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ABSTRACT

In this work we propose a new adaptive algorithm for coop-
erative spectrum sensing in dynamic environments where the
channels are time varying. We assume a centralized spectrum
sensing procedure based on the soft fusion of the signal energy
levels measured at the sensors. The detection problem is posed
as a composite hypothesis testing problem. The unknown pa-
rameters are estimated by means of an adaptive clustering al-
gorithm that operates over the most recent energy estimates re-
ported by the sensors to the fusion center. The algorithm does
not require all sensors to report their energy estimates, which
makes it suited to be used with any sensor selection strategy
(active sensing). Simulation results show the feasibility and ef-
ficiency of the method in realistic slow-fading environments.

Index Terms— Cooperative spectrum sensing, energy de-
tection, clustering, likelihood ratio test, fading channels

1. INTRODUCTION

Spectrum sensing is a key operation in cognitive radio. Through
spectrum sensing the cognitive radios (CRs) try to detect fre-
quency bands that are not being used by the primary network.
The performance of spectrum sensing is limited by shadowing
and multi-path fading effects in the sensing channels between
the primary users (PUs) and the CRs. By using cooperative
spectrum sensing (CSS) the impact of those effects can be mit-
igated efficiently by the inherent multiuser/spatial diversity of
the CR network [1], [2].

This work focuses on centralized CSS based on the soft fu-
sion of the signal energy levels measured by the CRs [3], [4],
[5], [6]. Each CR estimates the energy level at its location in
the frequency band of interest and reports it to a fusion center
(FC) through a control channel. Then, the FC makes a decision
on the presence or absence of primary signals in the channel.

The likelihood radio test (LRT) is the optimal test when the
FC knows the signal-to-noise ratio (SNR) at the CRs. In [3] and
[4] the authors show that, when there is a single PU, the LRT
leads to a linear fusion rule where the test statistic is a linear
combination of the energy levels with appropriate weights.

Unfortunately, knowing the SNR at the CRs is very diffi-
cult, or even impossible, in practical scenarios. When these
values are unknown the detection problem becomes a compos-
ite hypothesis test [7]. Generalized-LRT based algorithms have
been proposed in [8] and [9] to solve this problem, whereas, in
[10] and [11], the authors derive detection algorithms based on
the Rao test and the locally most powerful test. All these works
assume a single PU.
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In this work, we propose a different approach to the CSS
problem. First, we pose it as a composite hypothesis testing
problem where the unknown parameters are the SNR at the CRs.
Then, we derive a new adaptive clustering algorithm that allows
the FC to dynamically estimate the SNR’s from the most recent
energy estimates reported to the FC by the CRs.

A similar approach to the CSS problem has been proposed
in [5] and [6], where the authors use different Machine Learning
techniques. However, these techniques are batch and, therefore,
difficult to apply in mobile scenarios.

It is well known that the adequate selection of a subset of
active CRs is a key issue in CSS because it permits to alleviate
the control channels overhead without degrading the detection
performance (see [1] and the references therein). This means
that, at each time, the FC only fuses the energy levels from
a subset of active CRs. Unlike the algorithms in [5] and [6],
our method is able to deal with incomplete energy vectors (i.e.
missing data), which makes it suited to be used with any CRs
selection method.

2. SYSTEM MODEL

2.1. Primary network state

We consider a general model for the primary network activ-
ity where more than one PU can transmit simultaneously [6].
Let si ∈ {0, 1} indicate the state of PUi, where si = 1
means that it is transmitting (active) and si = 0 when it is
inactive. The PU network state is given by the binary vector
s = [s1 s2 · · · sNU ]T , whereNU is the number of PUs. There-
fore, the channel is idle when s = 0, whereas it is occupied
when s 6= 0.

2.2. Energy detection

Let W denote the channel bandwidth. The CRs perform energy
detection [12] for a time duration of τ , so they take M = Wτ
signal samples during τ . The normalized received energy esti-
mate at CRj is

ej =
2

ηj

M∑
m=1

|xj [m]|2,

where xj [m] denotes them-th signal sample and ηj is the noise
variance at the CRj .

2.3. Distribution of the energy estimates

The distribution of the energy estimates depends on the PU net-
work state. Let ej |s be the received energy estimate at CRj

conditioned to the primary network state s. According to the
central limit theorem, if M is large enough (e.g. M ≥ 20
in practice), ej |s is approximately normal distributed [6] with
mean and variance given by

µs,j = 2M(1 +

NU∑
i=1

siγi,j), σ2
s,j = 4(µs,j −M), (1)



where γi,j denotes the SNR at CRj when PUi is the only active
user. Note that the variance is completely determined by the
mean.

Let us assume that, at a given time, the CRs report their en-
ergy estimates to the FC. Then, the FC generates the energy vec-
tor e = [e1 e2 · · · eNS ]

T , where NS denotes the number of
CRs. Since the local energy estimates are Gaussian distributed,
the energy vector follows a multivariate Gaussian distribution

e|s ∼ N (µs,Σs), (2)
with mean µs = [µs,1 µs,2 · · · µs,NS ]

T . Assuming that the
energy estimates from different CRs are independent, the co-
variance matrix is Σs = 4diag(µs − 1M). Note that, besides
being a diagonal matrix, the covariance matrix is fully deter-
mined by the mean. This is a key fact that motivates the algo-
rithm proposed in next sections.

When s = 0 (that is under the null hypothesis), the Gaus-
sian is spherical with centroid µ0 = 2M1 and covariance ma-
trix Σ0 = 4MI. Therefore, the distribution of e|0 only de-
pends on M , which is assumed to be known by the FC.

To summarize, each PU network state s is associated with a
multidimensional Gaussian distribution in the energy parameter
space, which is fully determined by its mean µs.

3. LRT DETECTOR

The CSS detection problem can be posed as the following bi-
nary hypothesis test

H0 : s = 0

H1 : s 6= 0

According to (2), the distribution of the energy vectors un-
der each hypothesis are

p(e|H0) = f(e|µ0),

p(e|H1) =
∑
s6=0

πs

1− π0
f(e|µs), (3)

where f(·|µs) denotes the Gaussian probability den-
sity function with mean µs and covariance matrix Σs =
4diag(µs − 1M). The distribution of e|H1 is a mixture of
2Nu − 1 Gaussian densities, being πs the prior probability that
the PU network is in state s. On the other hand, e|H0 is a Gaus-
sian random vector with known parameters that only depends
on M .

Given the observed energy vector e, the LRT is

p(e|H1)

p(e|H0)

H1

≷
H0

λ, (4)

where the likelihoods of e under both hypotheses are given by
(3), and λ is a suitable detection threshold [7].

4. ADAPTIVE PARAMETER ESTIMATION

The application of the LRT requires the FC to know the current
values of {µs} and {πs}. The estimation of these parameters
can be formulated as an adaptive clustering problem in the en-
ergy space, where the feature vectors are the energy vectors that
arrive sequentially to the FC, and each cluster is associated with
a primary network state. The means {µs} are the clusters cen-
troid, and the probabilities {πs} are the cluster weights. The
PU network state can be different for different energy vectors.

We assume that, at each time, only a subset of CRs report
their energy estimates to the FC. This makes the clustering al-
gorithm to be able to deal with missing data.

4.1. Adaptive clustering

In mobile environments the sensing channels are time varying
and therefore the cluster centroids are moving in the energy
space. In addition, consecutive energy vectors can belong to
different clusters that correspond to different PU network states.
Then, the FC applies a sliding window containing the N most
recent energy vectors. Each time a new energy vector arrives
to the FC, it is stored, and the oldest one is removed from the
window. Using the new window of energy vectors, the clus-
tering algorithm readjusts the estimates of the cluster centroids
and weights. This way, the FC may compute the LRT (4), at
any time, with the current estimates of {µs} and {πs}. This
procedure is depicted in Figure 1 where e(n) denotes the n-th
energy vector in the sliding window.

Fig. 1. Sliding window over the energy vectors.

The window size N is a key parameter. The larger N , the
more accurate clustering results. On the other hand, the chan-
nels (and therefore the centroids) must remain practically con-
stant during the total acquisition time of the energy vectors.

4.2. Clustering algorithm

Our clustering problem has two of peculiarities that make it dif-
ferent from conventional clustering problems:

1. The FC fuses the energy estimates from a subset of the
CRs, so the energy vectors can be incomplete.

2. The centroid of the null hypothesis cluster, s = 0, is
known in advance: µ0 = 2M1.

These peculiarities require an ad-hoc clustering algorithm,
which is presented in the following. It can be viewed as a mod-
ified version of the K-means algorithm to deal with the particu-
larities of the problem at hand.

We consider the following objective function

J(r,µ) =

N∑
n=1

∑
s

rs(n)bs(n), (5)

where rs(n) denotes the indicator function about the PU net-
work state at time n, so rs(n) = 1 if the PU network is assumed
to be in state s, and rs(n) = 0 otherwise. The term bs(n) in (5)
is a dissimilarity measure between the energy vector e(n) and
the centroid of cluster s. It is given by

bs(n) =

Ns∑
j=1

vj(n)(ej(n)− µs,j)
2,

where vj(n) is an indicator variable that equals 1(0) if the en-
ergy estimate ej(n) is available(unavailable) at the FC. There-
fore, bs(n) is the sum of the squared differences (in the energy
space) between the available energy estimates and the corre-
sponding components of µs. Note that if all energy estimates
were available (vj(n) = 1, ∀j), bs(n) would be the squared
Euclidean distance between e(n) and µs, as in the conventional
K-means algorithm.



The goal of the clustering algorithm is to find the values for
the assignments r = {rs(n)} and the centroids µ = {µs,j} so
as to minimize the objective function,

r̂, µ̂ = argmin
r,µ

J(r,µ). (6)

From r̂, the computation of the clusters weights (the prob-
abilities of the PU network states) is straightforward

π̂s =
1

N

N∑
n=1

r̂s(n).

As in the conventional K-means algorithm, we consider an
iterative procedure to minimize (6). Each iteration involves two
successive steps:

1) Minimization of J with respect to r assuming µ is fixed.
This is done by assigning the observations to the cluster
with the closest centroid.

2) Minimization of J with respect to the centroids µ with
r held fixed, which is done by updating the centroids
for the current assignments r. J is a quadratic function
of the centroids’ coordinates. It can be minimized by
setting its partial derivatives to zero

∂J

∂µs,j
= 0 ⇒ µs,j =

∑N
n=1 vj(n)rs(n)ej(n)∑N

n=1 vj(n)rs(n)
.

Since µ0 is fixed and known, only the centroids for s 6=
0 are updated.

Algorithm 1 : Clustering with missing data
1: initialize µ̂ with the result of the last clustering
2: repeat
3: —— Minimization with respect to r ——
4: for n = 1 to N do
5: bs(n) =

∑Ns
j=1 vj(n)(ej(n)− µ̂s,j)

2

6: initialize r̂s(n) = 0,∀s
7: r̂s(n) = 1, where s = argmin

t
{bt(n)}

8: end for
9: —— Minimization with respect to µ ——

10: for j = 1 to NS do
11: µ̂s,j =

∑N
n=1 vj(n)r̂s(n)ej(n)∑N

n=1 vj(n)r̂s(n)
, ∀s 6= 0

12: end for
13: ————————————————————
14: until r̂ converges

Iterations stop when there is no further change in the as-
signments r̂. Since each iteration reduces the value of J , the
convergence of the algorithm is ensured. However, as in the
conventional K-means, the algorithm may converge to a local
minimum of J .

The algorithm is run to update µ̂ and π̂ whenever a new en-
ergy estimate enters the sliding window. Each run is initialized
with the last estimate of µ which was obtained with the previ-
ous window of energy vectors. Therefore, the initial values of
µ̂ will be close to the new centroids. As a result, the algorithm
requires very few iterations to converge.

5. SIMULATION RESULTS

In this section we obtain the ROC (Receiver Operating Char-
acteristic) curve to illustrate the performance of the proposed
algorithm in different scenarios. Each ROC curve averages the

LRT results over 4 · 105 energy vectors. Before applying the
LRT, we estimate the current clusters centroids and weights by
means of the clustering algorithm considering a sliding window
with the N most recent energy vectors.

Unless otherwise indicated, we have considered the follow-
ing assumptions and parameter values in the simulations,

• The channel bandwidth is W = 5 MHz.

• The noise spectral density is η = −174 dBm at all CRs.

• The channels between different pairs PU-CR are inde-
pendent and identically Rayleigh distributed. For each
sensing channel we generate time-correlated realiza-
tions using the Jakes’ model [13], for a given maximum
Doppler shift fD = 25 Hz. Therefore, the coherence
time of the sensing channels TC ≈ 0.4

fD
= 16 ms [14].

• The number of signal samples for energy estimation
(2.2) is M = 100, therefore, the sensing time is
τ = M

W
= 20µs

• The PU network state can change between two consecu-
tive energy vectors. The activity of the PUs is modeled
as independent and identically distributed homogeneous
Markov chains with two states: inactive (si(n) = 0)
and active (si(n) = 1). In the simulations we assume
that the transition probabilities are p0,0 = P (si(n) =
0|si(n − 1) = 0) = 0.75 and p1,1 = P (si(n) =
1|si(n− 1) = 1) = 0.5. Accordingly, for a PU network
with NU = 3 users, the probability that the channel is
idle is π0 = 0.3.

• All PUs transmit identical power. Then, the average
SNR is the same for all CRs (averaging over the sensing
channel realizations and the PU’s activity). The assump-
tion ia mainly made to facilitate the interpretability of
the results. Unless otherwise indicated, we assume that
the average SNR is −5 dB.

• The CRs (or a subset of them) sense the channel peri-
odically with constant sensing period TF = 1 ms. This
value requires the window size to be N ≤ TC

TF
= 16.

• The control channels between the CRs and the FC are
error-free.

An ideal detector that assumes perfect knowledge of the un-
known parameters is referred to as a clairvoyant detector [7]. Its
ROC will be shown in some figures as an upper bound. The per-
formance gap between the clairvoyant detector and our detector
is the performance loss due to the parameter estimation errors.

At a given time, the total number of energy estimates in
the sliding window will be No =

∑N
n=1

∑NS
j=1 vj(n), which

can take values between No = N and No = NSN . In the
simulations, whenNo < NSN , the CRs that report their energy
estimates are selected randomly. Obviously, if a CRs selection
strategy were used, the performance of the proposed algorithm
would be better.

Figure 2 shows the ROC curves for different SNR values
when NU = 3 and NS = 3. In this scenario all energy esti-
mates are available at the FC, so No = NSN . The ROC curves
of the clairvoyant detector are also shown. It can be observed
that the performance loss due to the estimation errors is rela-
tively low.

Figure 3 shows the ROC curves for a network withNU = 3
and different number of CRs. Again, we assume that all energy
estimates are available at the FC (No = NSN ). Obviously, the
higher the number of sensors the better the performance. As it
is also expected, the gain by increasing NS is higher when the
number of CRs is low.

Figure 4 compares the ROC curves for different number of
energy estimates in the sliding windows (No). In this example



Fig. 2. ROC curves for NU = 3, NS = 3 and different values
of average SNR.

Fig. 3. ROC curves for NU = 3 and different number of sen-
sors.

the number of PUs and CRs are NU = 3 and NS = 4, re-
spectively. In the case No = 4N all CRs report their energy
estimates to the FC, and hence the energy vectors do not have
missing entries, whereas when No = N only a single CR re-
ports its energy level each time. As it is expected, the higher the
N0, the better the performance.

Fig. 4. ROC curves for NU = 3, NS = 4 and different number
of energy estimates at the FC.

Figure 5 shows the ROC curves for different values of the
sensing period TF . The window size N is chosen to guarantee
that the energy vectors in the sliding windows have been ob-
tained for a constant channel: N ≤ TC/TF . The lower the N
the less accurate are the clustering results. The number of PUs
and CRs are NU = 3 and NS = 4, respectively, but only the
energy estimates from two CRs are available for clustering each
time (No = 2N ).

Finally, Figure 6 shows the ROC curves for PU networks

Fig. 5. ROC curves forNU = 3,NS = 4,No = 2 and different
sliding window sizes.

with different activity characteristics. The activity of the net-
work is characterized by parameter π0, that is, is the probabil-
ity that none of the PUs is transmitting. The more active are
the PU users, the lower the π0. It can be observed that it has
a significant influence on the detector performance. The more
activity in the network, the better the performance. This is be-
cause the clustering algorithm has to learn the parameters of the
clusters associated with network states s 6= 0, whereas the pa-
rameters of the cluster s = 0 are known in advance. Therefore,
the more energy vectors are generated under active network
states (s 6= 0), the better the algorithm estimates the param-
eters of their clusters. The different values of π0 were obtained
by choosing the appropriate values of the transition probability
p0,0 while keeping p1,1 = 0.5 fixed.

Fig. 6. ROC curves forNU = 3,NS = 4,No = 2 and different
probability that the channel is idle.

6. CONCLUSIONS

In this work we have presented a novel method for centralized
cooperative spectrum sensing in mobile environments where the
sensors or cognitive radios perform energy detection. We have
posed the detection problem as a composite hypothesis testing
problem where the unknown parameters are estimated by means
of an adaptive clustering algorithm in the energy space. The in-
put to the clustering algorithm are the most recent local energy
levels at the sensors. Due to its adaptive nature, the algorithm
is suited for time varying scenarios. In addition, the algorithm
is able to deal with missing values, which makes it suited to be
applied with any sensor selection strategy to reduce the over-
head in the control network. The simulation results show that
the proposed method is feasible and efficient in slow fading en-
vironments.
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