
Interference-temperature limit for cognitive radio
networks with MIMO primary users

C. Lameiro∗, W. Utschick† and I. Santamarı́a∗
∗Dept. of Communications Engineering, Universidad de Cantabria, Spain

Email: {lameiro,nacho}@gtas.dicom.unican.es

†Associate Institute for Signal Processing, Technische Universität München, Germany
Email: utschick@tum.de

Abstract—This paper derives the interference-temperature
(IT) limit for a multi-antenna primary user (PU) with a rate
constraint. While in the case of a single-antenna PU there is
a one-to-one mapping between IT and achievable rate, this
correspondence does not hold anymore when a multiple-input
multiple-output (MIMO) system is considered. In such cases, the
spatial distribution of the interference must be taken into account,
since it strongly affects the PU performance. To this end, we
derive a closed-form expression for the maximum IT that can be
tolerated by identifying the worst-case interference covariance
matrix, which results in a multilevel waterfilling problem.

Index Terms—Interference temperature, cognitive radio.

I. INTRODUCTION

Future wireless communication networks are envisioned to
be comprised of heterogeneous networks (HetNets), in order
to provide sufficiently high data rates to the ever-increasing
number of wireless devices, and, at the same time, reducing the
cost and increasing their flexibility. Such scenarios, however,
are mainly limited by interference, and hence the design of
suitable interference management techniques becomes crucial
to make an efficient use of the scarce radio resources. In this
context, underlay cognitive radio (CR) has been proposed [1]–
[3], so that the so-called secondary users (SU) are allowed
to coexist with the legacy or primary network as long as a
minimum performance at the latter is guaranteed. To this end,
interference temperature (IT) is typically adopted as a means
of measure and constrain the impact of the SUs on the legacy
network. Following this approach, the interference from the
SUs must be below a given threshold, which is selected such
that a satisfactory performance of the primary users (PUs) is
guaranteed.

Network coexistence in the context of underlay CR has
been widely studied in the literature (see, e.g., [4]–[9] and
references therein). All these works, however, focus solely
on optimizing the performance of the SUs, and assume the
IT constraints to be known a priori. Theoretically, the IT is
directly related to the capacity by the Shannon formula [10]

C = W log2

(
1 +

S

I

)
, (1)

where W is the channel bandwidth, S the signal power and
I the interference plus noise power. Thus, in order to sustain
a given data rate, the maximum IT that can be tolerated is

univocally given by the foregoing expression. However, when
a multiple-input multiple-output (MIMO) PU is considered,
this is no longer the case since the total interference level
cannot be uniquely determined from the rate. The problem
of obtaining IT thresholds for a MIMO PU was already
considered in [11], where a suboptimal value was derived.
This IT level was used in [11] merely as a means to assess
the performance of different techniques with respect to the IT
approach. However, if the optimal IT value is not used for such
comparisons, the results obtained this way may be misleading.

In this work, we consider the problem of obtaining the
maximum IT threshold for a MIMO PU that has a rate
constraint. First, we show that the problem is equivalent to
identifying the worst-case interference covariance matrix, i.e.,
the one with the most detrimental spatial signature. Then,
the structured of the worst spatial signature is obtained,
showing that the interference power at each direction admits
a multilevel waterfilling solution.

Notation: Bold upper case letters denote matrices, and
lightface letters denote scalar quantities. We use (A)H , |A|
and Tr(A) to denote Hermitian, determinant and trace oper-
ation, respectively. CN (0, σ2) stands for circularly-symmetric
complex Gaussian random variable with zero mean variance
σ2. CM×N is the space of M × N complex matrices, and
SN+ denotes the set of N ×N positive semidefinite matrices.
For squared Hermitian matrices A and B, A � B means
that A − B is positive semidefinite. The operation (a)+

means max(a, 0). We use I to denote an identity matrix
of the appropriate dimensions. The optimal solution of an
optimization problem is indicated by (·)?.

II. INTERFERENCE-TEMPERATURE LIMIT

Let us consider a primary point-to-point link with M trans-
mit antennas and N receive antennas. Denoting the MIMO
channel by H ∈ CN×M and the transmit covariance matrix
by Q ∈ SM×M+ , the achievable rate of this primary link in the
absence of interference is given by

R = log

∣∣∣∣I +
1

σ2
HQHH

∣∣∣∣ , (2)

where σ2 is the variance of the additive white Gaussian noise
(AWGN) at the receiver. Since the PU has a rate constraint,



the following must hold

R(K) = log
∣∣∣I +

(
σ2I + K

)−1
HQHH

∣∣∣ ≥ R̄ , (3)

where R̄ is the rate requirement for the primary link and
K ∈ SN×N+ is the interference covariance matrix. According to
the IT framework, the total interference power at the primary
receiver is constrained to be below a given threshold, i.e.,
Tr(K) ≤ t, where t is selected such that (3) holds for all
interference covariance matrices satisfying the IT constraint.
However, while in the single-antenna case there is a one-to-
one mapping between IT and rate, this property does not hold
anymore when the PU is equipped with multiple antennas.
In this case, the spatial structure of the interference comes
up, strongly affecting the achievable rate of the primary link.
Cumanan et al. proposed in [11] a simple expression for
selecting an IT threshold to ensure (3), by bounding the
maximum rate reduction due to the interference. This threshold
is obtained as

t̃ = 2
1

min(M,N) (log2|σ2I+HQHH |−R̄) − σ2 . (4)

Eq. (4), however, provides a too conservative IT threshold,
which is not the largest possible value. Since we are concerned
with how to compute the optimal threshold, we first express
this problem in its most general form as follows.

P1 : maximize
t

t ,

subject to R(K) ≥ R̄ , ∀ K ∈ Kt ,

where the set Kt is defined as

Kt = {K � 0 : Tr(K) ≤ t} . (5)

In the foregoing problem, the rate requirement must be sat-
isfied for all interference covariance matrices in Kt. Since
R(K) is convex in K, this means that P1 has an infinite
number of non-convex constraints, which makes the problem
very difficult to solve in its current form. Nevertheless, we
show in the following lemma that the solution of P1 can be
obtain by solving a convex optimization problem with a finite
number of constraints.

Lemma 1. P1 is equivalent (in terms of optimal solution) to
the following convex optimization problem.

P2 : minimize
t,K

t ,

subject to R(K) ≤ R̄ , (6)
K ∈ Kt . (7)

Proof: Please refer to Appendix A.
Problem P2 computes the IT by considering only the worst-

case interference covariance matrix, i.e., that with the spatial
structure that is the most detrimental for the primary receiver.
Hence, if the rate constraint is guaranteed for the worst case,
it will also be ensured for any other interference covariance
matrix satisfying the IT constraint. Furthermore, we show in
the following theorem that P2 admits a multilevel waterfilling
solution.

Theorem 1. The worst-case interference covariance matrix,
which is solution of P2, is given by

K? = ΓΛΓH , (8)

where Γ is a unitary matrix containing the singular vectors of
HQHH , and Λ is a positive diagonal matrix whose elements
are given by a multilevel waterfilling as

λi =

[√
φi

(
1

4
φi + µ

)
−
(

1

2
φi + σ2

)]+

, (9)

where φi is the ith singular value of HQHH and µ such that
the rate constraint is satisfied with equality.

Proof: Please refer to Appendix B.
In Theorem 1, the worst-case interference directions are

derived, which correspond to the PU transmit eigenmodes.
Also, the worst-case interference power along each direction
is given in (9), whose form can be explained by looking at the
derivative of the rate with respect to λi, which is given by

∇λiR(K?) =
1

log 2

φi
(σ2 + λi) (σ2 + λi + φi)

. (10)

Plugging (9) into this expression, and assuming λi > 0, we
obtain

∇λi
R(K?) =

1

µ log 2
, (11)

i.e., the derivative of the rate with respect to each non-null λi
is equal and inversely proportional to µ. In other words, the
optimal solution in (9) yields a point such that the variation of
the rate of each PU signal mode with respect to its interference
power is equal. Therefore, since (10) decreases with λi, any
other interference power distribution with the same sum will
increase the achievable rate.

In order to obtain the optimal value of µ in (9), we first
notice that λi increases monotonically with µ and, conse-
quently, the achievable rate (right-hand side of (3)) decreases.
Furthermore, µ can be bounded as follows.

Proposition 1. Let us assume that φ1 ≥ φ2 ≥ . . . ≥ φN . The
value of µ in (9), such that the rate constraint (6) holds with
equality, can be bounded as

max

σ2

(
1 +

σ2

φ1

)
, φN

2
R̄
N(

2
R̄
N − 1

)2

 ≤ µ ≤ φ1
2

R̄
N(

2
R̄
N − 1

)2 .

(12)

Proof: Please refer to Appendix C.
These observations permit the application of one-

dimensional search methods, such as bisection or golden
section, to obtain µ.

III. NUMERICAL EXAMPLES

In this section we provide some numerical examples to
illustrate our findings. We consider that each entry of the
channel matrices are independent and identically distributed
(i.i.d.) as CN (0, 1). The transmit powers are set to 1, thus
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Fig. 1. Average IT for different systems as a function of the loading factor,
α.
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Fig. 2. Average IT for different systems as a function of R̄.

the signal-to-noise ratio (SNR) is defined as log10
1
σ2 , where

σ2 is the noise variance, and we fix it to 20 dB. Without loss
of generality, we assume that the PU performs the optimal
strategy (in the absence of interference), i.e., singular value
decomposition (SVD) of its direct channel and waterfilling
power allocation [12]. Unless otherwise stated, we consider the
rate constraint as a function of the point-to-point capacity (i.e.,
in the absence of interference) for each channel realization
as R̄ = αR(0), where α ∈ [0, 1] is the so-called loading
factor. All results are averaged over 1000 independent channel
realizations.

In Fig. 1 we plot the maximum IT, obtained according to
Theorem 1, for different antenna configurations as a function
of α. Note that, for each value of α, the rate requirement is
higher for those systems whose capacity is also higher. We
first observe that the curves behave similarly with α. Second,
systems with a higher number of antennas tolerate higher

5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

R̄ [b/s/Hz]

t

 

 

5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

R̄ [b/s/Hz]

t

 

 
Optimal
Suboptimal (4)

2x2

4x4

Fig. 3. Average IT for different systems as a function of R̄. The suboptimal
value (4) obtained in [11] is also depicted for comparison.
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Fig. 4. Average IT per signal mode for a 3× 3 PU as a function of α.

amounts of interference in order to ensure the same percentage
over their capacity. Also, the stringency of the IT becomes
more notable when α goes from low to medium and high
values (i.e., the slope of the curves is more prominent for low
values of α). Alternatively, we plot in Fig. 2 the optimal IT as a
function of R̄, when this is fixed independently of the capacity.
Clearly, increasing the number of antennas, with R̄ being fixed,
provides a huge increase of the IT, as the additional antennas
are solely used to relax the IT limit. In Fig. 3, the maximum IT
obtained from Theorem 1 is shown for 2×2 and 4×4 MIMO
systems as a function of R̄, and compared with the bound
given in (4). As shown in the figure, not using the maximum
IT may yield pessimistic or too conservative results, specially
when the PU is not highly loaded.

Finally, we depict in Fig. 4 the average IT per signal mode,
λi, as a function of α. Interestingly, all of them are non-null
in almost the whole α regime.
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Fig. 5. Average rate of a SU constrained by the IT as a function of α.

A. Secondary rate maximization

We finally illustrate the usefulness of our result with a
practical example. Consider a single SU coexisting with a PU
that has a rate constraint as in (3). For simplicity, and without
loss of generality, let us assume that there is no interfering
link from the primary transmitter to the secondary receiver.
Consider also that the number of transmit and receive antennas
is equal for both PU and SU and is given by N . The secondary
transmit covariance matrix that maximizes the SU rate can be
found by solving the following convex optimization problem.

P3 : maximize
P

log2

∣∣∣∣I +
1

σ2
FPFH

∣∣∣∣ ,
subject to Tr (P) ≤ 1 ,

P � 0 ,

Tr
(
GPGH

)
≤ t ,

where F ∈ CN×N and G ∈ CN×N are SU-SU and SU-PU
channels, and P ∈ CN×N is the transmit covariance matrix of
the SU. Notice that the last constraint in P3 is the IT constraint
to ensure that the PU meets its minimum rate requirement.
Since this problem is convex, it can be efficiently solved by
standard numerical methods [13]. For this scenario, we plot in
Fig. 5 the average achievable rate of the SU as a function of
α, for N = 2 and N = 4 antennas. We observe that there is a
significant rate difference between using the optimal IT limit
and the suboptimal threshold given by (4), which becomes
more prominent as the number of antennas increases.

IV. CONCLUSION

In this paper we have addressed the problem of obtaining the
IT limit for a MIMO PU that has a rate constraint. As opposed
to the single-antenna case, the mapping between interference
power and achievable rate is not unique, since the spatial
structure of the interference also affects the rate of the PU.
Hence, the IT limit must be chosen in such a way that the
rate is ensured independently of the spatial signature of the

interference. To this end, we have shown that it is sufficient
to obtain the worst-case interference covariance matrix, whose
structure has been also derived and expressed in closed-form.
These results allow to efficiently compute the optimal IT limit,
which permits a better analysis of underlay CR networks and
a correct assessment of alternative approaches to IT.
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APPENDIX A
PROOF OF LEMMA 1

Let t?1 and t?2 be the optimal solution of P1 and P2,
respectively. Clearly t?2 ≤ t?1, which implies Kt?2 ⊆ Kt?1 . Let
K1 ∈ Kt?1 be such that R(K1) = R̄; and K2 ∈ Kt?2 such that
R(K2) = R̄. Now take K̃ =

t?1
t?2

K2. It is clear that K̃ ∈ Kt?1
and K̃ � K2. As R(A) ≥ R(B) for A � B, we obtain
R(K̃) ≤ R(K2) = R̄. Since R(K) ≥ R̄ for all K ∈ Kt?1 ,
K̃ = K2 must hold, implying t?1 = t?2, which concludes the
proof.

APPENDIX B
PROOF OF THEOREM 1

Let HQHH = ΞΦΞH and K = ΓΛΓH be the singular
value decomposition (SVD). Since the directions of K only
affect the rate constraint, it is clear that Γ = Ξ must hold for
the optimal solution of P2. Taking this into account, P2 can
be reduced to

P̃2 : minimize
{λi}Ni=1

N∑
i=1

λi ,

subject to
N∑
i=1

log2

(
1 +

φi
σ2 + λi

)
≤ R̄ , (13)

λi ≥ 0 , i = 1, . . . , N , (14)

Since this problem is convex and satisfies the Slater’s condition
[13], its optimal solution can be found by solving the dual
problem. To this end, let us consider the Lagrangian of P̃2,
given by

L
(
{λi}Ni=1, {νi}Ni=1, µ̃

)
=

N∑
i=1

λi+

µ̃

[
N∑
i=1

log2

(
1 +

φi
σ2 + λi

)
− R̄

]
−

N∑
i=1

νiλi , (15)

where µ̃ and νi (i = 1, . . . , N ) are the Lagrange multipliers
of (13) and (14), respectively. Then, the Karush-Kahn-Tucker



(KKT) conditions for this problem read
N∑
i=1

log2

(
1 +

φi
σ2 + λi

)
≤ R̄ , λi ≥ 0 , i = 1, . . . , N ,

(16)
µ̃ ≥ 0 , νi ≥ 0 , i = 1, . . . , N , (17)

µ̃

[
N∑
i=1

log2

(
1 +

φi
σ2 + λi

)
− R̄

]
= 0 , (18)

νiλi = 0 , i = 1, . . . , N , (19)

∇λiL
(
{λi}Ni=1, {νi}Ni=1, µ̃

)
= 0 , i = 1, . . . , N . (20)

As strong duality holds, the optimal λi, µ̃ and νi must satisfy
the foregoing conditions. By evaluating the last one we obtain

∇λi
L
(
{λi}Ni=1, {νi}Ni=1, µ̃

)
= 1−

µ
φi

(σ2 + λi) (σ2 + λi + φi)
− νi = 0

⇒ λi =

√
φi

(
1

4
φi +

µ

1− νi

)
−
(

1

2
φi + σ2

)
,

(21)

where µ = µ̃
log 2 . Due to condition (19), we have that νi =

0 ⇔ λi > 0 and νi > 0 ⇔ λi = 0, which, combined with
(21), yields (9) and concludes the proof.

APPENDIX C
PROOF OF PROPOSITION 1

First, it can be easily checked that φ1 ≥ φ2 ≥ . . . ≥ φN
implies λ1 ≥ λ2 ≥ . . . ≥ λN . Now consider the following
lower bound on the achievable rate
N∑
i=1

log2

(
1 +

φi
σ2 + λi

)
≥ N log2

(
1 +

φN
σ2 + λN

)
. (22)

In the optimal point, the achievable rate is equal to R̄, hence
the lower bound in the right-hand side of (22) satisfies

N log2

(
1 +

φN
σ2 + λN

)
≤ R̄ ⇒ λN ≥

φN

2
R̄
N − 1

− σ2 .

(23)
Combining the right-hand side of this expression with (9)
yields√

φN

(
1

4
φN + µ

)
− 1

2
φ1 − σ2 ≥ φN

2
R̄
N − 1

− σ2

⇒ µ ≥ φN
2

R̄
N(

2
R̄
N − 1

)2 . (24)

On the other hand, we also have λi ≥ 0. Thus, taking λ1 ≥ 0
we obtain

λ1 ≥ 0 ⇒

√
φ1

(
1

4
φ1 + µ

)
≥ 1

2
φ1 + σ2

⇒ µ ≥ σ2

(
1 +

σ2

φ1

)
. (25)

The lower bound on µ is then obtained combining (24) with
(25).

Similarly, the achievable rate can be upper-bounded as
N∑
i=1

log2

(
1 +

φi
σ2 + λi

)
≤ N log2

(
1 +

φ1

σ2 + λ1

)
. (26)

Again, since at the optimal point the achievable rate is equal
to R̄, we have

N log2

(
1 +

φ1

σ2 + λ1

)
≥ R̄ ⇒ λ1 ≤

φ1

2
R̄
N − 1

− σ2 , (27)

which, combined with (9), yields√
φ1

(
1

4
φ1 + µ

)
− 1

2
φ1 − σ2 ≤ φ1

2
R̄
N − 1

− σ2

⇒ µ ≤ φ1
2

R̄
N(

2
R̄
N − 1

)2 , (28)

and concludes the proof.
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