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ABSTRACT

This paper revisits the linear model with noisy inputs, in which the
performance of the total least squares (TLS) method is far from ac-
ceptable. Under the assumption of Gaussian noises, the maximum
likelihood (ML) estimation of the system response is reformulated as
a general balanced least squares (BLS) problem. Unlike TLS, which
minimizes the trace of the product between the empirical and in-
verse theoretical covariance matrices, BLS promotes solutions with
similar values of both the empirical and theoretical error covariance
matrices. The general BLS problem is reformulated as a semidefi-
nite program with a rank constraint, which can be relaxed in order to
obtain polynomial time algorithms. Moreover, we provide new theo-
retical results regarding the scenarios in which the relaxation is tight,
as well as additional insights on the performance and interpretation
of BLS. Finally, some simulation results illustrate the satisfactory
performance of the proposed method.

Index Terms— Balanced Least Squares (BLS), Errors in Vari-
ables (EIV), Total Least Squares (TLS), Semidefinite Programming
(SDP), Rank Constrained Optimization.

1. INTRODUCTION

The linear model is a key ingredient for signal processing. In this pa-
per we revisit the linear model with noisy inputs, which can be seen
as a particular instance of the Errors in Variables (EIV) model [1,2].
Focusing on the estimation of the system parameters in the EIV
model, total least squares (TLS) [3–6] is by far the most popular
method among the signal processing community. However, the TLS
performance is very far from satisfactory, among others, in the sce-
nario considered in this paper.

Interestingly, the linear model with noisy inputs is mathemati-
cally equivalent to the scenario with a Gaussian model matrix, which
in the case of scalar outputs has been addressed in [7, 8]. However,
the general case with vector outputs remains as an open problem.
Recently, and focusing on the case with Gaussian noisy inputs and
scalar outputs, a new technique called balance least squares (BLS)
has been proposed as the maximum likelihood (ML) estimator of the
system response [9], thus rediscovering the results in [7, 8]. This
technique promotes solutions with similar empirical and theoretical
variances of the residual error, which clearly contrasts with the LS
and TLS solutions. In particular, LS exclusively focus on the mini-
mization of the empirical variance, whereas TLS minimizes the ratio
between the empirical and theoretical variances of the residual error,
thus promoting solutions with small empirical and large theoretical
variances.

This work has been supported by the Spanish Government, Ministerio de
Ciencia e Innovación, under project RACHEL (TEC2013-47141-C4-3-R).

This paper extends the BLS method to the general case of vector
outputs, where the ML estimation problem is reformulated as a rank
constrained semidefinite program [10]. Fortunately, the relaxation
of the non-convex rank constraint provides satisfactory solutions in
most practical situations. Moreover, we provide some interesting
insights regarding the performance, interpretation and relationship
to the TLS method, as well as a sufficient condition for the tightness
(with probability one) of the relaxation.

Throughout the paper we will use boldfaced uppercase letters
for matrices and boldfaced lowercase letters for (column) vectors.
Given a matrix A, AT and |A| denote the transpose and determi-
nant, respectively. I and 0 denote the identity and zero matrices of
the required dimensions, and A � 0 means that A is symmetric
positive semidefinite. λk(A,B) refers to the k-th largest general-
ized eigenvalue of the matrix pencil (A,B). That is Av = λkBv,
with v the k-th generalized eigenvector. For a symmetric block ma-
trix

M =

[
M1,1 M1,2

MT
1,2 M2,2

]
, (1)

S(M,M2,2) = M1,1 −M1,2M
−1
2,2M2,1 denotes the Schur com-

plement of M2,2 [11, 12]. Finally, given two sequences of vec-
tors xk, yk, we define the sample (cross-)covariance matrices as
Rx =

∑
k xkx

T
k , Rx,y =

∑
k xky

T
k .

2. PROBLEM FORMULATION AND PREVIOUS WORKS

This paper focuses on a general linear model in which m determin-
istic real1 inputs x = [x1, . . . , xm]T ∈ Rm×1 and n real outputs
y = [y1, . . . , yn]

T ∈ Rn×1 are related as

y = HT (x + u) + n, (2)

where H ∈ Rm×n represents the deterministic channel response,
u ∈ Rm×1 is the zero-mean input noise with covariance matrix
Cu � 0, and n ∈ Rn×1 is a zero-mean noise vector with covariance
matrix Cn � 0, and independent of u.

Eq. (2) represents a particular case2 of the structural EIV model
[2], which finds application in econometrics, computer vision, sig-
nal processing, and communications. For instance, in wireless com-
munications, eq. (2) represents the training sequence transmitted
from a multiantenna amplify and forward relay and observed by a
multiantenna receiver [13]; the observations of an eavesdropper in a
discriminatory channel estimation scenario [14, 15]; or the received
signals in a channel estimation system based on superimposed train-
ing [16].

1All the results in this paper can be easily extended to the complex case.
2The general EIV model includes a reference channel providing some

additional information about u.



A classical problem in EIV consists in the estimation, from a set
of N ≥ m independent observations yk (k = 0, . . . , N − 1), of
the deterministic parameter H in eq. (2). Unfortunately, the estima-
tion generally results in difficult non-convex optimization problems,
which translates into local minima for typical approaches such as
the Expectation Maximization (EM) algorithm [8, 17]. Moreover,
the performance of classical approaches such as TLS [5] is far from
satisfactory in several important cases [7, 8], including the model
considered in this paper.

2.1. Total Least Squares (TLS)

For the signal processing community, TLS emerges as the main tool
for estimation in linear systems with imperfect knowledge of the in-
put signals, which justifies several recent research efforts related to
the TLS method [18–21]. However, the original formulation of the
TLS method is based on the following model

y = HTx + n, (3)
z = x + u, (4)

where the deterministic input x is now unknown and only observed
through the reference channel z. Obviously, the observation model
in (3)-(4) differs from eq. (2) because the errors u are not inputs of
the channel H.

The TLS method is originally obtained as the ML estimate of H
in model (3)-(4) under the assumption of Gaussian noises n and u.
However, focusing on the model in eq. (2), TLS can be recovered
as an hybrid ML-MAP estimator of H and U = [u0, . . . ,uN−1],
which can be easily verified by writing the posterior pdf of U

p(U|Y;H) ∝ e
− 1

2

∥∥∥∥∥[Y−(X+U)H]C
− 1

2
n

∥∥∥∥∥
2

− 1
2

∥∥∥∥∥UC
− 1

2
u

∥∥∥∥∥
2

,

where Y and X are defined analogously to U. Thus, the estimation
problem reduces to

minimize
H,U

∥∥∥∥[Y − (X + U)H]C
− 1

2
n

∥∥∥∥2 + ∥∥∥∥UC
− 1

2
u

∥∥∥∥2 ,
or equivalently

minimize
H,∆X ,∆Y

∥∥∥[∆Y C
− 1

2
n ∆XC

− 1
2

u

]∥∥∥
subject to Y + ∆Y = (X + ∆X)H,

which is the most common formulation of the TLS method [5].
Specifically, the TLS solution is obtained from the following gener-
alized eigenvalue (GEV) problem

RH̃ = CH̃ΛTLS, (5)

where ΛTLS = diag([λm+1(R,C), . . . , λm+n(R,C)]) contains
the n smallest generalized eigenvalues, the columns of H̃ are the
corresponding generalized eigenvectors, and

R =

[
Ry −RT

x,y

−Rx,y Rx

]
, C =

[
Cn 0
0 Cu

]
.

Finally, if we partition H̃ as H̃ =
[
H̃T

1 H̃T
2

]T
, with H̃1 ∈ Rn×n,

the estimate of H is recovered as3 ĤTLS = H̃2H̃
−1
1 . However, the

TLS estimates under the model in eq. (2) are far from satisfactory,
mainly due to the reason in the following remark.

3Obviously, this requires an invertible H̃−1
1 , and the cases in which this

condition is not satisfied are referred to as non-generic TLS problems [22].

Remark 1 (Unbalanced TLS Solutions) From the GEV in eq.
(5), TLS can be seen as the solution of the following optimization
problem

minimize
H̃

trace
[(

H̃TRH̃
)(

H̃TCH̃
)−1

]
. (6)

That is, TLS amounts to minimizing the ratio between the empir-
ical covariance (H̃TRH̃) of the residual error (y − HTx) and its
theoretical value (H̃TCH̃). However, this fact can be seen as an im-
portant drawback of the TLS approach because it seems reasonable
to think that a good estimate of H should result into similar val-
ues of the empirical and theoretical covariance matrices. Instead of
that, TLS promotes solutions with small empirical and large theoret-
ical covariance matrices, which might result in overfitting. This fact,
which can be also interpreted as a direct consequence of estimating
a large number of nuisance variables U ∈ RN×m, when we are only
interested in H ∈ Rm×n, provides an alternative explanation for the
TLS inconsistency4 under the model in eq. (2).

3. BALANCED LEAST SQUARES (BLS)

Due to the problems pointed out in the previous section, here we will
follow a true ML approach to estimate H under the model in eq. (2).
In particular, the maximization of the log-likelihood function yields
the following non-convex optimization problem

minimize
H̃=[I HT ]T

trace
[(

H̃TRH̃
)(

H̃TCH̃
)−1

]
+ log

∣∣∣H̃TCH̃
∣∣∣ .
(7)

Remark 2 (Balanced Least Squares) As can be seen, the pro-
posed approach results in an optimization problem similar to that
in eq. (6), but introducing a logarithmic regularization term which
promotes similar values of the empirical and theoretical residual
covariance matrices. In particular, if we were free to choose the the-
oretical covariance H̃TCH̃ for a fixed value of the empirical covari-
ance H̃TRH̃, the solution would be given by H̃TCH̃ = H̃TRH̃.
Although the coupling of both terms by means of H yields different
values of the covariance matrices at the solution of the optimization
problem in (7), it is clear that the proposed approach will result into
a better balance than TLS.

3.1. Relaxation to a Convex Optimization Problem

In order to solve the optimization problem in (7), we recover the
partition of H̃ as H̃ =

[
H̃T

1 H̃T
2

]T
and rewrite (7) as

minimize
H̃=[I HT ]T

trace
[(

H̃TRH̃
)(

H̃TCH̃
)−1

]
+ log

∣∣∣H̃TCH̃
∣∣∣− log

∣∣∣H̃T
1 H̃1

∣∣∣ .
Moreover, taking into account the invariance of the cost function
under linear transformations of the form H̃A (with an invertible
A ∈ Rn×n), we can focus on the equivalent problem

minimize
H̃

trace
(
H̃TRH̃

)
− log

∣∣∣H̃T
1 H̃1

∣∣∣
subject to H̃TCH̃ = I.

(8)

4The straightforward proof of the inconsistency of the TLS solution is
omitted here due to the lack of space.



Althoug the above problem is still non-convex, it is already in a form
suitable for its reformulation as a semidefinite program (SDP). Thus,
defining M = H̃H̃T ∈ R(m+n)×(m+n) and introducing a partition
similar to that in eq. (1) with M1,1 ∈ Rn×n, we can rewrite (8) as

minimize
M�0

trace(RM)− log |M1,1|

subject to trace (CM) = n

I � C
1
2 MC

1
2

rank(M) = n,

(9)

and since the non-convexity of (9) is solely due to the last constraint,
we propose to solve the relaxed problem

minimize
M�0

trace(RM)− log |M1,1|

subject to trace (CM) = n

I � C
1
2 MC

1
2 .

(10)

3.2. Main Results

The relaxed problem in (10) is convex and satisfies the Slater’s con-
straint qualification [10]. Therefore, its solution can be efficiently
found by means of standard convex optimization tools [23,24]. How-
ever, the optimal5 MBLS does not necessarily satisfy the constraint
rank(MBLS) = n, and therefore it does not provide the solution of
the ML problem in (7). In this subsection we summarize our main
findings in the form of five lemmas, whose proofs are omitted due to
the lack of space, and will be included in a future journal paper [25].

Lemma 1 (Consistency) In the asymptotic regime (N → ∞), the
solution of (10) is given by

MBLS = H̃
(
H̃TCH̃

)−1

H̃T ,

λBLS = 0,

ΦBLS = 0

where λBLS and ΦBLS represent the optimal values of the dual vari-
ables for the constraints trace (CM) = n and I � C

1
2 MC

1
2 , and

H̃ =
[
I HT

]T contains the true value of the channel H. In other
words, the estimator in (10) is consistent.

Lemma 2 (BLS and Regularized LS) If rank(MBLS) = n, the
ML estimate of H is recovered as

ĤBLS =(
Rx − λBLSCu + C

1
2
u ΦBLS

2,2 C
1
2
u

)−1(
Rx,y + C

1
2
u ΦBLS

2,1 C
1
2
n

)
,

where λBLS and ΦBLS are obtained from the solution of the dual prob-
lem

maximize
λ,Φ�0,Ψ�0

log |S(Ψ,Ψ2,2)|+ nλ− trace (Φ)

subject to Ψ = R− λC + C
1
2 ΦC

1
2 .

(11)

5From now on we will use the superindex (·)BLS to denote the optimal
values of the primal or dual variables of (10).

Remark 3 (BLS Soft Regularization) The previous lemma al-
lows us to see the BLS estimate as the solution of a regularized
LS problem. This interpretation becomes obvious in the case
of scalar outputs (n = 1), in which we have ΦBLS = 0 and
ĥBLS =

(
Rx − λBLSCu

)−1
Rx,y. Interestingly, the TLS so-

lution admits a similar interpretation with a regularized matrix
ΨTLS = R−λTLSC+C

1
2 ΦTLSC

1
2 satisfying S(ΨTLS,ΨTLS

2,2 ) = 0.
Therefore, since S(Ψ,Ψ2,2) directly appears in the objective func-
tion of the dual problem in (11), we can conclude that the BLS
regularization is less aggressive than its TLS counterpart, which in
the case of scalar outputs reduces to λBLS < λTLS [8, 9].

Lemma 3 (Structure of ΦBLS) At the optimal solution of (10) we
have rank(ΦBLS) < n. Moreover, if rank(MBLS) = n then

MBLS = H̃MBLS
1,1 H̃T , ΦBLS = C

1
2 H̃BH̃TC

1
2 ,

with B ∈ Rn×n a positive semidefinite matrix and

H̃ =

[
In

ĤBLS

]
.

Remark 4 (Redundancy of I � C
1
2 MC

1
2 ) The previous lemma

generalizes, for n > 1, the fact that the constraint I � C
1
2 MC

1
2

is redundant for n = 1. In this particular case, BLS admits simpler
interpretations, and the dual problem in (11) reduces to a one dimen-
sional convex optimization problem, which can be easily solved by
means of the Golden Section Algorithm [26], or directly by bisection
on the derivative of the objective function [9].

Lemma 4 (Maximum Rank) Let us write rank(MBLS) = n + r

and denote the number of unit eigenvalues of C
1
2 MBLSC

1
2 as u.

Then, there exist an optimal solution of (10) with u ≥ r, which
obviously implies rank(MBLS) < 2n.

Remark 5 (Purification Method) Lemma 4 guarantees the exis-
tence of an optimal solution MBLS with an upper bounded rank. This
solution can be found by means of a purification technique similar
to those in [27, 28], and which will be reported in a future journal
paper [25]. However, although this general upper bound ensures the
solution of the ML problem in the case with scalar outputs (n = 1),
it seems to suggest that the solution of (10) needs to be purified.
Fortunately, the next lemma provides additional conditions guaran-
tying solutions with rank(M) = n, and allows us to get rid (with
probability one) of the purification stage.

Lemma 5 (Solutions with Probability One) If data is drawn from
a continuous distribution, then Pr(rank(MBLS) < 2n) = 1. More-
over, if the multiplicity µ of λm(Rx,Cu) satisfies µ ≥ n, then

Pr(rank(MBLS) = n) = 1.

Remark 6 (Practical Design Choices) Firstly, Lemma 5 proves
that the purification approach is not necessary in practice. Secondly,
the condition µ ≥ n can be easily satisfied in many applications
(with m ≥ n) in which matrix X is a design parameter. For in-
stance, in channel estimation applications, one sensible choice of
the pilot matrix is based on Rx ∝ Cu. Moreover, in the case with
m < n, and if the direct solution of (10) provides a high rank MBLS,
one sensible approach consists in reducing the dimensionality of the
observations by means of principal component analysis (PCA) [29],
which would reduce the estimation problem to the case with n = m.
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Fig. 1. Empirical CDFs of the normalized MSEs in the estimate of
H. m = n = 4, N = 20. a) η2 = 1. b) η2 = 10.

4. NUMERICAL RESULTS

This section evaluates the performance of the BLS, TLS and LS
methods by means of some numerical examples. All the results are
based on 1000 Monte Carlo simulations of a system with m = 4
inputs, n = 4 outputs, N = 20 samples, and random parameters
H ∈ R4×4 with i.i.d. zero-mean and unit variance Gaussian ele-
ments. The input noise is Gaussian with zero mean and covariance
Cu = η2diag(c), where the entries of c ∈ R4×1 are linearly spaced
between 1 − α and 1 + α. That is, η2 controls the total variance of
the input noise, whereas α controls the asymmetry of the input dis-
tribution. The output noise is zero-mean Gaussian with covariance
Cn = I, and the deterministic input sequence is selected to satisfy
Rx = I. Finally, the implementation of the BLS method is based on
the solution of (10) by means of the CVX toolbox [23]. In the very
few cases in which a high-rank solution is obtained, the (suboptimal)
solution reduces to a rank reduction of ĤBLS by means of PCA [29].

Fig. 1 shows, for two different values of η2 and α, the empirical
cumulative distribution function (CDF) of the normalized (by the
number of entries mn) mean square error (MSE) on the estimate
of H. The first obvious conclusion is that the performance of the
TLS method is unacceptable, which is due to the reasons outlined in
Remark 1, and is also reflected on the bad conditioning of the matrix
H̃1 to be inverted (see the comment at the end of Subsection 2.1).
Moreover, we can see that BLS outperforms the conventional LS
technique, and the gap between them increases with the input noise
variance. Finally, from the results in Fig. 1 we can also conclude
that the LS and BLS performances are very robust to the value of α,
which in the BLS case is a direct consequence of the fact that ĤBLS

satisfies the rank constraint with a very high probability, even when
Lemma 5 does not apply (α 6= 0).

Fig. 2 shows the empirical CDFs of the Variance Ratio, which

we define as trace
[(

H̃TRH̃
)(

H̃TCH̃
)−1

]
. As expected (see

Remark 2), BLS provides values much closer to one than those of
the alternative techniques. Additionally, we can see that the TLS
method, which yields very small and far from reasonable values, is
much more sensitive to the values of α than the BLS and LS meth-
ods.

Finally, and in order to clarify the implications of Lemma 2 and
Remark 3, Fig. 3 shows the empirical CDFs of the regularization
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factors λ obtained from the TLS and BLS solutions, as well as the
empirical CDF of their difference. Clearly, TLS yields much more
aggressive regularization factors (larger values of λ), which can be
seen as another explanation for its poor performance.

5. CONCLUSIONS

This paper has extended the BLS method to the case of vector out-
puts. Although the general formulation results into rank-constrained
semidefinite programming problems, we have seen that the relax-
ation of the non-convex rank constraint is tight in most of the prac-
tical cases. Moreover, we have presented several theoretical results
providing sufficient conditions for the tightness of the relaxation, as
well as guaranteeing the consistency of BLS, and clarifying its re-
lationship with the regularized LS and TLS methods. The satisfac-
tory performance of BLS has been illustrated by means of several
simulations, which also corroborate that BLS provides a reasonable
balance between the empirical and theoretical covariance matrices
of the residual error.
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