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a b s t r a c t 

This paper presents a method to estimate the direction of arrival (DOA) of multiple sources received 

by a uniform linear array (ULA) with a reduced number of radio-frequency (RF) chains. The receiving 

array relies on antenna switching so that at every time instant only the signals received by a randomly 

selected subset of antennas are downconverted to baseband and sampled. Low-rank matrix completion 

(MC) techniques are then used to reconstruct the missing entries of the signal data matrix to keep the 

angular resolution of the original large-scale array. The proposed MC algorithm exploits not only the low- 

rank structure of the signal subspace, but also the shift-invariance property of ULAs, which results in a 

better estimation of the signal subspace. Further, the effect of MC on DOA estimation is discussed under 

the perturbation theory framework. The simulation results suggest that the proposed method provides 

accurate DOA estimates even in the small-sample regime with a significant reduction in the number of 

RF chains required for a given spatial resolution. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

The need of large bandwidths in 5G networks motivates to op- 

rate in mm-Wave bands, which require large-scale antenna arrays 

o compensate for the path loss [1,2] . Indeed, research in wireless 

ommunication systems has shifted towards the use of large an- 

enna arrays as in massive multiple-input multiple-output (MIMO) 

ystems [3] . This poses new challenges not only to antenna cali- 

ration and complexity issues associated with channel state infor- 

ation acquisition and precoding [4] , but also to energy consump- 

ion. It is acknowledged that power consumption requirements in 

G networks increase by about 3 times over 4G, and that the sig- 

al processing in massive MIMO systems can represent up to 40 % 

f the total power consumption for below-6 GHz bands, and even 

arger in mm-Wave bands [5] . 

A classical problem when processing multiple signals re- 

eived by a uniform linear array (ULA) is that of estimating 

heir directions-of-arrival (DOAs). DOA estimation has a long 

nd rich history in array processing [6] , and numerous high- 
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esolution direction finding algorithms have been proposed over 

he last decades. As representative examples it is worth mention- 

ng subspace-based methods such as the multiple signal classifica- 

ion (MUSIC) algorithm [7] and the estimation of signal parame- 

ers via rotational invariance technique (ESPRIT) [8] , which provide 

igh angular resolution. However, using MUSIC or ESPRIT with a 

arge-scale fully-digital receive antenna array can be challenging 

ue to their computational complexity and high energy consump- 

ion requirements. A possible solution is to reduce the number of 

adio frequency (RF) transceiver chains by performing antenna se- 

ection at the receiving array (cf. Fig. 1 ). At every time instant a 

andom switch selects a subset of antennas whose RF signals are 

ownconverted and further processed. Since the number of targets 

r sources is typically much smaller than the number of antennas, 

t is feasible to reconstruct (or at least to approximate) the low- 

ank signal data matrix using matrix completion (MC) algorithms 

s if it had been received by the full array, as long as we sample a

ufficiently large fraction of the sensors [9] . 

Low-rank MC methods for DOA estimation are used in Pal and 

aidyanathan [10] for scenarios in which the number of sources 

xceeds the number of sensors, and in Ito et al. [11] in the pres-

nce of diffuse noise. An iterative reweighted nuclear norm mini- 

ization method is used in Tan and Feng [12] for DOA estimation 

ith nested arrays. When a sparse coprime array is used, array 

nterpolation techniques can be applied to improve the DOA esti- 

ation performace. In [13] the authors consider this scenario and 

pply MC techniques to reconstruct the Toeplitz virtual array co- 

https://doi.org/10.1016/j.sigpro.2021.107993
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Fig. 1. Simplified large-scale multi-switch array architecture where L out of M sen- 

sors are randomly selected and sampled at each time instant. 
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ariance matrix. In [14] , a DOA estimation algorithm based on vir- 

ual array interpolation and MC techniques is developed for coher- 

nt sources in coprime arrays. A Toeplitz reconstruction algorithm 

ased on nuclear norm minimization is proposed in Wu et al. 

15] for uniform and sparse linear arrays. A different approach is 

roposed in Liao et al. [16] , where MC algorithms are used to re-

onstruct the entries of the sample covariance matrix (SCM) along 

ts diagonal, which are deliberately set to zero. In [17] MC is used 

or order estimation in the presence of noise with a diagonal spa- 

ial covariance matrix. Whereas most of existing MC methods in 

rray signal processing target the reconstruction of the signal co- 

ariance matrix, it is the data matrix itself that needs to be recon- 

tructed when only a subset of sensors is sampled. 

In this paper, an energy-efficient approach to DOA estimation 

s proposed based on the recovery of the data matrix by means 

f a MC method. We consider that only a randomly chosen sub- 

et of sensors are sampled at each time instant. By reducing the 

umber of RF chains of the receiver, the overall hardware cost and 

nergy consumption are reduced as well. In our approach, the ma- 

rix completion problem is tailored to enforce the shift-invariance 

roperty of ULAs by including an additional regularization term 

n the MC cost function. Then, the Optimal Subspace Estimation 

OSE) technique proposed by Vaccaro and Ding in Vaccaro and 

ing [18] is used to estimate the signal subspace and, finally, the 

OAs are estimated using ESPRIT as a high-resolution technique. 

he simulations show that the number of RF chains can be largely 

educed without significant performance loss in DOA estimation 

ccuracy. 

The rest of the paper is organized as follows. Section 2 presents 

he signal model assuming an array architecture with random 

ntenna switching, and formulates the problem. The proposed 

hift-Invariant Matrix Completion (SIMC) method is described in 

ection 3 . A direct application of the Davis–Kahan theorem [19] al- 

ows us to analyze in Section 4 the chordal distance between 

he true signal subspace and the signal subspace of the sparse 

nd reconstructed matrices. The simulation results are discussed 

n Section 5 , and concluding remarks are provided in Section 6 . 

Notation . Bold lowercase letters denote vectors and bold upper- 

ase matrices; B (i, j) is the entry in the i th row and jth column of

atrix B . Superscripts (·) T , (·) ∗ and (·) H denote transpose, com- 

lex conjugate and Hermitian, respectively. | z| denotes the mod- 

lus of a complex number z, and || x || 2 is the l 2 -norm of vector

 . The trace, nuclear, spectral, Frobenius and infinity norms of a 

atrix are denoted, respectively, as tr (·) , || · || ∗, || · || 2 , || · || F and

| · || ∞ 

. The k -th largest singular value is denoted as λ (·) . Further-
k 

2 
ore, x ∼ CN n (0 , �) denotes a proper Gaussian random vector in 

 

n with zero mean and covariance �. 

. Observed data matrix and problem statement 

Let us consider K narrowband signals impinging on a large half- 

avelength ULA with M antennas. For a fully digital receiver with 

RF-branches, the received signal at time instant or snapshot n is 

 [ n ] = [ a (θ1 ) . . . a (θK ) ] s [ n ] + e [ n ] = A s [ n ] + e [ n ] , (1)

here e [ n ] is the noise vector, s [ n ] = [ s 1 [ n ] , . . . , s K [ n ]] 
T is

he signal vector with complex gains s k [ n ] and a (θk ) =
1 e − jθk e − jθk (M−1) 

]T 
is the M × 1 complex array response 

o the k th source with electrical angle θk , which is unknown; 

nd A = [ a (θ1 ) . . . a (θK ) ] is the steering matrix. In the case of 

arrowband sources, free space propagation, and a ULA with 

nter-element spacing d, the spatial frequency or electrical angle 

s 

k = 

2 π

λ
d sin (φk ) , 

here λ is the wavelength and φk is the direction-of-arrival (DOA). 

e will refer to θk as the DOA of source k for simplicity. Note 

hat for a half-wavelength ULA θk = π sin (φk ) , and the spatial fre- 

uency varies between −π and π when φk varies between −π/ 2 

nd π/ 2 , with 0 ◦ being the broadside direction. 

The signal and noise vectors are assumed uncorrelated and 

odeled as s [ n ] ∼ CN K (0 , �) with � = diag (σ 2 
1 , . . . , σ

2 
K ) , and

 [ n ] ∼ CN M 

(0 , σ 2 I ) , respectively. Using the signal model in (1) , the

ull M × M covariance matrix is 

 = E 
[
z [ n ] z H [ n ] 

]
= R s + σ 2 I (2) 

here R s = A�A 

H . 

After collecting N snapshots, the full data matrix Z = 

z [1] . . . z [ N] 
]

can be written as 

 = X + E (3) 

here E = 

[
e [1] . . . e [ N] 

]
, and X = AS is the noiseless signal com- 

onent with S = 

[
s [1] . . . s [ N] 

]
. A simplified receiver architecture 

omposed of an M × L RF switching network is considered such 

hat, at each snapshot, it randomly selects L out of the M anten- 

as to be downconverted and sampled at baseband (see Fig. 1 ). 

ulti-switch antenna selection techniques for massive MIMO have 

een studied and experimentally validated in Gao et al. [20] . After 

ownconversion and sampling, the L × N samples are arranged in a 

 d ∈ C 

M×N matrix so that missing entries are replaced with zeros. 

he sampling process can be compactly expressed as 

 d = P �(Z ) , (4) 

here � ⊆ { 1 , . . . , M} × { 1 , . . . , N} is the set of observed (antenna,

ime) indexes, and P � is a projection operator that sets to zero the 

issing entries and leaves the observed ones unchanged. 

The problem addressed in this paper is, given the observed data 

atrix Z d in (4) , to estimate the rank- K noiseless signal matrix, 

enoted by ˆ X , and use it to further estimate the DOAs { θk } K k =1 
. We

ssume that the number of sources K is known and satisfies K �
 < M. 

. Shift-invariant matrix completion (SIMC) 

.1. Matrix completion 

The problem of estimating the low-rank signal matrix X from 

 d ∈ C 

M×N can be solved using MC techniques. According to [9] , 

e can recover X by solving 

min X ∈ C M×N || X || ∗
subject to || P �(X − Z d ) || F ≤ η

(5) 



V. Garg, P. Giménez-Febrer, A. Pagès-Zamora et al. Signal Processing 183 (2021) 107993 

w

{  

a

i

t

i

t

u

p

m

τ

w  

t  

b

a

r

i

D

d  

t

s

p

s

i

a

s

t

W

fi

b

X  

t

|
X

{

w

m

m

3

t

t

i

t

a

w  

b

f  

o  

o

s

X

s

t  

f

w

w  

K

p

{

w

p

i

(

H

s

w

w

g

g

g

a  

(

h

w  

S  

m

t

o

∑

w

t

3

i

t

here || X || ∗ denotes the nuclear norm of X , � ⊆ { 1 , . . . , M} ×
 1 , . . . , N} the set of observed entries of Z d , and η > 0 is a toler-

nce parameter that limits the fitting error. 

The main assumption for a successful recovery in low-rank MC 

s that of incoherence, which means that each singular vector of 

he unknown matrix must be evenly spread across its coordinates 

nstead of having a few entries with large value i.e., singular vec- 

ors are not too sparse. Intuitively, this implies that there is no 

nderlying matrix structure and that all entries have similar im- 

ortance. Formally, the coherence of the column space of a rank- K

atrix Y ∈ C 

M×N is defined as 

(Y ) = 

M 

K 

max 
1 ≤i ≤M 

|| P Y e i || 2 
here P Y = Y (Y 

H Y ) −1 Y 

H is the orthogonal projection matrix onto

he column space of Y , and e i is the i th vector of the Euclidean

asis. 

As shown in Weng and Wang [21] , in array processing τ (X ) 

nd τ (X 

H ) are small enough that the complete matrix X can be 

ecovered via (5) . Indeed, in the noiseless case an exact recovery 

s possible with high probability provided that we observe | �| ≥
KN 

6 
5 log N for a constant D assuming a random uniform sampling 

istribution and N > M [9] . In our problem we have | �| = NL,

herefore L ≥ DKN 

1 
5 log N antenna elements need to be sampled for 

uccessful recovery. In the noisy case, X is recovered with an error 

roportional to η as long as || P �(E) || F ≤ η [9] . 

While standard MC assumes uniform random sampling, this 

cheme does not exactly match the multi-switch array architecture 

n Fig. 1 . In the proposed architecture, exactly L sensors, chosen 

t random, are sampled per snapshot, which is termed as uniform 

patial sampling in Weng and Wang [21] and does not correspond 

o uniform random sampling across Z . Nevertheless, as it proved in 

eng and Wang [21] , the uniform spatial sampling scheme satis- 

es the coherence conditions for matrix recovery and hence it can 

e used in array processing problems. 

When the number of sources K is known, X can be factored as 

 = WH 

H , where W ∈ C 

M×K and H ∈ C 

N×K . Then, using the iden-

ity 

| X || ∗ = min 

X = WH H 

1 

2 

(∥∥W 

∥∥2 

F 
+ 

∥∥H 

∥∥2 

F 

)
, 

 can be estimated by solving the optimization problem [22] 

 ̂

 W , ˆ H } = argmin 

W ∈ C M×K 

H ∈ C N×K 

∥∥P �

(
Z d − WH 

H 
)∥∥2 

F 
+ μ

(∥∥W 

∥∥2 

F 
+ 

∥∥H 

∥∥2 

F 

)
(6) 

here μ is a regularization parameter. In the next subsection, we 

odify (6) to exploit the shift-invariance property of the steering 

atrix A . 

.2. Shift-invariant matrix completion 

In addition to being a low-rank matrix, X has additional struc- 

ure inherited from the array geometry that can be exploited by 

he MC method. Specifically, when ULAs are employed, the shift- 

nvariance property holds. According to this property, each row of 

he steering matrix A is related to the previous one as follows 

 

H 
i Q = a H i −1 i = 2 , . . . , M (7) 

here a H 
i 

is the i th row of A and Q = diag (e jθ1 , . . . , e jθK ) , as it can

e readily verified from (1) . From the shift-invariance property, it 

ollows that the column span of X 

↑ , formed by the first M − 1 rows

f X , and the column span of X 

↓ , formed by the last M − 1 rows

f X , are identical. In other words, the K-dimensional signal sub- 

paces of X 

↑ and X 

↓ are the same. 

It is then clear that the factor W in 

 = WH 

H (8) 
3 
hould satisfy the shift-invariance property as well. Since the fac- 

orization (8) is not unique, we use a relaxed version of (7) to en-

orce the following relation between the rows of W , i.e., 

 

H 
i T = w 

H 
i −1 i = 2 , . . . , M (9) 

here w 

H 
i 

is the i th row of W and T ∈ D where D is the set of

 × K diagonal complex matrices not necessarily unitary. 

To enforce (9) , the shift-invariant matrix completion (SIMC) 

roblem (6) includes an additional regularization term: 

 ̂

 W , ˆ H , ̂  T } = argmin 

W ∈ C M ×K 

H ∈ C N×K 

T ∈D 

∑ 

(i, j) ∈ �

∣∣Z d (i , j ) − w 

H 
i h j 

∣∣2 

+ μ
( M ∑ 

i =1 

‖ w i ‖ 

2 
2 + 

N ∑ 

j=1 

‖ h j ‖ 

2 
2 

)

+ α
M ∑ 

i =2 

‖ w 

H 
i T − w 

H 
i −1 ‖ 

2 
2 (10) 

here h 

H 
j 

is the jth row of H and α is an additional regularization 

arameter. 

The solution 

ˆ X = 

ˆ W ̂

 H 

H can be obtained by iteratively optimiz- 

ng (10) over each w 

H 
i 
, h 

H 
j 

and T until convergence. To optimize 

10) for w 

H 
i 
, we take the derivative with respect to w 

H 
i 
, assuming 

 and T fixed, and equate it to zero, which provides the following 

olution 

 

H 
i = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

(
g 

H 
1 + g 

H 
2 

)(
Y 1 + αI 

)
−1 if i = 1 (

g 

H 
1 + g 

H 
2 + g 

H 
3 

)(
Y 1 + Y 2 + αI 

)
−1 if 1 < i < M (

g 

H 
1 + g 

H 
3 

)(
Y 1 + Y 2 

)
−1 if i = M 

(11) 

here 

 

H 
1 = 

∑ 

j∈J i 
Z d (i, j) h 

H 
j 

 

H 
2 = αw 

H 
i +1 T 

 

H 
3 = αw 

H 
i −1 T 

H 

Y 1 = 

∑ 

j∈J i 
h j h 

H 
j + μI 

Y 2 = αTT 

H 

nd J i is the set of observed indices of the i th row of Z d . Similarly,

10) can be optimized for h 

H 
j 

to find the solution as 

 

H 
j = 

(∑ 

i ∈I j 
Z d (i, j) ∗w 

H 
i 

)(∑ 

i ∈I j 
w i w 

H 
i + μI 

)
−1 (12) 

here I j is the set of observed indices of the jth column of Z d .

ince T = diag (t 1 , . . . , t K ) is a diagonal matrix, (10) can be opti-

ized for each diagonal element t k individually. To this end, the 

hird term in the right hand side of (10) can be rewritten in terms 

f t k as 

M 

 

i =2 

‖ w 

H 
i T − w 

H 
i −1 ‖ 

2 
2 = 

M ∑ 

i =2 

K ∑ 

k =1 

∣∣t k W (i, k ) − W (i − 1 , k ) 
∣∣2 , (13) 

hich can be optimized with respect to t k to get 

 k = 

∑ M 

i =2 W (i − 1 , k ) W 

∗(i, k ) ∑ M 

i =2 

∣∣W (i, k ) 
∣∣2 

(14) 

.3. Post-processing via optimal subspace estimation (OSE) 

As the shift-invariance property is enforced through a regular- 

zation term, the solution of (10) provides a low-rank data ma- 

rix, ˆ X , which has the required structure only in an approximate 
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ashion. This motivates applying the Optimal Subspace Estimation 

OSE) technique as a final post-processing step of our algorithm. 

he OSE algorithm takes ˆ X as input and provides an estimate of 

he underlying noise-free signal subspace with the required shift- 

nvariant structure. Let U ose ∈ C 

M×K be a basis for this subspace, 

nd let P ose = U ose U 

H 
ose be its orthogonal projection matrix. Then, 

he output of the OSE algorithm is 

ˆ 
 ose = P ose ̂  X (15) 

or a full account of the OSE method the reader is referred to 

18,23,24] . 

A summary of the shift-invariant matrix completion method, 

enoted as SIMC, is provided in Algorithm 1 . Once ˆ X ose is 

Algorithm 1: Shift-invariant matrix completion (SIMC). 

Input : Z d , μ, K, itr max 

Output : ˆ R ose 

Initialization : ˆ T = I , itr = 1 

Compute the SVD of Z d = F�G 

H and initialize ˆ W = F K �
1 / 2 
K 

and 

ˆ H = G K �
1 / 2 
K 

, using the K largest singular vectors and 

singular values of Z d (best K-rank approximation of Z d )Set α
as in (17) 

REPEAT 

Compute ˆ W , ˆ H and 

ˆ T using (11), (12) and (14), respectively 

it r = it r + 1 

Until Convergence = true or it r = it r max 

Compute ˆ X = 

ˆ W ̂

 H 

H 

Apply OSE algorithm to estimate ˆ X ose = P ose ̂  X 

btained, any subspace-based method can be used to estimate 

he DOAs. We choose ESPRIT, as it effectively exploits the shift- 

nvariance property of ULAs. 

The SIMC algorithm has a computational cost of O((M + N) K 

3 ) 

er iteration, which is basically the cost of standard MC algorithms 

ased on alternating least squares, since the extra cost due to 

14) is negligible. The OSE post-processing step, has a computa- 

ional complexity of 
(
O(M 

2 N) + 2 O((MK) 3 ) 
)
. Finally, the proposed 

nitialization step performs a compact SVD with cost O(MK 

2 ) . Note 

hat for this problem K � M. 

.4. Selection of regularization parameters 

The values of α and μ in (10) control the trade-off among the 

ulfillment of the shift-invariance property, the fitting to the ob- 

erved data and the nuclear norm of the solution. Since α en- 

orces the shift-invariance property into ˆ X , its value should de- 

end on some measure that quantifies the compliance of the 

hift-invariance property by the original sparse matrix Z d . As we 

now, given a rank- K matrix for which the shift-invariance prop- 

rty holds, the subspaces spanned by the first and the last M − 1 

ows are identical. Thus, the regularization parameter α is chosen 

o be a function of the chordal subspace distance [25] between Z 

↑ 
d 

nd Z 

↓ 
d 
, which are formed by the first and the last M − 1 rows of

he sparse Z d , respectively. 

Specifically, let U 1 ∈ C 

(M−1) ×K and U 2 ∈ C 

(M−1) ×K be the K

argest left singular vectors (that is, those associated to the K

argest singular values) of Z 

↑ 
d 

and Z 

↓ 
d 
, respectively. Then, the 

hordal subspace distance between Z 

↑ 
d 

and Z 

↓ 
d 

is 

 cs = ‖ U 1 U 

H 
1 − U 2 U 

H 
2 ‖ F . (16) 

A large value of d cs implies that the K-dimensional subspaces 

xtracted from Z 

↑ 
d 

and Z 

↓ 
d 

are far apart from each other and, con- 

equently, the shift-invariance property does not hold. This in turn 
4 
mplies that a large α must be used in the reconstruction process. 

ccording to our simulations, a value that provides good perfor- 

ance for a wide range of scenarios is 

= d cs μ, (17) 

here μ = 

M 

20 . 

. Perturbation analysis 

The main factor impacting the performance of the random 

ulti-switch sampling scheme is how well the signal subspace is 

reserved. The SIMC algorithm aims at estimating an improved sig- 

al subspace by leveraging its shift-invariant low-rank structure. 

his section analyzes how DOA estimation is impacted when per- 

ormed after MC. 

Since the DOA estimates are essentially determined by the sin- 

ular vectors of the signal subspace, we want to assess how much 

he principal directions change after each processing step of the 

riginal sparse data matrix. To do so, we will analyze the prob- 

em from a matrix perturbation standpoint. A perturbed matrix is 

 matrix which has its singular values and vectors altered after an 

ddition with a second matrix. Thus, Z d in (4) is a perturbed ver- 

ion of X , with the perturbation being caused by the missing en- 

ries and noise. The Davis–Kahan theorem is a useful tool to mea- 

ure the angular difference between the singular vectors of two 

atrices. We show below Theorem 1 in Yu et al. [26] adapted to 

ur use-case. 

heorem 1. Davis-Kahan sin theorem. Yu et al. [26] Let U X and 

 ˜ X denote the first K left singular vectors of X and the perturbed ˜ X , 

espectively, and �(U X , U ˜ X ) be the K × K diagonal matrix containing 

he principal angles cos −1 (ξi ) 
K 
i =1 , where ξi is the i th singular value of 

 

H 
X 

U ˜ X . Then, 

|| sin �(U X , U ˜ X ) || F 
≤

2 

√ 

K (2 || X || 2 + || X − ˜ X || 2 ) min (|| X − ˜ X || 2 , 1 √ 

K 
|| X − ˜ X || F ) 

λK (X ) 

(18) 

Theorem 1 shows that the subspace distance between the sin- 

ular vectors U X and U ˜ X scales with the norm difference between 

 and 

˜ X . Interestingly, it also shows that the larger the Kth singu- 

ar value is, the smaller the subspace distance will be. Below, we 

everage the Davis–Kahan theorem to compare the signal space of 

 firstly with that of the sparse matrix Z d , and secondly with the 

ecovered estimate ˆ X MC in (6) obtained through MC. 

Clearly, due to the missing data, Z d is a poor approximation to 

 . Nevertheless, the K first singular vectors of the sampled matrix 

re often used as a crude estimate or initialization point for iter- 

tive algorithms [27] . Let P K (Z d ) denote the projection of Z d onto

he subspace spanned by its first K left singular vectors, which is 

btained by setting λk (Z d ) = 0 , ∀ k > K. Moreover, let us assume a

niform random sampling scheme where each entry in Z is sam- 

led with probability q = L/M. From [28] , we have the bound 

| X − 1 

q 
P K (Z d ) || 2 ≤ C|| X || ∞ 

N 

3 
4 

M 

1 
4 
√ 

q 
+ Cσ

√ 

N log M 

q 
(19) 

hich is satisfied with probability greater than 1 − 1 
M 

3 for some 

onstant C. Note the scaling 1 
q of P K (Z d ) in (19) , which compen-

ates for the norm loss due to the missing entries. Thus, since 
1 
q P K (Z d ) and Z d share the first K left singular vectors, then 

| sin �(U X , U Z d ) || F = || sin �(U X , U 1 
q P K (Z d ) 

) || F 
nd we can use (19) in conjunction with Theorem 1 to bound the 

ubspace distance. 
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Fig. 2. Subspace distance (a) and RMSE (b) vs. SNR for M = 100 , N = 80 , K = 5 , θ = 10 ◦ and L = 50 . 

Fig. 3. Subspace distance (a) and RMSE (b) vs. SNR for M = 50 , N = 50 , K = 4 , θ = 10 ◦, � = σ 2 
s diag (1 , 0 . 8 , 0 . 6 , 0 . 5) and L = 25 . 
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SIMC: The proposed method. 
With regard to ˆ X MC , assuming that N ≥ M the recently devel- 

ped bounds in Chen et al. [29] show that 

| X − ˆ X MC || 2 ≤ || X || 2 σ

λK (X ) 

√ 

N 

q 
. (20) 

ith probability exceeding 1 − 1 
N 3 

. 

Assuming constant q = L/M and M, and bounded || X || ∞ 

, we 

ave that the bound for P K (Z d ) in (19) grows as O(N 

3 
4 ) . Therefore,

omparing it to that of ˆ X MC in (20) , we observe that the bound 

or ˆ X MC grows as O( 
√ 

N ) . Therefore, we can conclude that MC will 

mprove the DOA estimates. 
5 
. Simulation results 

In this section we illustrate the performance of the proposed 

IMC algorithm by means of Monte Carlo simulations. For compar- 

son, we include the performance of the following methods: 

• SCM: The sample covariance matrix without MC is estimated as 
ˆ R d = 

1 
N Z d Z 

H 
d 

. 
• OSE: The shift-invariance property is enforced by applying OSE 

to Z d (without MC). 
• MC: The standard MC algorithm solution given by (6) is used to 

reconstruct X from Z d . 
• MC-OSE: OSE is applied as a post-processing step to the previ- 

ous method. 
•
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Fig. 4. Subspace distance (a) and RMSE (b) vs. N for M = 200 , K = 4 , SNR = −5 dB, θ = 5 ◦, and L = 100 . 

Fig. 5. Subspace distance (a) and RMSE (b) vs. SNR for ULAs with different number of antennas when K = 3 , θ = 10 ◦, N = 100 and L = 25 . 
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ESPRIT is used to compute the DOAs for all competing methods. 

s figures of merit we use: (i) the chordal subspace distance be- 

ween the true signal subspace and the estimated signal subspace, 

nd (ii) the Root Mean Squared Error (RMSE) for the DOA estimates 

n radians. The chordal distance between the true signal subspace 

r column span of X , and the estimated signal subspace or col- 

mn span of ˆ X is shown to assess how different these subspaces 

re. Note that this distance is different from the chordal distance 

n (16) used to select the regularization parameter α. 

For all simulations we assume that K uncorrelated narrowband 

ignals with a separation of θ (in electrical angle) are imping- 

ng on a ULA with M half-wavelength separated antennas. Un- 

ess stated otherwise, sources have equal power. For both SIMC 

nd MC, we use μ = M/ 20 and itr max = 200 . SNR = 10 log tr (R s ) 

Mσ 2 ,

here R s is the signal covariance matrix and σ 2 is the noise 

ariance. L denotes the number of randomly sampled sensors 

er snapshot. The Cramer-Rao lower bound (CRLB) [30] when 
6 
he full data matrix Z is available is included as a reference 

enchmark. 

In the first example, we consider a sample-poor scenario with 

 = 100 antennas, N = 80 snapshots, K = 5 sources and θ = 10 ◦.

t each time instant the multi-switch network randomly selects 

 = 50 out of the M = 100 antennas. Fig. 2 shows the subspace dis-

ance (left plot) and the RMSE (right plot) vs. the SNR. The perfor- 

ance of SCM and OSE without MC saturates at high SNR due to 

he relatively high fraction of missing entries. The benefits of using 

C techniques in combination with enforcing the shift-invariance 

roperty are evident, specially at low or moderate SNRs. In fact, 

ven with 50 % of missing data and SNR ≈ 0 , we observe that SIMC

s close to the CRLB (which gives us the performance limit when 

ll data are available). At high SNRs MC-OSE and SIMC have identi- 

al performances, which suggest that the post-processing OSE step 

s sufficient to enforce in the solution the required invariance to 

isplacements. 
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Fig. 6. Subspace distance (a) and RMSE (b) vs. SNR when M = 50 , N = 80 , K = 3 and θ = 10 ◦ for L = (50 , 25 , 12) . 

Fig. 7. Subspace distance (a) and RMSE (b) vs. Percentage of missing data when M = 50 , N = 50 , K = 5 , θ = 10 ◦, SNR = 5 dB and sources have equal power 
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The second example considers a scenario with M = 50 an- 

ennas, K = 4 sources with θ = 10 ◦, N = 50 snapshots and L =
5 (i.e., 50% of missing entries in Z d ). The sources in this ex- 

mple have unequal power with signal covariance matrix � = 

iag (1 , 0 . 8 , 0 . 6 , 0 . 5) . A similar behavior to the previous example is

bserved in Fig. 3 , with SIMC providing satisfactory performance 

ver a large range of SNR values. 

The third example compares the performance of the meth- 

ds with respect to N for M = 200 , K = 4 , SNR = −5 dB, θ = 5 ◦,
nd L = 100 . We can observe in Fig. 4 that if N is large enough,

IMC, MC-OSE and OSE provide very similar results. However, SIMC 

utperforms the rest of methods when N is small. This example 

emonstrates a clear advantage of the proposed method in the 

mall-sample regime where N ≤ M. 

The next example compares the performances of arrays of dif- 

erent number of antennas when the number of sampled sensors 
7 
 is fixed. Therefore, the spatial sampling ratio L/M decreases as 

increases. We consider ULAs with M = 25 , M = 50 and M = 100

ntennas using a fixed value of L = 25 so that at every snapshot 

he percentages of sampled sensors are 100% , 50% and 25% , re- 

pectively. For all three cases, the number of snapshots is N = 100 

nd K = 3 sources with θ = 10 ◦ of separation impinge on each 

rray. Since L and N are fixed, the energy consumption will be 

oughly the same for all array architectures. However, the effec- 

ive spatial resolution is improved as M increases, as it is observed 

n Fig. 5 . In this way, the proposed SIMC algorithm allows us to 

ncrease the spatial resolution of an array with a fixed number of 

F chains. In other words, we can trade-off spatial resolution by 

nergy consumption. 

The following experiments analyze the impact of the percentage 

f missing data on the methods under comparison. We consider 

 scenario with M = 50 antennas, N = 80 , snapshots and K = 3
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Fig. 8. Subspace distance (a) and RMSE (b) vs. ρ for M = 100 , N = 80 , K = 2 , SNR = 0 dB, θ = 5 ◦, L = 25 . 
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ources with a separation of θ = 10 ◦. Fig. 6 shows the subspace 

istance and the RMSE curves vs. the SNR when the number of 

ampled antennas is L = 50 , L = 25 , or L = 12 . Obviously, the best

erformance is achieved when all sensors are sampled. Neverthe- 

ess, performance degrades smoothly with L and hence both the 

ardware costs and energy consumption can be substantially re- 

uced with only a minor performance degradation. As we increase 

, we observe more entries of the data matrix and the MSE of the 

IMC method approaches the CRLB. 

Fig. 7 shows results for the same scenario when the number 

f sampled sensors is L = � M(100 −P s ) 
100 � , where P s is the percentage

f missing data and �·� is the floor function. It can be observed 

n Fig. 7 that the performance of SIMC is robust against missing 

ata, providing satisfactory performance for P s < 70% . The results 

f Fig. 7 allow us to conclude that to obtain accurate signal sub- 

pace and DOA estimates it is important to exploit in the recon- 

truction of the data matrix both its low-rank structure and its 

hift-invariant structure. When exploited independently, the shift- 

nvariant structure (OSE) provides more benefits than the low-rank 

tructure (MC) for P s < 50% . 

In the last experiment, we evaluate the impact of having cor- 

elated sources. We consider a scenario with K = 2 correlated 

ources when M = 100 , N = 80 , SNR = 0 dB, θ = 5 ◦, and L = 25 .

he correlation coefficient between the two sources, ρ, varies from 

 (uncorrelated) to 1 (fully correlated). As Fig. 8 shows, SIMC out- 

erforms the rest of methods and provides accurate DOA estimates 

ven for highly correlated sources ρ < 0 . 8 . Nevertheless, the per- 

ormance of SIMC under correlated sources needs additional theo- 

etical analysis. 

. Conclusion 

The high hardware complexity and energy consumption of mas- 

ive MIMO systems is a challenge for its fully-digital implementa- 

ion. A solution is to reduce the number of RF chains by perform- 

ng random antenna selection techniques, which result in a data 

atrix with multiple missing entries. In this paper we have pro- 

osed a matrix completion technique tailored to this array process- 

ng architecture. The reconstruction algorithm exploits both the 

ow-rank structure of the partially observed matrix and the shift- 

nvariance property of uniform linear arrays. After reconstruction, 
8 
tandard high-resolution subspace-based techniques can be used 

or DOA estimation. As long as the number of RF chains is suf- 

ciently larger than the number of sources, the proposed shift- 

nvariant matrix completion (SIMC) method provides a substantial 

eduction of hardware costs and energy consumption without sig- 

ificant performance loss in resolution or DOA estimation accuracy. 
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