
Recursive Multikernel Filters Exploiting
Nonlinear Temporal Structure

Steven Van Vaerenbergh
Dept. Communications Engineering

University of Cantabria, Spain
steven.vanvaerenbergh@unican.es

Simone Scardapane
DIET Dept.

Sapienza University, Italy
simone.scardapane@uniroma1.it

Ignacio Santamaria
Dept. Communications Engineering

University of Cantabria, Spain
i.santamaria@unican.es

Abstract—In kernel methods, temporal information on the
data is commonly included by using time-delayed embeddings
as inputs. Recently, an alternative formulation was proposed
by defining a γ-filter explicitly in a reproducing kernel Hilbert
space, giving rise to a complex model where multiple kernels
operate on different temporal combinations of the input signal.
In the original formulation, the kernels are then simply combined
to obtain a single kernel matrix (for instance by averaging),
which provides computational benefits but discards important
information on the temporal structure of the signal. Inspired by
works on multiple kernel learning, we overcome this drawback
by considering the different kernels separately. We propose
an efficient strategy to adaptively combine and select these
kernels during the training phase. The resulting batch and
online algorithms automatically learn to process highly nonlinear
temporal information extracted from the input signal, which is
implicitly encoded in the kernel values. We evaluate our proposal
on several artificial and real tasks, showing that it can outperform
classical approaches both in batch and online settings.

I. INTRODUCTION

In recent years, kernel adaptive filters (KAF) have become
a popular approach for online machine learning and time-
series prediction, thanks to numerous theoretical and practi-
cal advances [1]–[3]. Differently from deep recurrent neural
networks [4], whose training is generally formulated in batch
fashion, KAFs can be trained efficiently with a single pass over
the training data. Popular examples of KAFs include kernel
least-mean-square [2], [5] and kernel recursive least-squares
[1], [6]. When operating on temporal data, most KAFs apply
common kernel functions, e.g. Gaussian or polynomial, to
time-delay embeddings of the input data. Choosing a specific
embedding is not trivial in general, and it might be suboptimal
in the case of non-stationary signals. These are known prob-
lems in other kernel methods as well, such as support vector
machines (SVMs) [7] and kernel ridge regression (KRR).

In order to overcome these limitations, several authors have
proposed kernelized extensions of classical recursive models,
including the recurrent least-squares SVM [8], the autore-
gressive and moving average (ARMA) SVM [9], the kernel
machine and space projection (KMSP) method [10], the kernel
γ-filter [11], and, more recently, the kernel adaptive ARMA
algorithm [12]. All of these works share a common method-
ology, which is composed of three major steps: (i) define a
proper state-space model (SSM) in the input space; (ii) map
the input and/or the state of the model to a high-dimensional

feature map corresponding to a properly defined reproducing
kernel Hilbert space (RKHS); and (iii) solve the resulting
model by substituting all dot products with evaluations of the
associated kernel function according to the so-called “kernel
trick”. Although this is a powerful methodology, it is hard
to obtain insights from the model and, more importantly,
selecting a proper embedding remains a crucial problem.

In this paper, we focus on the alternative methodology
recently proposed in [13]. The basic idea consists in defining
the SSM explicitly in a proper RKHS, where samples might
not correspond one-to-one with the original inputs. In par-
ticular, it is possible to define a proper reproducing theorem
such that the model can be expressed as a summation of
kernel values, which can be computed recursively at each time
instant. For the specific case of the γ-filter, the resulting model
is particularly appealing because each “tap” in the RKHS
corresponds to a filtering operation on a different time-scale of
the original input [13]. Unlike previously proposed recursive
kernels, e.g. [14], this class of kernels was found to work
robustly in many problems, including time-series prediction
and array processing. Some theoretical aspects of a related
class of kernels were investigated independently in [15].

Here, we are interested in extending this methodology by
focussing on a shortcoming of the original model. In particular,
standard kernel methods consider a single kernel value for each
input datum, while in this case, we obtain several kernel values
per input. In [13], this problem was side-stepped by either
averaging the values, or by computing inner products. This
approach lacks in flexibility, however, because it implicitly
assumes that all time-scales are equally important. In this
paper, we put forth the idea of considering each kernel value as
coming from a different kernel function, and to apply proper
adaptive strategies to learn the dependency with respect to each
of them. In the literature, the idea of adaptively combining
kernel functions goes under the name of multiple kernel (MK)
learning. MK algorithms originated in the SVM literature [16],
and their benefits have also been proven by a number of
authors for KAFs, including the MK normalized LMS [17],
the mixture KMLS [18], the doubly regularized MKLMS [19],
and Cartesian HYPASS [3].

In order to test the feasibility of our idea, we focus on
a simple strategy in which multiple kernel estimators are
linearly combined following a stacking-like [20] algorithm.



This allows us to test the same formulation in both batch
and online settings. In the experimental section, we show
that by combining our procedure with the recursive kernel of
[13], we obtain a performance that is comparable to or better
than competing approaches. To this end, we evaluate several
benchmarks using both artificial and real-world datasets.

The rest of the paper is organized as follows. Section II
describes the RKHS γ-filter from [13], which is extended
through the proposed MK strategy in Section III. We briefly
consider computational considerations of the recursive kernel
evaluation in Section IV. Experiments are presented in Section
V, before giving some conclusive remarks in Section VI.

II. RECURSIVE γ-FILTERING IN RKHS

Let us denote by (xn, yn) a generic input-output pair ob-
served at time instant n. We assume these data to be generated
by the following nonlinear model

yn = f(〈wi, xin〉) + ey , (1a)

xin = g(xin−1, x
i
n−2, . . . , yn, yn−1, . . .) + ex , (1b)

where xin is the input signal at the i-th filter tap, 〈·〉 denotes the
inner product, wi are the filter weights, f(·), g(·) are smooth
nonlinear functions, and ex, ey represent state and output noise
respectively. The main idea introduced in [13] is to model a
similar process, defined instead in a proper Hilbert space H

yn = f̂(〈wi, φin〉H) + ey , (2a)

φin = ĝ(φin−1, φ
i
n−2, . . . , yn, yn−1, . . .) + eφ , (2b)

where wi, φin are now samples in the (possibly infinite-
dimensional) H, and eφ, ey represent the state and output
noise. Differently from previous works, it is not required for
φin to have xin as its preimage, in order to provide more
flexibility to the model. Proving a representer theorem in
general is not trivial, except for specific instantiations of Eq.
(2). A particularly interesting case arises by assuming that the
filtering operation in Eq. (2) is a γ-filter [11], [21] given by
(omitting noise for simplicity)

yn =

P∑
i=1

〈wi, φin〉H , (3a)

φin =

{
ψ(xn) if i = 1 ,

(1− µ)φin−1 + µφi−1n−1 if 2 ≤ i ≤ P (3b)

where ψ(xn) is some nonlinear transformation in H, P is the
filter length controlling the memory depth, and 0 < µ ≤ 1 is a
free parameter controlling stability. It is interesting to observe
that each “tap” in the Hilbert space is defined by a recursive
equation, so as to work over different temporal combinations
of the (nonlinearly transformed) original input sequence. In
[13], it is proved that, for a given sequence of length N , the
filter weights wi can be expressed as

wi =

N∑
m=1

βimφ
i
m , (4)

lag i− 1

lag i

n

m
κi(m,n)

1.

2.

3.

4.

Fig. 1. Calculation of the recursive kernel matrix. The numbers 1 to 4
correspond to the four terms in Eq. (6), i > 1.

for some coefficients βi1, . . . , β
i
N ∈ R. After substituting (4)

in (3), and making use of the kernel definition κi(m,n) =
〈φim, φin〉H, we obtain

ŷn =

P∑
i=1

N∑
m=1

βim〈φim, φin〉 =

P∑
i=1

N∑
m=1

βimκ
i(m,n) . (5)

Again, it is worth underlining that, in general, κi(m,n) 6=
κi(xim, x

i
n). In particular, due to the recursive model definition,

the kernel itself can be defined recursively, and the closed-form
expression is given by1

κi(m,n) =



κ(xm, xn), i = 1

µ̄2κi(m− 1, n− 1)

+ µ2κi−1(m− 1, n− 1)

+ µ2

m−1∑
j=2

µ̄j−1κi−1(m− j, n− 1)

+ µ2

n−1∑
j=2

µ̄j−1κi−1(m− 1, n− j), i > 1

(6)
where µ̄ = 1−µ, and κ(xm, xn) is the classical (scalar) kernel
function corresponding to 〈ψ(xm), ψ(xn)〉H. The calculation
of the associated kernel matrix is illustrated in Fig. 1. More
generally, we can replace xm and xn with the correspond-
ing time-delayed embeddings xm and xn to obtain a more
expressive model with similar computational complexity.

The recursive kernel γ-filter generalizes several known
models, such as the classical γ-filter, recursive auto-regressive
filters, and several others (see [13, Section III-C]). Differently
from standard KRR and KAF algorithms, which require one
kernel value for each time instant, the model structure in
(5) requires P kernel values, each of which can be seen
as operating at a different time-scale. The filtering approach
proposed in [13] did not adapt all coefficients corresponding
to all kernel values, but employed a simple combination of

1Note that the original formula in [13, Eq. (13)] was missing a summation
from j = 2 to n− 1. The correct formula is given by Eq. (6).



the kernels instead. One such combination is the composite
kernel κ(m,n) = 1

P

∑P
i=1 κ

i(m,n). However, this approach
has a drawback, namely, it assumes that all kernels are
equally significant, and it may lose important information
when combining them. In the next section, we will describe a
more principled approach to combine the different kernels.

III. PROPOSED ADAPTIVE MULTI-KERNEL APPROACH

We now describe an adaptive formulation that automatically
weights the different kernels. The proposed algorithm is rela-
tively inexpensive, and it can be implemented easily in both
batch and online settings. Note, however, that nothing prevents
the use of more advanced multi-kernel or ensemble strategies
to further exploit the multi-kernel structure.

Let us consider the batch case first. Given N training
samples (xn, yn), denote by y the vector of all N outputs,
and by Ki the kernel matrix corresponding to the i-th tap in
(6). A set of P KRR models is trained as

f i(x) = yT
(
Ki + cI

)−1
κi(x) , (7)

where κi(x) =
[
κi(x, x1), . . . , κi(x, xN )

]
and c is a regu-

larization constant. We combine the basic models as h(x) =∑P
i=1 α

if i(x), where the coefficients α = [α1, . . . , αP ]T are
found by minimizing

min
α1,...,αP

1

2

N∑
n=1

(
yn −

P∑
i=1

αif i(xn)

)2
 , (8)

which has an immediate closed form solution

α = F−1y , (9)

where bFcni = f i(xn). This formulation is a basic form of
what is known as “stacking” in the machine learning literature
[20], [22]. When P � N , Eq. (8) does not require regular-
ization. Otherwise, Eq. (8) can be replaced by a more general
leave-one-out strategy as in the original stacking problem [20].
More generally, we can include several constraints and/or
regularization terms to Eq. (8) in order to force a specific
structure on α, such as the requirement to lie in a P -simplex
(similar to an adaptive combination of filters [23]), or impose
an `1-norm regularization to remove unnecessary lags.

A similar stacking strategy can be applied in the online case.
In particular, given the new datum (xn, yn), we first update P
KAFs in parallel, for instance employing P KLMS filters [5]

f in = f in−1 + η
[
yn − f in−1(xn)

]
κi(·, xn) , (10)

where η is the step-size. Then, we update the current estimate
αn−1 of the weighting coefficients following an instantaneous
descent on (8)

αn = αn−1 + ν

(
yn −

P∑
i=1

αif in(xn)

)
fn(xn) , (11)

where ν is a step-size parameter and bfn(·)ci = f in(·).
Note that KLMS algorithms require calculating arrays of

kernel evaluations in each iteration, which is feasible by apply-

Number of data

10
1

10
2

T
im

e 
(s

)

10
-4

10
-2

10
0

10
2

Explicit

Efficient

Fig. 2. Execution times for calculating recursive kernel matrices for different
amounts of data. Explicit calculation, Eq. (6), vs. efficient computation.

ing the recursive formula discussed in the next section. KRLS
algorithms, on the other hand, require calculating entire kernel
matrices, which is less obvious in recursive settings. This, and
other concepts, such as sparsity, require more investigation.

IV. EFFICIENT COMPUTATION OF THE RECURSIVE KERNEL

We now briefly outline an implementation to compute the
recursive kernel using fast operations on column vectors.

The slowest operations in Eq. (6) are the summations of the
third and fourth term. In order to speed up the calculation of
the last term, we define the column vector rin with elements

rin(m) = µ2
n−1∑
j=2

(1− µ)j−1κi(m− 1, n− j). (12)

This vector can be obtained recursively by observing that

rin(m) = (1− µ)
(
rin−1(m) + µ2κi(m− 1, n− j − 1)

)
.

(13)
A similar recursive calculation is not possible for the third term
in Eq. (6), though this term can be obtained efficiently from
the elements of the convolution µmem ∗ kin, where kin(m) =
κi(m,n− 1) and µmem = µ2[1−µ, (1−µ)2, ..., (1−µ)N ]>.

Fig. 2 compares the computation times of the recursive
kernel matrix with P = 5, for an explicit implementation
of Eq. (6) and the discussed efficient implementation, both in
Matlab R2015a on an Intel Core i7 PC with 3.4 GHz processor.

V. EXPERIMENTAL RESULTS

The proposed batch and online algorithms are evaluated
on six benchmark problems, three of which are defined on
artificially generated datasets and the rest on real-world data.

The first artificial dataset is the Mackey-Glass time-series
(with delay 30) taken from [13], denoted as MG30, on which
we perform one-step-ahead prediction. The second task is a
noisy version of a nonlinear prediction problem introduced in
[24], denoted as “Narendra”, which is defined by

yn = 0.3yn−1 + 0.6yn−2 + f(en) , (14)

where the unknown function f(·) has the form

f(e) = 0.6 sin (πe) + 0.3 sin (3πe) + 0.1 sin (5πe) (15)

and en = sin ((1 + a)ω0n), ω0 = 2π/250, a is uniformly
distributed in the interval [0.1, 2.9], and we set y−1 = y0 = 1.



TABLE I
EXPERIMENTAL COMPARISON OF SEVERAL KERNELS IN THE BATCH CASE, INCLUDING A STANDARD RBF KERNEL WITH TIME-DELAYED EMBEDDINGS,

THE TWO COMPOSITE RECURSIVE KERNELS FROM [13], AND THE PROPOSED RECURSIVE MULTIKERNEL (RMK) STRATEGIES.

Standard kernel Composite recursive kernel Proposed recursive MK

Dataset RBF Average Symmetric SimpleMKL Stacking Sparse Stacking

MG30 −18.99 dB −23.26 dB −22.21 dB −23.42 dB −20.05 dB −19.92 dB
Narendra −14.81 dB −15.72 dB −15.09 dB −15.29 dB −17.01 dB −16.78 dB
Wiener −18.20 dB −17.58 dB −17.23 dB −17.56 dB −18.19 dB −18.19 dB
EEG −5.92 dB −3.69 dB −3.60 dB −6.23 dB −6.94 dB −7.69 dB
Respiratory −18.53 dB −14.92 dB −12.58 dB −16.82 dB −18.84 dB −18.64 dB
EUR-USD −25.10 dB −23.24 dB −21.47 dB — −25.83 dB −25.68 dB

We additionally add Gaussian noise with variance 0.1 to the
desired output during training.

The third task on artificial data is the identification of the
nonlinear Wiener model described in [25], where the input is
generated according to

xn = bxn−1 +
√

1− b2ex , (16)

with x0 randomly generated according to a uniform distri-
bution, ex is Gaussian noise with variance 0.1, and we set
b = 0.8. The output is given by first applying a linear filter
to an embedding of the last 8 inputs, and then applying a soft
nonlinearity on the resulting scalar value.

The first problem on real-world data considers the 4-step
ahead prediction of the EEG dataset from [13], extracted from
the MIT-BIH Polysomnographic Database2. We then consider
the prediction of a respiratory motion trace recorded at the
Georgetown University Hospital3, originally described in [26].
Finally, the EUR-USD dataset contains the EUR vs. USD
exchange rates in minute intervals, taken on the days January
2nd and 5th of 2009. The task is 2-step ahead prediction.

A. Batch experiments

In all batch experiments, we use 200 elements for training
and 1000 separate elements for testing, except for EUR-USD,
where we use 1440 samples for training and 1370 for testing,
respectively. Parameters are fine-tuned following the same
grid-search procedure described in [13], optimizing over a
third, independent validation set.

We evaluate several KRR models, trained using (i) a stan-
dard RBF kernel with time-delayed embeddings on input,
(ii) the recursive kernel with the two composition strategies
described in [13] (averaging and symmetrization), and (iii) the
stacking procedure described in Section III, both with `2 and
`1 regularization. Additionally, we consider an extension of
our idea by training a support vector regression model with the
SimpleMKL algorithm [27], which finds a new kernel via an
adaptive combination of the base kernel matrices. Denoting by

2https://www.physionet.org/physiobank/database/slpdb/
3http://signals.rob.uni-luebeck.de/

TABLE II
RESULTS FOR ADAPTIVE FILTERING WITH DIFFERENT KERNELS.

Dataset KLMS KLMS (RMK)

MG30 −12.50 dB −17.99 dB
Narendra −5.65 dB −14.55 dB
Wiener −13.42 dB −13.68 dB
EEG −5.32 dB −7.33 dB
Respiratory −12.56 dB −11.53 dB
EUR-USD −21.35 dB −25.13 dB

E2 the mean-squared error (MSE) over the test set, we evaluate
the models using a normalized MSE on a logarithmic scale,

nMSE = 10 log10

(
E2/σ̂2

y

)
, (17)

where σ̂2
y is the empirical variance of the output computed

over the test set.
The results for the different benchmarks are given in Table

I, where the best result for each dataset is highlighted with a
bold font. We observe that the proposed stacking procedures
are outperforming the standard KRR models in 4 out of
6 benchmarks, while SimpleMKL achieves slightly better
performance in the Mackey-Glass task. To confirm the results,
we employ the corrected Friedman test described in [28],
according to which the performance of the algorithms are
statistically different with a confidence value of α = 0.05.
A set of Nemenyi post-hoc tests shows that the performance
of the base stacking procedure is statistically better than the
standard kernel and the two composite recursive kernels, while
the sparse stacking procedure is statistically better than the
standard kernel and the symmetric recursive kernel, only.

B. Online experiments

In a second set of experiments we evaluate the online
performance of the described KLMS algorithm with recursive
multikernel, and classical KLMS [5], on the six benchmark
problems. Both algorithms use the same kernel parameter and
learning rate. Table II lists the nMSE results obtained after
convergence, indicating clear benefits of the RMK strategy.
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Fig. 3. Learning curves for the channel equalization experiment.

Finally, in Fig. 3 we reproduce the online learning experi-
ment from [5, Sec. 2.11.2]. In this experiment, a binary signal
is fed into a nonlinear communications channel, and the goal
is to estimate the correct input signal given its output, i.e.
to construct a channel equalizer. KLMS with RMK employs
P = 5 lags and µ = 0.9, and the same kernel parameter
and learning rate as standard KLMS. While both nonlinear
algorithms converge to a similar MSE, the RMK algorithm
enjoys a much faster convergence rate.

VI. CONCLUSIONS

In this paper, we proposed a novel approach for exploiting
multiple time-scale information in kernel regression and fil-
tering problems by combining a previously introduced γ-filter
(defined in a proper Hilbert space), with an adaptive strategy
for combining kernel functions. In this way, the algorithm
automatically adapts to the most significant time-scales of the
original input signal. Additionally, the kernel functions are
particularly suitable for online processing because they can
be recursively computed from previous values, and we briefly
discussed on their efficient implementation.

Experimental simulations show that the algorithm has sim-
ilar or better performance on a wide range of tasks, when
compared to several alternative strategies such as time-delayed
embeddings of the input. In future works, we plan to further
extend our idea by leveraging upon the recent literature on
MK filters, and by exploring nonlinear combinations of the
different kernels.
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