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Chaotic signals and systems offer the potential of increased security in
digital communications. However, most of the approaches proposed ei-
ther lack robustness at low SNRs (due to the difficulty of performing
chaotic synchronization) or provide a much worse performance than clas-
sical techniques based on sinusoidal carrier functions. In this chapter we
show how asymptotically optimal estimators, developed for the estima-
tion of chaotic signals generated by discrete chaotic maps and corrupted
by additive white Gaussian noise (AWGN), can be applied to improve the
performance of digital chaotic communication schemes. First of all, after
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a brief review of discrete-time chaotic maps and sequences, we derive
the optimal maximum likelihood (ML) estimator for this problem. Un-
fortunately, its computational cost grows exponentially with the length
of the chaotic sequence, thus rendering it unfeasible for moderate/large
sequences. Therefore, asymptotically optimal estimators, based on well-
known signal processing techniques, such as censoring approaches or the
Viterbi algorithm (VA), with a reduced computational cost, are devel-
oped. Finally, we show how these methods can be applied to improve the
performance of digital chaotic communications schemes based on the it-
eration of discrete-time chaotic maps, focusing on a recently proposed
symbolic coding technique based on backward iteration.

9.1 Introduction: Chaotic Maps and Sequences

Chaotic signals are signals generated by purely deterministic systems
that possess features typical of random signals. The dual determinis-
tic/random nature of this type of signals renders them very interesting
for a wide range of engineering applications: communications, time series
modeling, criptography, watermarking, pseudorandom number genera-
tion, etc.

In this chapter we focus on chaotic sequences generated by the
discrete-time iteration of unidimensional (1D) piecewise linear (PWL)
chaotic maps. Although this choice may look too restritive, one-
dimensional discrete-time chaotic maps, described by a non-linear dif-
ference equation, seem to possess all the interesting features of higher-
dimensional continuous-time systems, defined through non-linear dif-
ferential equations [3, 5, 37]. Furthermore, it has been shown that 1D
PWL maps exhibit the same types of dynamic behaviours as any other
one-dimensional chaotic maps, and a particular type of 1D PWL maps
(Markov PWL maps) can approximate a wide range of non-PWL maps
with an arbitrary accuracy [10, 9]. Hence, many works focus on the one-
dimensional case, which is much easier to analyze, and has been exploited
also in many practical applications. In the remaining of this section we
briefly review the type of chaotic signals and systems that we consider in
this chapter: discrete-time chaotic sequences obtained iterating piecewise
linear maps.
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9.1.1 One-Dimensional Piecewise Linear Chaotic Maps

Here we define a unidimensional chaotic map as a non-linear application
from an interval I onto the same interval,1 f : I → I, that fulfills the
following three conditions [6]:

1. f has sensitive dependence on initial conditions, i.e., there ex-
ists a δ > 0 such that for every x ∈ I and neighbourhood of
x, Nδ(x) = {x′ : d(x, x′) ≤ δ} with d(·, ·) denoting any appropriate
distance function, there is some x′ ∈ Nδ(x) and n > 0 fulfilling
that fn(x′) /∈ Nδ(f

n(x)).

2. f is topologically transitive, i.e., for any pair of open sets U, V ∈ I
there exists an n > 0 such that fn(U) ∩ V 6= ∅.

3. The periodic points of f are dense in I, i.e., given the set of periodic
points of f inside I, P = {x : fn(x) = x for n = 1, 2, 3, . . .}, then
P = I with P denoting the closure of P . 2

A piecewise linear (PWL) map is a particular class of chaotic map which
is defined by a different affine transformation inside each of the M in-
tervals into which I is subdivided. Mathematically,

y = f(x) =

M∑

i=1

(aix+ bi)χEi
(x), (9.1)

where I = [e0, eM ] is the domain of the map (usually I = [−1, 1] in our
case), Ei = [ei−1, ei) for 1 ≤ i ≤ M − 1 and EM = [eM−1, eM ] (with
e0 < e1 < . . . < eM ) are the M linear intervals of the map, ai and bi
are the slope and offset of the line that characterizes the map inside the
i-th interval respectively, and

χR(x) =

{
1, x ∈ R;

0, x /∈ R.
(9.2)

is the characteristic function of region R, that indicates whether a point
x belongs to it or not.

PWL maps are probably the class of 1D chaotic maps most widely
used, due to their simplicity and mathematical tractability. As a first ex-
ample of a PWL map, we consider the skew tent-map (SK-TM), which

1A function f : I → I is onto if for every y ∈ I there is an x ∈ I such that
f(x) = y [6].

2Let P be an open subset of I. Its closure, P , is defined as the set containing all
the points in P altogether with all the limit points of P [6].
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is one of the most popular 1D chaotic maps, having been used for cryp-
tography [21], watermarking [22], digital communications [7], etc. The
SK-TM has a single parameter, 0 < c < 1, a phase space I = [0, 1] and
two intervals: E1 = [0, c) with a1 = 1/c and b1 = 0, and E2 = [c, 1]
with a2 = −1/(1− c) and b2 = 1/(1− c). Mathematically, the equation
defining the SK-TM can be expressed as

f(x) =

{
x
c , 0 ≤ x < c;
1−x
1−c , c ≤ x ≤ 1.

(9.3)

The shape of the SK-TM is shown in Figure 9.1(a). As a second example,
we consider the following unimodal map introduced in [29]:

f(x) =

{
1−c
c x+ c, 0 ≤ x < c;

1−x
1−c , c ≤ x ≤ 1.

(9.4)

This map still has a single parameter, 0 < c < 1, a phase space I = [0, 1]
and two intervals: E1 = [0, c) with a1 = (1 − c)/c and b1 = c, and
E2 = [c, 1] with a2 = −1/(1 − c) and b2 = 1/(1 − c). The shape of
this unimodal map is shown in Figure 9.1(b). We note that the second
interval is identical to that of the SK-TM, but the line in the first one
has a non-zero offset and a smaller slope than the corresponding line in
the SK-TM.

0 c 1
0

1

(a) SK-TM

0 c 1
0

c

1

(b) Unimodal PWL map

FIGURE 9.1
Examples of PWL maps: skew tent-map (SK-TM) and unimodal PWL
map introduced in [29].



Asymptotically Optimal Estimators for Chaotic Digital Communications 249

9.1.2 Chaotic Sequences: Forward and Backward Itera-
tion

Chaotic sequences are obtained by the repeated application of the non-
linear function f(x) on the output of the previous iteration. Hence, the
n-th sample of the chaotic sequence is given by

x[n] = f(x[n− 1]; θ) = f2(x[n− 2]; θ) = . . . = fn(x[0]; θ), (9.5)

where θ is the vector of parameters that characterizes the chaotic map,
x[0] ∈ I is the initial condition that defines the evolution of the whole
sequence, and

fk(x) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k times

(x) = f(f(· · · f(f(︸ ︷︷ ︸
k times

x[n])) · · · )) (9.6)

denotes the k-th functional composition of f(x), with f0(x) = x. Chaotic
sequences generated using (9.5) and (9.6) are said to be obtained through
forward iteration starting from an initial condition x[0] ∈ I. Now, let us
assume that we want to generate N samples from a chaotic map starting
from an initial condition x[0] ∈ I. Making use of (9.5), the forward orbit
or trajectory of length N of x[0] is the ordered set of N + 1 points
generated including x[0], i.e.,3

O+
f,N (x[0]) = {x[0], f(x[0]), f2(x[0]), . . . , fN (x[0])}. (9.7)

Examples of chaotic orbits generated by the two maps displayed in Fig-
ure 9.1 are shown in Figure 9.2. The irregular aspect of both signals can
be clearly appreciated, although each one shows different characteristic
patterns that repeat themselves in an approximate way.

Alternatively, a length N + 1 chaotic sequence may be generated
through backward iteration starting from a final condition x[N ]. How-
ever, since 1D chaotic maps must be non-invertible,4 in order to define
the backward iteration of the map we must introduce first the concept
of symbolic sequences. Let us consider a 1D chaotic map f(x) and a par-
tition of its domain or phase space, P = {J1, J2, · · · , JP }, such that
∪P
i=1Ji = I and Ji ∪ Jj = ∅ for 1 ≤ i, j ≤ P and i 6= j. Now, given an

initial condition x[0] ∈ I, we may define the length N symbolic sequence
associated to x[0] as

S+
f,N (x[0]) = {s[0], s[1], . . . , s[N − 1]} (9.8)

= {σ(x[0]), σ(x[1]), . . . , σ(x[N − 1])}, (9.9)

3For the sake of simplicity, in the sequel we often remove the dependence on θ of
f(x).

4Invertible one-dimensional maps lead only to simple dynamical behaviours and
can never produce chaotic dynamics [6].
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FIGURE 9.2
Examples of chaotic orbits generated by two PWL maps: skew tent-map
(SK-TM) and unimodal PWL map introduced in [29].

where s[n] = σ(x[n]) denotes the n-th symbol for 0 ≤ n ≤ N − 1, and
σ : I → Σ is the function that relates the phase space of the chaotic
map, I = [e0, eM ], to its symbolic space, Σ = {1, 2, . . . , P}, which is
known as a symbolic dynamics, and can be expressed as

s[n] = σ(x[n]) =
P∑

i=1

i · χJi
(x[n]). (9.10)

Obviously, infinitely many different symbolic dynamics can be de-
fined for a given 1D chaotic map. The most frequently used partition is
the so-called natural partition, PN , which is composed of the minimum
number of regions where f(x) is monotonic and continuous, and thus
also invertible. Using the natural partition, any 1D chaotic map can be
expressed as

y = f(x) =
P∑

i=1

fi(x)χJi
(x), (9.11)

where fi(x) is the monotonic and continuous function that describes the
map inside the i-th interval of the natural partition. For a given chaotic
map, the natural partition is unique, can be easily obtained, and allows
us to define a piecewise inverse function as

x = f−1(y) =

P∑

i=1

f−1
i (y)χJi

(x), (9.12)
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with f−1
i (y) denoting the inverse of fi(x) inside the i-th interval of

PN . For the particular class of chaotic maps considered here, PWL
maps defined by (9.1), the natural partition is clearly given by PN =
{E1, E2, . . . , EM}, and the one-step backward iteration can be ex-
pressed as

x = f−1(y) =

M∑

i=1

y − bi
ai

χEi
(x), (9.13)

which corresponds to another PWL map with slopes 1/ai and offsets
−bi/ai. Note that this backward iteration requires prior knowledge of the
region of the natural partition to which the generated sample belongs.
Denoting s = σ(x), (9.13) can be expressed more compactly as

x = f−1
s (y) =

y − bs
as

. (9.14)

Unfortunately, the natural partition is too restrictive for the digital
communications application considered in this chapter. Consequently, we
define a generalization of the natural partition, that we call the invertible
partition of the map, PI , which is composed of the minimum number of
connected intervals inside which f(x) is invertible. Although for many
chaotic maps (e.g. continuous maps) the invertible partition is identical
to the natural partition, it allows us to consider partitions with regions
inside which the map is not continuos or even not monotonic as long as
the map is still invertible. We remark that, even though the invertible
partition cannot be expressed as compactly as the natural partition for
a generic PWL map, it can also be easily found, since each interval
will be formed by the union of one or more consecutive intervals of
the PWL map. For example, for the second map used in Section 9.3,
given by (9.45), the natural partition is composed of M = 5 intervals,
PN = {E1, E2, E3, E4, E5}, whereas the invertible partion contains
only three intervals, PI = {E1 ∪ E2, E3, E4 ∪ E5}.

Using the symbolic sequence induced either by the natural or the
invertible partition, the n-th sample of a chaotic sequence is alternatively
given by

x[n] = f−1
s[n](x[n+1]; θ) = f−2

s[n],s[n+1](x[n+2]; θ) = . . . = f
−(N−n)
s[n],...,s[N−1](x[N ]; θ),

(9.15)
where the subindex of f indicates the portion of the symbolic sequence
required for the backward iteration and f−k(x) denotes the k-th func-
tional composition of f−1(x). Similarly, making use of (9.15) we can
define the backward orbit or trajectory of length N of x[N ] as the or-
dered set of N + 1 points generated including x[N ], i.e.,

O−
f,N (x[N ]) = {x[N ], f−1

s[N−1](x[N ]), . . . , f−N
s[0],...,s[N−1](x[N ])}, (9.16)
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which corresponds to the forward trajectory given by (9.7) in reverse
order.

Finally, we remark again that the symbolic sequence must also be
specified when determining the backward orbit of length N of x[N ].
Therefore, a PWL map with M intervals may have up to MN backward
orbits for a given value of x[N ]. In fact, the number of backward orbits
can actually be much less than MN , since some symbolic sequences may
be invalid. For instance, for the chaotic map shown in Figure 9.1(b),
since f(E1) = E2 (i.e., the first interval is mapped onto the second)
we must necessarily have s[n + 1] = 2 whenever s[n] = 1, implying
that all the symbolic sequences containing {. . . , 1, 1, . . .} will be invalid.
Denoting the set of valid symbolic sequences of length N for a given map
as SN , the number of possible backward orbits for a given value of x[N ]
is Γs(N) = |SN |, with |A| indicating the cardinality of set A.

9.2 Optimal and Suboptimal Estimation of Chaotic

Sequences

9.2.1 Problem Formulation

The problem considered in this section is estimating a sequence of sam-
ples generated iterating a 1D PWL chaotic map, given observations cor-
rupted by additive white Gaussian noise (AWGN). Mathematically, let
us consider an N +1 column vector containing the N +1 samples of the
forward orbit of length N of x[0], or equivalently the N + 1 samples of
the backward orbit of x[N ] in reverse order,5

x = [x[0], x[1], . . . , x[N − 1], x[N ]]⊤

= [x[0], f(x[0]), f2(x[0]), . . . , fN−1(x[0]), fN(x[0])]⊤

= [f−N
s

(x[N ]), f−(N−1)
s

(x[N ]), . . . , f−1
s[N−1](x[N ]), x[N ]]⊤, (9.17)

where s = [s[0], s[1], . . . , s[N − 1]]⊤ is the length N column vector
with the symbolic sequence associated to the orbit of length N of x[N ],6

and sn:N = [s[n− 1], s[n], . . . , s[N − 1]]⊤ for 1 ≤ n ≤ N is the column

5As shown in [14], any point in the chaotic sequence can be used as a reference,
mixing forward and backward iteration to obtain the remaining samples. However, in
order to simplify the discussion, here we only consider the first and the last samples
of the chaotic sequence, x[0] and x[N ] respectively.

6Note that s[N ] is not included in s since it is not required for the backward
iteration.
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vector containing the last N−n+1 samples from the symbolic sequence.
The observed sequence is y = [y[0], y[1], . . . , y[N − 1], y[N ]]⊤ with
y[n] = x[n] + w[n] and w[n] ∼ N (0, σ2) for 0 ≤ n ≤ N .7 The goal is
obtaining an accurate (i.e., unbiased) and efficient (i.e., with a variance
decreasing as a function of N as fast as possible) estimator of the original
chaotic sequence.

In the following section we develop the optimal maximum likelihood
estimator (MLE) for this problem.8 Unfortunately, the computational
cost of the MLE increases exponentially with the length of the sequence.
Consequently, in Section 9.2.3 we describe two simple and asymptotically
efficient estimators that attain the Cramer-Rao lower bound (CRLB) as
the signal to noise ratio (SNR) tends to infinity. The CRLB, described
in the Appendix, provides us with a lower bound on the variance on
any unbiased estimator, allowing us to quantify precisely the concept of
an efficient estimator as the one attaining the CRLB [11]. Hence, the
two estimators described in Section 9.2.3 can be considered asymptot-
ically optimal in the sense of making the most efficient use of all the
information available, at least for large values of SNR.

9.2.2 Maximum Likelihood Estimator

The maximum likelihood estimator (MLE) of chaotic sequences cor-
rupted by AWGN was formulated originally in [23], where two subop-
timal approaches for finding the MLE, based on dynamic programming
and the Kalman filter respectively, were proposed. Then, Papadopoulos
and Wornell were the first ones to provide an algorithm that achieved
the exact MLE for a particular chaotic map, the tent-map (TM) with
β = 2 [30, 31]. Unfortunately, although this method can be easily applied
to the TM with other values of β or to other chaotic maps, in general
the estimator obtained will not be the MLE. The exact MLE for generic
PWL maps was developed independently by Schimming et al. [36, 35]
and Pantaleón et al. [26]. Finally, an algorithm to attain the MLE for
non-PWL maps based on Markov chain Monte Carlo (MCMC) methods
was proposed in [16]. In this section we develop the exact MLE following
the description of [26, 14].

7We use the notation w[n] ∼ N (µ, σ2) to indicate that w[n] is a sample from a
Gaussian distribution with mean µ and variance σ2.

8Bayesian estimators have also been developed for this problem [25, 29, 14], but
they will not be discussed here, since they do not provide any advantage for the
chaotic communications approach described in this chapter.
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9.2.2.1 Standard Problem Formulation

Formally, the MLE is obtained solving the following maximization prob-
lem [11, 38]:

x̂ML = argmax
x

p(y;x),

s.t. x[0] ∈ [e0, eM ], x[n] = f(x[n− 1]) for 1 ≤ n ≤ N, (9.18)

where the constraints are imposed by the nature of the chaotic sequence,
and p(y;x) is the likelihood, i.e., the probability density function (PDF)
of the observations conditioned on the parameters to be estimated, in this
case the underlying noiseless chaotic sequence. Since the noise samples
are Gaussian and independent, the likelihood is a multivariate Gaussian
PDF,

p(y;x) = (2πσ2)−(N+1)/2 exp

(
− 1

2σ2
(y − x)⊤(y − x)

)
. (9.19)

Moreover, since all the samples of the chaotic sequence can be obtained
from x[0] through forward iteration, it is straightforward to show that
the MLE of the whole sequence can be reformulated in terms of the MLE
of the initial condition,

x̂ML[0] = argmin
x[0]

J(x[0]),

s.t. x[0] ∈ [e0, eM ], (9.20)

with

J(x[0]) =

N∑

n=0

(y[n]− fn(x[0]))
2

(9.21)

indicating the quadratic error between the observations and the chaotic
sequence. Hence, in this case the MLE of x[0] and its least squares (LS)
estimator are equivalent, a result which is well-known for parameters
observed in AWGN. The remaining samples of the chaotic sequence can
be obtained by forward iteration from x̂ML[0], thanks to the invariance
property of the MLE [11], resulting in an ML estimate of the whole
sequence

x̂ML = [x̂ML[0], f(x̂ML[0]), . . . , f
N−1(x̂ML[0]), f

N (x̂ML[0])]
⊤. (9.22)

Unfortunately, although the formulation of this problem looks de-
ceptively simple, solving it efficiently is extremely complicated, due to
the highly non-linear dependence of the samples of the chaotic sequence
on the initial condition. In fact, the cost function given by (9.21) is ex-
tremely rugged, with fractal characteristics (see [14] for a more detailed
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discussion of this issue) and multiple minima and maxima. As an ex-
ample, Figure 9.3 shows the cost function for the SK-TM with N = 10
and N = 100 and two randomly selected values of x[0]. Obviously, given
the shape of the cost function, any iterative or grid search approach is
doomed to get stuck in a local minimum, especially for large values of
N . Furthermore, although the exact MLE of x[0] can be obtained as
shown in [25, 26], it requires searching for a set of symbolic regions,
Rsi

, associated to the portion of the phase space where the initial con-
dition must lie in order to have s = si. Finding these regions becomes
more involved as N grows, since their size decreases exponentially and
the forward iteration of chaotic maps is numerically unstable. Hence, in
the following section we introduce an alternative formulation based on
backward iteration that avoids all these problems: the cost function is
quadratic in x[N ], backward iteration is numerically stable and, when-
ever Γs(N) = MN as it happens for most of the maps used in practice,
the symbolic regions agree with the phase space of the chaotic map.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
x[0] = 0.12426

(a) SK-TM with N = 10

0 0.2 0.4 0.6 0.8 1
0

10

20

30

x[0] = 0.66142

(b) SK-TM with N = 100

FIGURE 9.3
Examples of J(x[0]) for the SK-TM with N = 10 and N = 100.

9.2.2.2 Alternative Problem Formulation

For chaotic sequences, since all the samples are related to x[N ] through
backward iteration with the appropriate symbolic sequence, the MLE
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can be reformulated in a more practical way:

[x̂ML[N ], ŝML]
⊤ = argmin

x[N ],s

J(x[N ], s),

s.t. x[N ] ∈ [e0, eM ], s ∈ SN , (9.23)

where SN is again the set of valid symbolic sequences of length N , and

J(x[N ], s) =

N∑

n=0

(
y[N − n]− f−n

s
(x[N ])

)2
. (9.24)

Hence, the MLE of the chaotic sequence can actually be obtained by
estimating the last sample of the sequence, x[N ], and the N samples of
the symbolic sequence: s[0], s[1], . . . , s[N − 2], s[N − 1].

Note that, although this formulation may look more complicated
than the standard one, for PWL maps it leads to much simpler expres-
sions for the MLE. Indeed, for PWL maps it can be shown that the
n-th iteration backwards starting from x[N ] for 1 ≤ n ≤ N is given by
[15, 14]9

x[N − n] = f−n
s

(x[N ]) = B1,n
sN−n+1:N

x[N ]−
n∑

m=1

Bm,n
sN−n+1:N−m+1

bs[N−m],

(9.25)
with B1,0

s
= 1 and

Bm,n
sN−n+1:N

=

n∏

ℓ=m

a−1
s[N−ℓ], (9.26)

for 1 ≤ n ≤ N and 1 ≤ m ≤ n. Inserting (9.26) into (9.24), the cost
function for the MLE of a PWL map finally becomes

J(x[N ], s) =

N∑

n=0

(
γs[N − n]−B1,n

s
x[N ]

)2
, (9.27)

where, instead of the precise samples of the symbolic sequence involved,
we have used s in all cases to simplify the notation, and

γs[N − n] = y[N − n] +
n∑

m=1

Bm,n
s

bs[N−m], for 0 ≤ n ≤ N. (9.28)

9Closed-form equations for the forward iteration of the tent-map (TM) were de-
veloped originally in [25], and extended to a generic PWL map in [26]. Regarding,
backward iteration, analytical expressions were developed first for the polar SK-TM
in [27] and extended to generic PWL maps in [29]. All these formulas for the forward
and backward iteration of a generic PWL map starting from an arbitrary reference
sample, x[n], have been compiled in [14]. Furthermore, efficient algorithms for their
implementation are also provided in [14].
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In the next section we show how, using this alternative formulation and
the analytical expressions for the backward iteration of PWL maps, we
can get rid of the fractal cost functions that appear in the forward iter-
ation and obtain a consistent estimator of x[N ] that can be expressed in
a closed-form.

9.2.2.3 Exact Maximum Likelihood Estimator

Looking back at the cost function of the maximum likelihood estimator,
we notice that, for a given symbolic sequence, s = si ∈ S, (9.24) is
quadratic in x[N ]. Hence, taking the derivative of (9.24) w.r.t. x[N ] and
equating it to zero we can easily obtain the estimate of x[N ] associated
to s = si:

x̂i[N ] =

∑N
n=0B

1,n
si
γsi

[N − n]
∑N

n=0

(
B1,n

si

)2 . (9.29)

Note that (9.29) is not the ML estimate of x[N ] for the i-th symbolic
sequence yet, since there is no guarantee that x̂i[N ] belongs to I =
[e0, eM ]. However, assuming that all the symbolic sequences are valid
(i.e., Γs(N) = |SN | =MN ), the ML estimator of x[N ] corresponding to
the i-th symbolic sequence is obtained simply by thresholding (9.29):10

x̂iML[N ] =





e0, x̂i[N ] < e0;

x̂i[N ], e0 ≤ x̂i[N ] ≤ eM ;

eM , x̂i[N ] > eM .

(9.30)

Finally, thanks to the invariance property of the ML estimator [11], the
ML estimate of the rest of the sequence for the i-th symbolic sequence
can be obtained simply by iterating backwards from x̂iML[N ] using the
i-th symbolic sequence, si, i.e.,

x̂iML[N − n] = f−n
si

(x̂iML[N ]), for 1 ≤ n ≤ N. (9.31)

Unfortunately, the estimation of the optimal symbolic sequence is an
NP hard problem in the general case, implying that algorithms for ob-
taining the exact MLE in polynomial time cannot be developed except
for some particular cases, such as the tent-map (TM) with β = 2 [31].
Therefore, the only solution that guarantees that the MLE of the sym-
bolic sequence is achieved for a generic PWL map is an exhaustive search
or brute force approach: testing all the valid symbolic sequences and se-
lecting the one that minimizes the cost function. Mathematically, the ML

10When some symbolic sequences are invalid the same approach can be followed,
but the limits for the thresholding operation may depend on the symbolic sequence
[14].
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estimators of x[N ] and the symbolic sequence are x̂ML[N ] = x̂rML[N ] and
ŝML = sr respectively, with x̂rML[N ] being the ML estimator associated
to the r-th valid symbolic sequence, sr, as given by (9.30), and

r = argmin
i

J(x̂iML[N ], si) (9.32)

is the index to the MLE of the symbolic sequence. The MLE of the re-
maining samples of the chaotic sequence can be obtained again through
backwards iteration, resulting in the following MLE of the whole se-
quence:

x̂ML = [f−N
ŝML

(x̂ML[N ]), f
−(N−1)
ŝML

(x̂ML[N ]), . . . , f−1
ŝML

(x̂ML[N ]), x̂ML[N ]]⊤.
(9.33)

9.2.3 Asymptotically Optimal Estimators

Due to the computational complexity of the MLE, many suboptimal al-
gorithms have been proposed for estimating chaotic signals corrupted by
AWGN. As already mentioned before, Myers et al. were the first ones
to develop suboptimal algorithms that try to approach the MLE [23]. A
method for modeling chaotic systems based on hidden Markov models
(HMMs) that could be applied to obtain approximate ML and Bayesian
estimators was also proposed [24, 33]. Kay also proposed two suboptimal
estimators based on topological conjugacy (the halving method) and dy-
namic programming with good asymptotic performance [13]. During the
following years many other authors proposed several simple and subop-
timal methods based on the symbolic sequence that attained the CRLB
asymptotically [4, 39, 26]. Iterative approaches based either on the E-M
algorithm [28] or the Viterbi algorithm [1, 2, 19, 20, 18] have also been
proposed. In this section we review the simple hard-censoring approach
proposed in [26] and the more elaborate algorithm based on the Viterbi
algorithm as described in [18].

9.2.3.1 Hard Censoring Estimator

The hard censoring maximum likelihood (HC-ML) estimator, proposed
in [26], is probably the simplest approximate MLE. The idea behind
the HC-ML is simply applying a threshold to the noisy observations to
obtain an estimate of the symbolic sequence and using it to compute the
MLE for that particular symbolic sequence. Mathematically, the HC-ML
estimator is given by

x̂HC-ML[N ] = x̂rML[N ], (9.34)
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where x̂rML[N ] is the MLE associated to the r-th symbolic sequence,
given by (9.30) for sr = ŝ = [ŝ[0], ŝ[1], . . . , ŝ[N − 1], ŝ[N ]]⊤, with the
symbols of this symbolic sequence being obtained as

ŝ[n] =





1, y[n] < e0;

σ(y[n]), e0 ≤ y[n] ≤ eM ;

M, y[n] > eM ;

(9.35)

where σ(y[n]) is the symbolic dynamics associated to the natural par-
tition of the map, given by (9.10), applied to the noisy observations.
The remaining samples of the chaotic sequence are obtained through
backward iteration using (9.31) for the r-th MLE.

This HC-ML estimator, denoted as HC-ML(0) in [14], can be im-
proved by locating the k symbols (1 ≤ k ≤ N) most likely to be erro-
neous (i.e., those associated to observations closer to the borders sepa-
rating the regions of the natural partition), changing them and checking
whether the modified symbolic sequence provides better results or not
[14]. Obviously, for k = 0 we get the basic HC-ML estimator as described
in [26], whereas for k = N we obtain the exact MLE.

9.2.3.2 Estimator based on the Viterbi Algorithm

A more sophisticated approximate MLE than the HC-ML can be ob-
tained using the Viterbi algorithm (VA) as a computationally efficient
estimator of s. Note that, unlike the well-known cases of decoding of
convolutional codes and detection in channels with intersymbol interfer-
ence (ISI), where the VA provides us with the exact MLE [32], here the
VA is a suboptimal estimator that will not achieve the MLE in general.
In fact, the VA is able to obtain the exact ML estimator, but that would
require a trellis with Γs(N) states, thus not providing any computational
advantage w.r.t. the exact MLE implementation based on an exhaustive
search. Hence, following the approach of [18, 14], we propose to use a
trellis with a reduced number of states, R = M r, as an approximate
MLE. In order to describe the algorithm, we focus on the simplest case:
M = 2 and r = 1. Using r = 1 is equivalent to assuming that the next
output depends only on the current symbol of the itinerary and the es-
timated value of x[n]. For M = 2 and r = 1 the basic butterfly of the
trellis, shown in Figure 9.4, only has two states.

The transition cost for each branch is given, as usual, by the difference
between the observations and the expected signals,

cij [n] = |y[N − n]− x̂ij [n]| , (9.36)

with x̂ij [n] = f−1
sj [n]

(x̂i[N−(n−1)]) for i, j ∈ {1, 2}, and 1 ≤ n ≤ N . The
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FIGURE 9.4
Basic butterfly for the VA using only two states per iteration of the
chaotic sequence and a chaotic map with M = 2.

cost of each node is the minimum cost accumulated in all the branches
arriving to it,

Cj [n] = Cr[n− 1] + crj [n], (9.37)

with
r = argmin

i∈{1,2}
{Ci[n− 1] + cij [n]} , (9.38)

and the current estimate of x[n] for the j-th node is

x̂j [n] = x̂rj [n] = f−1
sj [n]

(x̂r[n− 1]). (9.39)

Finally, the initial cost for each state is Cj [0] = |y[0] − x̂j [0]|, where
x̂j [0] is the estimate of x[N ]. When x[N ] is known in the receiver, then
x̂j [0] = x[N ]. Otherwise, the initial two samples required to start the
recursion can can be obtained applying a threshold to y[0]:

x̂j [0] = max (ej−1,min(y[0], ej)) . (9.40)

Hence, we guarantee that x̂1[0] ∈ E1 = [e0, e1] and x̂2[0] ∈ E2 = [e1, e2].
Extending this construction to higher values of r is straightforward,

as shown in [14], and a slight improvement in the performance of the
estimator is observed for low signal to noise ratios (SNRs), as shown
in the following section. However, although for r = 1 there is a drastic
reduction in the number of states of the trellis, the performance of the
VA is very close to that of the actual ML estimator [18]. The reason is
simple: backward iteration of two different initial conditions using the
same itinerary leads to very similar trajectories. As a result, in every
iteration we only need to store one estimate for each possible symbol,
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since in general all the other paths do not provide very different chaotic
sequences in the long term. In [17] it was proved, using map 1, that the
distance between the orbits of two different initial states with the same
itinerary decreases by a factor 2/(1−c) per iteration. Following the same
reasoning, it is easy to show that, using map 2, this factor becomes 2 for
any value of c, i.e. different initial states converge even faster than for
map 1.

9.2.3.3 Comparison of Optimal and Suboptimal Estimators

In this section we present some performance results of the exact ML
estimator and the two suboptimal estimators described (HC-ML and
VA) for two chaotic maps and short sequences. The first map considered
is the SK-TM, whereas the second one is another popular chaotic map,
the binary shift map (BSM), which is given by

f(x) =

{
2x, 0 ≤ x < 0.5;

2x− 1, 0.5 ≤ x ≤ 1.
(9.41)

The reference sample used in all cases is x[N ], but results are presented
for the estimation of x[0], since this is the hardest sample of the sequence
to be estimated.11 The performance measure used is the mean square er-
ror (MSE) of the estimate of x[0], M̂0(dB) = −10 log10 MSE(x̂[0]), which
is in fact equivalent to the variance, since all the estimators considered
are unbiased.

First of all, Figure 9.5 shows the value of M̂0(dB) obtained for both
maps and different values of SNR using the HC-ML, the VA and the
exact MLE for N = 4. It can be appreciated that all the estimators
attain the CRLB for an SNR above a threshold that depends on the
map (e.g. a much larger SNR is required to attain the CRLB for the
SK-TM than for the BSM) and on the estimator. On the one hand we
observe the excellent performance of the VA, which attains the CRLB
at the same SNR than the exact MLE and provides very similar MSE
values with only a fraction of its computational cost. On the other hand,
the HC-ML provides a much worse performance, even requiring a much
larger SNR than the VA and exact MLE to attain the CRLB for the
BSM. Then, in Table 9.2.3.3 we compare the average performance of the
exact MLE, the VA (with r = 1, 2, and 3) and the HC-ML for several
values of SNR. Each input in the table has been obtained averaging
the results of 1000 simulations with a randomly chosen initial condition.
Note how the VA provides very good results, achieving virtually the
same performance as the MLE for r = 3.

11In fact, the MLE of x[N ] always attains the CRLB, whereas the MLE of x[0]
needs a minimum SNR to attain it [14].
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FIGURE 9.5
Comparison of the MSE obtained with the HC-ML, the VA and the
exact MLE for N = 4.

9.3 Inverse Symbolic Chaotic Encoding

In this section we show how the asymptotically optimal estimators devel-
oped in the previous section can be applied to a chaotic digital commu-
nications system. Although all of these estimators can be applied to the
well-known chaos shift keying (CSK) schemes, in this section we focus
on their application to the inverse symbolic chaotic encoding proposed
in [17].

9.3.1 Symbolic Encoder and Decoder

Let us consider the transmission of a vector of N information bits,
b = [b[0], . . . , b[N − 1]]T . The basic idea of the inverse symbolic chaotic
encoding scheme proposed in [17] is iterating backwards from a known
final condition, x[N ], using those information bits to construct the sym-
bolic sequence. The structure of the chaotic encoder is shown in Fig. 9.6.
First of all, a one-to-one correspondence between the sequence of N in-
formation bits, and the symbols of the itinerary, s̃[n] = s[N−n] = g(b[n])
is established:

s̃[n] = s[N − n] = 1 + 2b[n], (9.42)

for 1 ≤ n ≤ N . Then, s̃[n] is used to generate the chaotic sequence
according to (9.15), starting from a given x̃[0] = x[N ] previously fixed



Asymptotically Optimal Estimators for Chaotic Digital Communications 263

M̂0(dB)
SNR (dB) HC-ML(0) VA (r = 1) VA (r = 2) VA (r = 3) ML CRLB
0 10.5 10.9 11.3 11.4 11.6 20.6
5 14.2 14.2 15.1 15.4 15.3 25.6
10 19.8 19.5 20.6 21.0 21.0 30.6
15 24.7 30.0 30.9 31.2 30.6 35.6
20 31.9 40.6 40.6 40.6 40.6 40.6
25 45.5 45.5 45.5 45.5 45.5 45.6
60 80.4 80.4 80.4 80.4 80.4 80.6

TABLE 9.1
Comparison of MSE obtained by the HC-ML(0), the VA (with r =
1, 2, and 3) and the exact MLE for the BSM with N = 4.

or randomly chosen, i.e.,

x̃[n] = x[N−n] = f−1
s̃[n](x̃[n−1]) = f−1

s[N−n](x[N−n]) == f−1
1+2b[n](x[N−n])

(9.43)
for 1 ≤ n ≤ N − 1. Finally, these samples can be directly transmitted
through the channel in baseband after a digital to analog conversion
(DAC), as shown in Figure 9.7, or up converted to the desired frequency
band. In the receiver, a standard equalizer is required to compensate the
effect of the channel prior to the chaotic demodulation using the Viterbi
algorithm as described in Section 9.2.3.2.

-
b[n]

g(b[n]) -
s̃[n]

f−1
s̃[n](x̃[n− 1]) -

x̃[n]

-

x̃[n− 1]
z−1 �

r

FIGURE 9.6
Block diagram of the inverse symbolic chaotic encoder for a generic map.

The choice of the chaotic map is crucial to achieve a good perfor-
mance with this scheme. In [17] a PWL map with M = 3 regions (map
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Channel
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z[n]

Equalizer -
y[n] Chaotic
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θ

6

-b̂[n]

FIGURE 9.7
Baseband chaotic communications system with parameters x[N ] and θ:
modulator, channel, and receiver.

1 ) was proposed:

f(x) =





2x+(1+c)
1−c , −1 ≤ x ≤ −c;

x
c , −c < x < c;
2x−(1+c)

1−c , c ≤ x ≤ 1.

(9.44)

The two outer intervals, E1 = [−1,−c] and E3 = [c, 1] (with E1 associ-
ated to b[n] = 0 and E2 to b[n] = 1), are used for coding, whereas the
inner one, E2 = (−c, c), acts as a guard interval, ensuring a minimum
distance between the signals associated to b[n] = 0 and b[n] = 1. This
map shows a good performance in terms of bit error rate (BER), but
it has an important drawback: x̃[n] cannot belong to any region of the
state space that maps into E2 after 1 ≤ k ≤ n+1 iterations. This creates
exclusion regions for x̃[n] and a clustering of the samples of the chaotic
sequence (see [14] for a detailed description of this issue), thus reducing
the security of the system. In order to solve this problem, an alternative
map (map 2 ) with M = 5 intervals has been introduced in [14], which
avoids the innermost interval, E3 = (−c, c), which is used again as a
guard region:

f(x) =





2x+ 1, −1 ≤ x ≤ −(1 + c)/2;

2x+ (1 + 2c), −(1 + c)/2 ≤ x ≤ −c;
x/c, −c < x < c;

2x− (1 + 2c), c ≤ x ≤ (1 + c)/2;

2x− 1, (1 + c)/2 ≤ x ≤ 1.

(9.45)

The shape of these two maps is plotted in Figure 9.8. Note that in both
cases we use the invertible partition, which is composed of MI = 3
regions, when iterating backwards. For map 1 the invertible partition is
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the same as the natural partition, PI = PN = {E1, E2, E3}, whereas
for map 2 the invertible partition is PI = {E1 ∪ E2, E3, E4 ∪ E5}. In
this second case, E1 = [−1,−(1 + c)/2] and E2 = [−(1 + c)/2,−c] are
associated to b[n] = 0, whereas E4 = [c, (1+ c)/2] and E5 = [(1+ c)/2, 1]
to b[n] = 1. The inverse function, used for coding, is straightforward to
obtain for the first map:

f(x) =





(1−c)y−(1+c)
2 , s = 1;

cy, s = 2;
(1−c)y+(1+c)

2 , s = 3.

(9.46)

For the second map, the inverse function can also be easily obtained,
but now we have to take into account the region to which y belongs in
addition to the corresponding symbol:

x = f−1
s (y) =





(y − 1)/2, s = 1, y ∈ E1 ∪E2;

(y − (1 + 2c))/2, s = 1, y ∈ E4 ∪E5;

(y + (1 + 2c))/2, s = 3, y ∈ E1 ∪E2;

(y + 1)/2, s = 3, y ∈ E4 ∪E5.

(9.47)

−1 −c 0 c 1 
−1
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0 
c 

1 

(a) Map 1

−1 −c 0 c 1 
−1

−c
0 
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1 

(b) Map 2

FIGURE 9.8
PWL maps used for the inverse symbolic chaotic encoding system.

The good performance of the proposed chaotic communications sys-
tem is shown in Figure 9.9 for map 2 (the performance of map 1, not
shown, is very similar) and several values of the parameter c. The bit
error rate (BER) obtained follows the curve of the binary phase shift
keying (BPSK) modulation, with approximately 1.5 dB loss for a 10−5
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probability of error when c = 0 and hardly any loss in performance for
values of c > 0.5.
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FIGURE 9.9
Bit error rate (BER) for the inverse symbolic chaotic encoding approach
using map 2 with several values of c.

9.3.2 Combination with OFDM for Multipath Channels

The coding approach described in Section 9.3.1 provides very good re-
sults for the Gaussian channel. However, it suffers from a severe degrada-
tion in performance in the presence of multipath interference (unavoid-
able in wireless communications), just as most chaotic and conventional
modulation schemes. In order to provide a certain degree of protection
against the distortion introduced by the channel, in this section we pro-
pose to combine the chaotic coding with a modulation format robust
against multipath fading: OFDM.

The structure of the modulator is shown in Figure 9.10. The idea
is simple: substitute the conventional coding used in each subcarrier of
the OFDM system (BPSK, QPSK or M -QAM usually) by the chaotic
coding described in Section 9.3.1. These coded symbols are then serial-
to-parallel converted (S/P) to form blocks of Nc = Nb symbols which,
altogether with Np pilots (used to estimate the channel) and Nz zeros
(used as guard intervals), serve to generate the OFDM symbol by means
of anN = Nc+Np+Nz points inverse discrete Fourier transform (IDFT).
A parallel-to-serial (P/S) conversion is performed next, a cyclic prefix of
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M samples is added to avoid intersymbol and intercarrier interference
(ISI and ICI), and the signal is finally transmitted through the channel.

-b[n] Chaotic
Map

6

x[Nb], c

-x̃[n]
S/P

-1

-Nc

... IDFT

-

Pilots (Np)

-
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-1

...

-N

P/S -xi[n] Cyclic

Prefix
- h[n]

xt[n] - h

6

z[n]

w[n]

-y[n]

Channel

FIGURE 9.10
Block diagram for the proposed OFDM communications system with
chaotic coding in the sub-carriers: transmitter and channel.

The receiver, shown in Figure 9.11, is simply the dual of the transmit-
ter. First, the cyclic prefix is discarded, followed by an S/P conversion
and an N point DFT, from which we discard the Nz guard zeros, and
use the Np pilots to update the estimate of the channel. Then, the Nc

carriers that contain the useful information are equalised in frequency
using the current estimate of the channel. A P/S convertion follows, and
finally the Nc equalised samples are passed to the chaotic demodulator
to estimate the transmitted information bits.
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S/P
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...

N

DFT
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- Channel
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Demod.
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FIGURE 9.11
Block diagram for the proposed OFDM communications system with
chaotic coding in the sub-carriers: receiver.

The good performance of the combined inverse symbolic chaotic
encoding with OFDM is shown in Figure 9.12 for two different chan-
nels with perfect equalization. In Figure 9.12(a) a simple two-ray min-
imum phase channel, h1[n] = δ[n] − 0.5δ[n − 1], is used, whereas in
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Figure 9.12(b), a more complex non-minimum phase channel, h2[n] =
−0.3δ[n − 1] + 0.7δ[n − 2] + 0.4δ[n − 3] + 0.1δ[n − 4], is used. In both
cases the performance of the proposed scheme is similar to the one for
the AWGN channel.
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FIGURE 9.12
Bit error rate (BER) for the inverse symbolic chaotic encoding approach
plus OFDM for two different channels using map 2 with several values
of c.

9.4 Appendix: Cramer-Rao Lower Bound

The Cramer-Rao lower bound (CRLB) is a lower bound on the vari-
ance that can be attained by an unbiased estimator [11]. In general, the
CRLB is not a strong limit, implying that often it cannot be achieved by
any unbiased estimator. However, if an estimator attaining the CRLB
is found, then we can ensure that it is the optimum estimator, i.e., the
minimum variance unbiased estimator. Otherwise, it can be used as a
reference to evaluate the quality of the estimators considered.

The CRLB for the estimation of x[N ], is given by

Var(x̂[N ]) ≥
[
−E

(
∂2 ln p(y;x[N ], s)

∂x[N ]2

)]−1

, (9.48)

where p(y;x[N ], s) is the likelihood, as given by (9.19), but expressed as
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a function of x[N ] and s. After some algebra, it can be shown (see [14])
that the CRLB can be expressed as

Var(x̂[N ]) ≥ σ2

1 +
∑N

n=1

(
ḟ−n
s (x[N ])

)2

=
σ2

1 +
∑N

n=1

∏n−1
k=0

(
ḟ−1
s[N−k−1](x[N − k])

)2 , (9.49)

where ḟ−n is used to denote the derivative of f−n (1 ≤ n ≤ N) and the
chain rule has been used to obtain the last expression. Finally, using the
analytical expressions for the backward iteration of a generic PWL map
given by (9.25) and (9.26), the CRLB for this class of maps becomes

Var(x̂[N ]) ≥ σ2

1 +
∑N

n=1

(
B1,n

s

)2

=
σ2

1 +
∑N

n=1

∏n−1
k=0 a

−2
s[N−k−1]

. (9.50)

The CRLB can be obtained similarly for any other sample of the
sequence, as shown in [14]. In particular, the CRLB for the initial con-
dition, x[0], is

Var(x̂[0]) ≥ σ2

1 +
∑N

n=1

(
A0,n

s

)2

=
σ2

1 +
∑N

n=1

∏n−1
k=0 a

2
s[k]

, (9.51)

where A0,n
s

are the coefficients for the forward iteration of the PWL map,
given by [26, 14]

A0,n
s

=

n−1∏

k=0

as[k]. (9.52)

Finally, note that simpler closed-form expression for the CRLB can-
not be developed in general for most PWL maps. However, for some
particular cases, such as the BSM used in Section 9.2.3.3, simple ana-
lytical expressions can be provided, since the slope is identical in both
regions of the natural particion (i.e., a1 = a2 = 2). In this case, the
CRLB of the initial condition is [14]

Var(x̂[0]) ≥ 3σ2

4N+1 − 1
, (9.53)
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whereas the CRLB of the final condition is given by

Var(x̂[N ]) ≥ 3 · 4Nσ2

4N+1 − 1
. (9.54)

These two limits show that Var(x̂[0]) → 0 as N → ∞, confirming
that a consistent estimator for x[0] can theoretically be found, whereas
Var(x̂[N ]) → 3σ2/4 as N → ∞, showing the unconsistency in the es-
timation of x[N ]. Unfortunately, several authors have proved that the
MLE of x[0] is inconsistent for low SNRs, thus not being able to attain
the CRLB below a certain SNR threshold that depends on the chaotic
map, its parameters and even the initial condition [12, 8, 34]. Finally,
note that the CRLB does not depend on the sample of the chaotic se-
quence chosen as a reference. Hence, all the equations in this appendix
are valid regardless of whether x[0], x[N ] or x[n] (1 ≤ n ≤ N−1) is used
as a reference point for the estimation.

Bibliography

[1] M. Ciftci and D. B. Williams. Optimal estimation and sequential
channel equalization algorithms for chaotic communications sys-
tems. EURASIP Journal on Applied Signal Processing, 4:249–256,
2001.

[2] M. Ciftci and D. B. Williams. Optimal estimation for chaotic se-
quences using the viterbi algorithm. In IEEE Int. Conf. on Acous-
tics, Speech and Signal Processing (ICASSP), 2001.

[3] P. Collet and J. P. Eckmann. Iterated Maps on the Interval as
Dynamical Systems. Birkhauser, 1980.

[4] L. Cong, W. Xiaofu, and S. Songgeng. A general efficient method
for chaotic signal estimation. IEEE Trans. on Signal Processing,
47(5):1424–1428, 1999.

[5] W. de Melo and S. van Strien. One-Dimensional Dynamics.
Springer-Verlag, 1993.

[6] Robert L. Devaney. An Introduction to Chaotic Dynamical Systems.
Addison Wesley, Redwood City, CA, 2nd edition edition, 1989.

[7] Martin Hasler and Yuri L. Maistrenko. An introduction to the
synchronization of chaotic systems: Coupled skew tent maps. IEEE
Trans. on Circuits and Systems I, 44(10):856–866, 1997.



Asymptotically Optimal Estimators for Chaotic Digital Communications 271

[8] I. Hen and N. Merhav. On the threshold effect in the estima-
tion of chaotic sequences. IEEE Trans. on Information Theory,
50(11):2894–2904, 2004.

[9] S. H. Isabelle and G.W.Wornell. The Digital Signal Processing
Handbook, chapter Nonlinear maps. CRC Press & IEEE Press, 1998.

[10] S.H. Isabelle and G.W. Wornell. Statistical analysis and spectral
estimation techniques for one-dimensional chaotic signals. IEEE
Transactions on Signal Processing, 45(6):1495–1506, Jun 1997.

[11] S. M. Kay. Fundamentals of Statistical Signal Processing: Estima-
tion Theory. Prentice Hall, 1993.

[12] S. M. Kay. Asymptotic maximum likelihood estimator performance
for chaotic signals in noise. IEEE Trans. on Signal Processing,
43(4):1009–1012, Apr. 1995.

[13] S. M. Kay and V. Nagesha. Methods for chaotic signal estimation.
IEEE Trans. on Signal Processing, 43(8):2013–2016, Aug. 1995.
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class of chaotic signals: An EM-based approach. In Proc. IEEE Int.
Conf. Acoustics, Speech, and Signal Processing (ICASSP), pages
1129–1132, 2002.
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