
det(S)

det(Sss) det(Srr)
=

M∏
i=1

(1− k2i ) (45)

Notice also that 1 − H is the Generalized Coherence (GC)
originally defined in [36], and widely applied to multi-channel
detection problems, as in [37], [38]. So under noise model 4
the net of prior knowledge of dimension p is to replace M by
p in the coherence statistic.

VI. GLRTS FOR MODELS 2 AND 3

Under noise models 2 and 3 closed-form GLRTs do not exist
in general and one needs to resort to numerical methods. In this
section, we briefly comment on three alternative approaches
to the ML estimation problem. We give more specific details
for the simplest and best performing algorithm, which is
based on a careful reparameterization of the problem, and
the application of the alternating minimization approach. The
resulting algorithms can be used to obtain the ML estimates of
R0,j and R1,j under noise models j = 2, 3 4. These estimates
can then be plugged into the general expression (26) to get
the corresponding GLR detector.

Let us start by introducing an important property of the
sets of structured covariance matrices considered in this paper,
which allows us to obtain relatively simple ML estimation
algorithms:

Proposition 2. The structure of the sets Ei is preserved under
matrix inversion. That is

Σ ∈ Ei ⇔ Σ−1 ∈ Ei. (46)

Proof. The result directly follows from the (block)-diagonal
structure of the matrices in the sets Ei.

Taking into account this property, and focusing on the
alternative hypothesis H1 (the null can be treated similarly),
we are ready to introduce two alternative approaches to the
ML estimation problem:

1) Taking into account the monotonicity of the objective
function in Problem (32), the equality constraint can
be replaced by a ≤ constraint. If we also write the
optimization problem in terms of the matrix Σ−1, one
can readily see that the problem reduces to maximizing
a concave function (the geometric mean of the 2M − p
smallest eigenvalues) subject to an upper bound constraint
on a concave function (the arithmetic mean of those
eigenvalues) [32]. Since the problem is not convex due
to the constraint, we can resort to a successive convex
approximations approach [39] based on a linear approx-
imation of the function in the constraint. This procedure
results in an iterative algorithm with guaranteed conver-
gence to a solution that satisfies the KKT conditions [32]
of the original problem. However, the convex problems to
be solved in each outer iteration of the algorithm do not
admit a closed form solution, which results in a relatively
slow convergence and high computational complexity.

2) A second approach, which can be seen as a generalization
of the alternating optimization algorithm proposed in
[12], consists in writing the log-likelihood function in eq.
(18) in terms of the matrices Σ−1/2 and H̃ = Σ−1/2H.
Thus, for fixed Σ−1/2, the matrix H̃ maximizing the log-
likelihood can be easily found, and for fixed H̃, the log-
likelihood function is concave in Σ−1/2, whose optimal
value can be obtained by means of a Newton method
[12]. This approach also guarantees the convergence to

4Actually, the ML estimate of R0,2 can be obtained in closed form. For
simplicity in the exposition, however, we consider in this section the iterative
estimation of the covariance matrices under both hypotheses.
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a stationary solution of the original problem. Its main
drawback consists in the need for an (inner) algorithm
for obtaining Σ−1/2, as well as a coupling between the
two parameters (Σ−1/2 and H̃), which also results into
a relatively slow convergence.

In order to obtain a simpler, more intuitive, and faster
algorithm, we rely on the following property of the sets of
inverse covariance matrices associated with Ri,j :

Proposition 3. The sets of inverse covariance matrices Pi,j ={
R−1, for R ∈ Ri,j

}
can be written as

Pi,j =
{
D−GGH , for D ∈ Ej and D � GGH

}
. (47)

In particular, D = Σ−1 and GGH =

Σ−1H
(
I + HHΣ−1H

)−1
HHΣ−1, or equivalently,

Σ = D−1 and HHH = D−1/2U
(
E−1 − I

)−1
UHD−1/2,

where U and E are the eigenvector and eigenvalue matrices
in the EV decomposition D−1/2GGHD−1/2 = UEUH .

Proof. Applying the Matrix Inversion Lemma [40], we can
write

R−1 =
(
HHH + Σ

)−1
= Σ−1 −Σ−1H

(
I + HHΣ−1H

)−1
HHΣ−1, (48)

which allows us to easily identify D = Σ−1 and GGH =

Σ−1H
(
I + HHΣ−1H

)−1
HHΣ−1. In order to recover H

from D and G, let us write H̃ = D1/2H, which yields

D−1/2GGHD−1/2 = UEUH = H̃
(
I + H̃HH̃

)−1
H̃H ,

(49)
where in the first equality we have used the EV decompo-
sition. Finally, writing the EV decomposition of H̃H̃H as
UH̃EH̃UH

H̃
allows us to identify

UH̃ = U, EH̃ =
(
E−1 − I

)−1
, (50)

which obviously requires I � E, or equivalently D � GGH .

Thanks to Proposition 3, the ML estimation problem can be
formulated in terms of the matrices D and G as

maximize
D,G

logdet(D−GGH)− tr
[
(D−GGH)S

]
,

subject to D−GGH � 0,

D ∈ Ej .
(51)

Although this problem is still non-convex, it is formulated
in a form suitable for applying the alternating optimization
approach. Thus, for a fixed inverse noise covariance matrix
D = Σ−1, the problem of finding the optimal G reduces to

maximize
G

logdet(I−D−1/2GGHD−1/2) + tr
[
GGHS

]
,

(52)
or in terms of G̃ = D−1/2G and S̃ = D1/2SD1/2

maximize
G̃

logdet(I− G̃G̃H) + tr
[
G̃G̃H S̃

]
. (53)

The solution of (53) can be found in a straightforward manner,

and is given by any G̃ of the form G̃ = W̃p

[
I− Λ̃−1p

]1/2
+

Q,

where W̃p and Λ̃p are the matrices with the p principal eigen-
vectors and eigenvalues of the whitened sample covariance
matrix S̃, Q is an arbitrary unitary matrix, and [·]+ denotes the
element-wise operation max(·, 0). Finally, using Proposition 3,
the optimal matrix H satisfies

ĤĤH = Σ1/2W̃p

[
Λ̃p − I

]
+

W̃H
p Σ1/2. (54)

Fixing the matrix G, the optimization problem in (51)
reduces to

maximize
D∈Ej

logdet(D−GGH)− tr [DS] , (55)

which is a convex optimization problem. Thus, taking the
(constrained) gradient with respect to D yields

∇D = Θj

[
(D−GGH)−1 − S

]
, (56)

where Θj [·] is an operator imposing the structure in Ej . In
particular, for a psd block matrix

X =

[
X1,1 X1,2

X2,1 X2,2

]
(57)

with blocks of size M . The operators Θj [·] are

Θ1 [X] =
tr(X)

2M
I2M , (58)

Θ2 [X] =
1

M

[
tr(X1,1)IM 0M

0M tr(X2,2)IM

]
(59)

Θ3 [X] =

[
diag(X1,1) 0M

0M diag(X2,2)

]
(60)

Θ4 [X] =

[
X1,1 0M
0M X2,2

]
(61)

and diag(A) denotes the diagonal matrix obtained from the
diagonal elements of A.

Going back to eq. (56), and noting that (D−GGH)−1 =
HHH + Σ, we can conclude that the gradient is zero when
Θj

[
HHH + Σ− S

]
= 02M , and therefore the optimal Σ is

given by
Σ̂ = Θj

[
S− ĤĤH

]
. (62)

Finally, this overall alternating optimization approach for the
ML estimation of the matrices Σ and H is summarized in
Algorithm 1. The procedure can be initialized at Σ̂ = I and
typically it converges in a few iterations. Since at each step the
value of the objective function can only increase, the method is
guaranteed to converge to a (possibly local) maximum. While
the alternating minimization approach does not guarantee that
the global maximizer of the log-likelihood has been found,
in the simulation experiments the resulting detector showed
good performance, and we believe it can be safely taken as
the GLRT for noise models 2 and 3.

Remark 6. The GLRT for Model 2 is invariant to independent
scaling of the surveillance and reference channels. As a special
case of this invariance the detector Λ2 is CFAR with respect
to the noise power in the surveillance channel, and to the
signal-plus-noise power in the reference chanel. The GLRT
for Model 3 is invariant to independent diagonal scaling of
the components in the surveillance and reference channels.
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Input: Sample covariance matrix S, noise structure index
j, and rank p.
Output: Estimates (Ĥ, Σ̂) of the channel H and Σ ∈ Ej .
Initialize: Σ = I2M .
repeat

Fix Σ and update the estimate of the channel H with
(54).
Fix the channel estimate Ĥ and update Σ̂ =

Θj

[
S− ĤĤH

]
.

until Convergence.

Algorithm 1: Proposed alternating optimization algorithm.

As a special case of this invariance, the detector Λ3 is CFAR
with respect to arbitrary unequal noise powers at the elements
of the surveillance channel, and to unequal signal-plus-noise
powers at the elements of the reference channel.

VII. SIMULATION RESULTS

In this section we evaluate the performance of the GLR
detectors for noise models 1-4 by means of Monte Carlo
simulations. The input signal-to-noise-ratio (SNR) for both
the surveillance and reference channels is defined as

SNRi = 10 log10

tr(HH
i Hi)

tr(Σii)
, i = {s, r}. (63)

The noise at each channel follows a Gaussian distribution with
covariance matrices (Σss,Σrr), whose structure is determined
by the spatial correlation model. For given values of SNRs

and SNRr, the probability of detection, Pd, and probability of
false alarm, Pfa, are estimated by averaging 104 independent
simulations. For each choice of the channel matrices (Hs,Hr)
and noise covariance matrices (Σss,Σrr), N values of x[n]
are generated with s[n] = 0, n = 1, . . . , N , and N realizations
of x[n] are generated with s[n], n = 1, . . . , N drawn from
unit normals. From these N values under each hypothesis,
detection statistics are computed. As thresholds are scanned,
a false alarm (or not) and a detection (or not) is recorded.
This is repeated 104 times, but at each repeat, a different set
of the (Hs,Hr) and (Σss,Σrr) are drawn. The elements of
(Hs,Hr) are drawn as unit normals and scaled to give the de-
sired SNR’s at each channel as in (63), and the (Σss,Σrr) are
constructed according to one of the assumed noise models. We
use the following generation models for the noise covariance
matrices:
• Model 1: Σss = Σrr = I.
• Model 2: Σss = σ2

sI, Σrr = σ2
rI; with σ2

r ∼ U(0, 1) and
σ2
s ∼ U(0, 1) independent uniform random variables.

• Model 3: Σss = diag(σ2
s1, . . . , σ

2
sM ), Σrr =

diag(σ2
r1, . . . , σ

2
rM ); with σ2

ri ∼ U(0, 1) and σ2
si ∼

U(0, 1) for i = 1, . . . ,M .
• Model 4: Σss = AHA and Σrr = BHB where A and

B are random matrices with independent elements drawn
from unit complex normals.

A. GLRT performance
We first evaluate the performance of the GLR tests under

different noise models. For models 1 and 4, we used the

closed-form GLRTs in Sections V-A and V-B, respectively;
whereas for models 2 and 3 we used the iterative solution
described in Section VI. The results shown in this subsection
involve a scenario with p = 1 (dimension-one subspace
signal), M = 5 antennas and N = 50 snapshots. Fig. 2
depicts the Receiver Operating Characteristic (ROC) curve
when the noise is generated according to model 1 and the
channel matrices are scaled to give SNRs = −6 dB at the
surveillance channel and SNRr = 10 dB at the reference
channel. In this situation, the GLRT for model 1 is matched
to the measurement, and model 2-4 detectors are mismatched.

P
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Fig. 2. ROC for a scenario under model 1 with M = 5 antennas, p = 1,
N = 50 snapshots, SNRs = −6 dB and SNRr = 10 dB.

Fig. 3 depicts the ROC when the noise follows model 2
(spatially white noises but with different variance at each
channel), SNRs = −5 dB and SNRr = 5 dB; hence, the
model 2 detector is matched to the measurement and the others
are mismatched. Similarly, Figs. 4 and 5 show the ROC curves
for noise models 3 and 4, respectively, at the SNRs indicated
in the figures.

As one would expect, the GLRTs matched to the actual
noise model that generates the measurements outperform the
mismatched detectors. In terms of robustness against mis-
matched noise models, the GLRT for model 3 seems to be
the preferred option.

B. Distribution under the null

An important aspect regarding the applicability of the
proposed tests is selecting thresholds that achieve a desired
Pfa. A rigorous solution to this problem involves deriving
the distribution of the proposed test statistics under the null
hypothesis. Although one may find in the literature exact
solutions for a few specific cases (mainly when the GLRT
reduces to a Hadamard ratio as in [36], [38]), deriving the
exact null distribution is in general not possible and one has
to resort to asymptotic approximations.

A conventional approach is provided by the Wilks theorem
[41], which proves that, for nested hypotheses and under
some regularity conditions, when N → ∞ the test statistic
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Fig. 3. ROC for a scenario under model 2 with M = 5 antennas, p = 1,
N = 100 snapshots, SNRs = −5 dB and SNRr = 5 dB.
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Fig. 4. ROC for a scenario under model 3 with M = 5 antennas, p = 1,
N = 50 snapshots, SNRs = −6 dB and SNRr = 10 dB.
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Fig. 5. ROC for a scenario under model 4 with M = 5 antennas, p = 1,
N = 50 snapshots, SNRs = −10 dB and SNRr = 0 dB.

2 log Λ converges to a chi-squared distribution with degrees
of freedom equal to the difference in dimensionality of the
parameters in H1 and H0. For noise models 1-3, the Wilks
approximation reduces to 2 log Λ ∼ χ2

2Mp, which is only
accurate for large values of N . To illustrate this point, Fig. 6
compares the empirical cumulative distribution function (CDF)
for the GLRT under model 1 when SNRr = 0 dB with a chi-
square distribution with 2Mp degrees of freedom. The rate
of convergence to the chi-squared distribution depends on the
subspace dimension, as well as on the signal-to-noise-ratio of
the reference channel, SNRr, with faster convergence rates for
lower values of p and higher values of SNRr. A similar result
is depicted in Fig. 7 for the test statistic under the noise model
2.
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Fig. 6. Empirical CDF for the GLRT under the null for noise model 1 in
solid line for different values of p and N with SNRr = 0 dB. The dashed
line is the Wilks approximation given by χ2

2Mp.
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Fig. 7. Empirical CDF for the GLRT under the null for noise model 2 in
solid line for different values of p and N with SNRr = 5 dB. The dashed
line is the Wilks approximation given by χ2

2Mp.

For noise model 4, the classical Wilks approximation,
including a correction term as proposed by Bartlett in [42],



12

is accurate only for a full-rank signal model (p = M ).
For low-rank signal models, however, alternative approaches
to approximate the null distribution are needed [43], [44].
The case of rank-one signals (p = 1) has been discussed
in [5], where a random matrix result by Johnstone [45]
was exploited: after an appropriate transformation, the dis-
tribution of the largest canonical correlation under the null
converges to a Tracy-Widom law of order 2. In particular, let
l1 = log(k21/(1 − k21)), be the logit transform of the largest
squared canonical correlation. Then, as N → ∞, M → ∞,
M/N → constant, the limiting distribution is

P
{
l1 − µN,M
σN,M

≤ x
}
→ F2(x), (64)

where F2(x) is the distribution function for the Tracy-Widom
law of order 2. The centering and scaling constants are given
by

µN,M =
σ−11 u1 + σ−12 u2

σ−11 + σ−12

, and σ−1N,M =
1

2

(
σ−11 + σ−12

)
,

(65)
where u1 = 2 log tan(2α), u2 = 2 log tan(2β), and

σ3
1 =

16

(N + 1)2 sin2(4α) sin2(2α)
,

σ3
2 =

16

(N − 1)2 sin2(4β) sin2(2β)
,

with

sin2(α) =
M + 1/2

N + 1
, and sin2(β) =

M − 1/2

N − 1
.

The accuracy of the Tracy-Widom approximation for p = 1
is verified in Fig. 8, which shows the CDF of the random
variable l1−µN,M

σN,M
under the null, and the unitary Tracy-Widom

distribution F2(x) in dashed line. In this example the number
of antennas is M = 5 and the number of snapshots is N = 20.
For values p > 1, the GLRT involves a function of the p
largest sample canonical correlations and, to the best of our
knowledge, there are no accurate approximations of the null
distribution in the literature. This is left for future work.

As a final remark, notice that the Wilks approximation for
noise models 1-3 and the Tracy-Widom approximation for
model 4 depend not on the unknowns (e.g., channels matrices
or noise covariance matrices), but only on known parameters
such as the number of antennas M , the dimension p of the
signal subspace, or the number of samples N (for the Tracy-
Widom approximation). These results are consistent with the
invariances established for each of the detectors in Section III.

C. Comparison with other detectors

In this subsection we compare the performance of the GLRT
for noise model 4 and p = 1 with the following suboptimal
detectors:

1) Covariance-matching detector: this ad-hoc detector uses
structured estimates for R0 and R1 that minimize the
Frobenius norm between the sample covariance and the
estimate: ||S − R||2F . For R0 the covariance-matching
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Fig. 8. Empirical CDF for the random variable
l1−µN,M

σN,M
under the null for

noise model 4; p = 1, M = 5, N = 20 and SNRr = 0 dB. The dashed
line is the approximation given by Tracy-Widom distribution of order 2.

estimate coincides with the ML estimate in (42), whereas
for R1 it is given by (for p = 1)

R̂1 =

[
Sss λ1u1v

H
1

λ1v1u
H
1 Srr

]
, (66)

where λ1 is the maximum singular value of Ssr, and u1

and v1 are the corresponding left and right singular vec-
tors. After obtaining the covariance-matching estimates
for R0 and R1, the test statistic is computed as a ratio
of determinants.

2) Cross-correlation (Cross-Corr) detector:

| tr(SHsrSsr)|
H1

≷
H0

η, (67)

which is a natural extension to the multiantenna case of
the cross-correlation detector typically used in passive
radar systems [3].

We consider a scenario with M = 4 antennas, p = 1, and
N = 100 snapshots. Fig. 9 depicts the probability of detection
Pd versus the signal-to-noise-ratio (for simplicity, in this
example we assume SNRr = SNRs) for a fixed Pfa = 10−3.
The threshold to achieve the desired Pfa for the GLRT has
been obtained from the Tracy-Widom approximation presented
previously. We observe that the GLRT outperforms the covari-
ance matching and the Cross-Corr detectors.

D. Performance with QPSK and OFDM signals

The GLR tests in this paper have been derived under the
assumption that the signals transmitted by the p illuminators
of opportunity follow a zero-mean circular complex Gaussian
distribution. While this assumption was made for mathematical
tractability, it is also an accurate approximation when the
non-cooperative illuminators transmit orthogonal frequency-
division multiplexing (OFDM) signals as in the European
Digital Video Broadcasting-Terrestrial (DVB-T) system. To
validate this approximation, in this subsection we compare the
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Fig. 9. Pd curves versus SNR for a scenario with p = 1, M = 4 antennas
and N = 100 snapshots; Pfa = 10−3.

performance of the GLRT for noise model 4 when s[n] is: i) a
zero-mean complex Gaussian signal, ii) an OFDM-modulated
DVB-T signal in 2k mode (1705 subcarriers), and iii) a
single-carrier quadrature phase-shift keying (QPSK) signal.
The results are shown in Fig. 10 for a scenario with M = 5,
p = 1, and N = 50 snapshots. The ROC curves for Gaussian,
OFDM, and QPSK symboling are nearly indistinguishable.
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Fig. 10. ROC under model 4 with Gaussian, OFDM (DVB-T), and QPSK
signals. The scenario has M = 5 antennas, p = 1, N = 50 snapshots,
SNRs = −10 dB and SNRr = −5 dB.

E. Performance for unequal number of sensors at the surveil-
lance and reference channels

To ease the exposition and simplify the notation, throughout
this paper we also made the assumption that the reference and
the surveillance channels have the same number of antennas,
M . It is however clear that all results in the paper remain valid
when the surveillance and the reference channels have Ms and

Mr antennas, respectively. In this subsection, we evaluate the
performance of the GLR tests in this situation. We consider
a scenario with a fixed number of Mr = 4 antennas for the
reference channel and a varying number of antennas ranging
from Ms = 3 to Ms = 12 for the surveillance channel. The
rank of the transmitted signal is p = 1, the noise is generated
according to model 4, and the channel matrices are scaled to
give SNRs = −10 dB and SNRr = 0 dB. The Pfa is fixed
to 1e − 2 and the GLR tests are computed from N = 50
snapshots. Fig. 11 shows the Pd for the 4 GLR tests under
these conditions for an increasing number of antennas at the
surveillance channel. The GLRT for noise model 4 is matched
to the generated measurements and thus is the best performing
detector, achieving a probability of detection close to one for
Ms = 6 antennas.
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Fig. 11. Probability of detection of a rank-one signal for a fixed Pfa = 1e−2
under noise model 4 with Mr = 4 antennas in the reference channel and a
varying number of antennas, Ms, in the surveillance channel.

VIII. CONCLUSION

In this paper we have addressed a problem motivated by
passive radar. The problem is to detect a common subspace
signal in two MIMO channels. It turns out that the problem is
a problem in factor analysis, where there are constraints on the
factor loadings and the factors. The problem may be viewed as
a one-channel factor analysis problem with constraints on the
factor loadings under the null hypothesis, or as a two-channel
factor analysis problem, with constraints on the factor loadings
under the null, and with common factors under the alternative.

There are four plausible additive noise models for the
hypothesis testing problems we have studied, but each may be
formulated in a common framework, using a noise-whitening
trick that leads to a common problem of choosing a whitening
matrix that minimizes the geometric mean of what might be
called constrained canonical coordinates, under a constraint
on their arithmetic mean. Two of the four problems have
closed-form solutions, and two require numerical optimization,
based on alternating minimizations. For each noise model, the
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invariances of the hypothesis testing problem and its GLRT
are established.

A new result has been derived for maximum likelihood
(ML) estimation of structured covariance matrices in the
multivariate normal model: the ML estimate for a structured
covariance matrix R in a cone class always satisfies the
constraint tr[R̂−1S] = 2M , leading to the result that the
GLRT for covariance testing is a ratio of determinants in
estimated covariance matrices.

For the case of unstructured noise covariance, the GLRT
compares the product

∏p
1(1 − k2i ) to a threshold, where the

ki’s are squared canonical correlations of the two channel
sample covariance matrix. The product may be replaced by
1 −

∏p
1(1 − k2i ), which is coherence, so that the detector is

a coherence detector. There is a filtering interpretation of this
result, showing that

∏p
1(1 − k2i ) is the volume of the error

concentration ellipse when estimating canonical coordinates
in the surveillance channel from canonical coordinates in the
reference channel. When the channels are highly correlated,
this concentration ellipse has small volume and coherence is
near to one. Numerical simulations suggest that the detector
based on common white noise variances in the surveillance and
reference channels is badly mismatched to the other models,
and should not be considered. In terms of robustness against
mismatched noise models, the GLRT for model 3 should be
the preferred detector.
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