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Abstract—In this paper, we study coexistence issues between
an underlay single-beam interference channel (IC) and a primary
point-to-point link (PPL) that has a rate constraint. We derive
spatial shaping constraints at the secondary transmitters and
show that they generalize the so-called interference temperature
(IT) when the PPL transmits multiple streams. We propose a
successive convex approximation algorithm to compute the spatial
shaping matrices that maximize the allowed transmit power of
the IC while ensuring the rate constraint of the PPL. Then,
we provide general interference leakage minimization (MinIL)
and maximum signal-to-interference-plus-noise ratio (MaxSINR)
algorithms that can incorporate both types of constraint. An
additional power control step is included in the optimization
procedure to further improve the sum-rate of the IC. Different
numerical examples are provided to illustrate the effectiveness
of the proposed techniques and to compare the performance
improvement when the IC is subject to spatial shaping constraints
in comparison to IT.

Keywords—Cognitive radio, interference channel, interference
shaping, interference temperature, precoding design

I. INTRODUCTION

The deployment of heterogeneous networks (HetNets) is
a promising solution for increasing capacity, flexibility and
reducing the costs for future cellular networks. In these sce-
narios, the use of proper interference management techniques
is crucial for an efficient utilization of the scarce radio re-
sources. Following the cognitive radio (CR) paradigm [1], [2],
underlaying networks are allowed to coexist with the primary
or legacy network as long as a given performance at the latter
is ensured. Thus, the so-called interference temperature (IT)
has been proposed as a way to measure and constrain the
interference level generated at the primary by the underlaying
networks.

In this paper, we focus on coexistence issues between
an interference channel (IC) and a legacy point-to-point link
(PPL) that has a given rate constraint. This model can repre-
sent, for instance, a device-to-device (D2D) communication
network underlaying a cellular network (see, e.g., [3] and
references therein). The IC, as an independent network, has
received much attention in the last few years. In this scenario, a
novel approach called interference alignment (IA) [4]— [6] has
recently been proposed to manage interference and achieve the
maximum degrees-of-freedom (DoF), which asymptotically
approach the sum-rate capacity. Following these lines, many

interesting results about performance limits have been provided
[7]- [10], and many different algorithms have been proposed
for designing linear precoders and decoders [11]- [18]

On the other hand, the IC in the context of CR has been
also widely studied in the literature [19]— [24]. The achievable
DoF of a cognitive IC that coexists with a PPL are studied in
[19]. If the legacy user performs the optimal strategy, namely,
singular value decomposition (SVD) and waterfilling power
allocation, some eigenmodes may be left unused, in which
the IC opportunistically confines the transmitted signals. On
the other hand, it is shown in [20] and [21] that primary
cooperation by means of interference suppression decoding,
can lead to a significant improvement of the achievable sum-
rate of the IC with negligible primary rate reduction. A non-
iterative IA scheme is proposed in [22], in which the IC is
also constrained to cause zero interference to the primary.
An IC constrained by IT is studied in [23], where an IA
algorithm that minimizes the interference leakage (IL) subject
to the IT constraint is proposed. The algorithm proposed
in [23] follows the alternating optimization approach, and a
semidefinite relaxation programm (SDP) is solved at each step.
The authors also provide an extension in [24] to deal with
channel uncertainties and to take the desired channel of the
secondary users also into account. Coexistence issues have
been also considered for other secondary networks, such as
single-input single-output (SISO) or multiple access channels
(MAQ). See, e.g., [25] and [26] and references therein.

In this paper, we consider an underlay IC that coexists with
a PPL that has a rate constraint.! We first show that, when
the primary link transmits multiple streams, constraining the
spatial structure of interference [28] is crucial for the IC to
achieve good sum-rate performance. To this end, we derive
transmit shaping constraints at the secondary transmitters and
show that they generalize the IT constraints for single-beam
secondary networks. A successive convex approximation al-
gorithm is then proposed to obtain suitable shaping matrices
and the minimum interference leakage (MinIL) and maximum
signal-to-interference-plus-noise ratio (MaxSINR) algorithms
[11] are extended to incorporate such constraints. An additional
power control step based on gradient descent is introduced to
enhance the sum-rate of the IC.

The rest of the paper is organized as follows. Section II

'We have performed a preliminary study in [27].
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Fig. 1. Considered scenario comprised of a secondary interference channel
(IC) and a primary point-to-point link (PPL). Spatial shaping is used to control
the interference generated at the PPL by the secondary network.

describes the system model. The spatial shaping constraints
are discussed in Section III and the proposed algorithm is
presented. In Section IV, the MinIL. and MaxSINR algorithms
are extended to include shaping constraints, and simulation
examples are provided in Section V. Finally, Section VI
summarizes the concluding remarks.

II. SYSTEM MODEL

We consider a K -user single-beam multiple-input multiple-
output (MIMO) IC that coexists with a MIMO PPL, as
depicted in Fig. 1. Under this setting, and denoting by N;
and M; the number of antennas at receiver ¢ and transmitter
7, respectively (i,7 = 0,...,K, where 7,7 = 0 denotes
the primary user), the signal received by each user can be
expressed as

K
yizuf{ ZHijVij + HopoVosg + n; ,i=1,...,. K
j=1
(D
K
Yo = Uéf H()()V()So + Z HojVij “+ ng s (2)

j=1

where H;; € CNixM; is the MIMO channel between trans-
mitter j and receiver i, Uy € CNoXd0 and V, € ¢Moxdo
are the decoding and precoding matrices of the primary user,
respectively; u; € CVi*! and v; € CMi*! are the decoding
and precoding vectors of the ith secondary user, respectively;
n; € CNi*1 ig the noise at receiver i which is assumed to
be distributed as CA(0,021) and sy € C%*1, s; € C are the
symbols transmitted by the primary and the jth secondary user,
respectively. We follow the notation in [29] and refer to this
secondary network as Hle(Mk x Ni, 1).

Let us assume that the primary user is oblivious of the
actual interference covariance matrix and performs the optimal
transmission strategy in the absence of interference, namely,
SVD and waterfilling power allocation [30]%. Thus, its achiev-
able rate as a function of the aggregate interference covariance
matrix, Q, is given by

RppL. (Q) = log det (I -+ (O—QI + Q)_l ES) , 3)

where g is a diagonal matrix. Without loss of generality,
the minimum rate constraint can be therefore expressed as
Rppr, (Q) > (1 — a) Rppr, (0), with a € [0, ].]

An interesting issue that comes up at this point is related
to the knowledge that each network has about the other one
and how they cooperate with each other. In this work we
consider that they have limited knowledge about each other and
hence the required overhead is reduced as much as possible.
More specifically, each secondary user only needs to know its
transmit covariance constraint in order to optimize its transmit
direction, whereas the primary user requires the local channels,
H;, in order to select suitable constraints.

III. SPATIAL SHAPING CONSTRAINTS

In this section, we derive shaping constraints [28] for the
secondary network to ensure that the rate requirement at the
primary user is satisfied. We assume that the constraints are
obtained by the PPL receiver and are sent to the IC through a
feedback link. Typically, IT constraints are used to control the
total interference power that the secondary users generate at
the primary receiver. When the PPL uses a single-beam scheme
there is not much left to do. However, in the multi-stream case,
how the interference is distributed among the different streams
strongly affects the achievable rate of the PPL. To this end,
we will constraint the transmit covariance of each secondary
user as

vivil <8, j=1,....K 4)

where < stands for the Lowner ordering, i.e., A < B means
that B — A is positive semidefinite; S; € Siwj is the spatial
shaping constraint of the jth secondary transmitter and S j_v is
the set of IV x N positive semidefinite matrices. By imposing
constraints as given by (4), the transmitted signal of each
secondary users is spatially restricted by limiting or even
forbidding (if S; is rank deficient) the signal power in some
directions. The spatial shaping matrix, S;, must be selected
such that the rate requirement at the primary user is ensured
for all transmit directions satisfying (4). The following lemma

2Note that some streams may remain unused due to the waterfilling power
allocation.



establishes the connection between spatial shaping and IT
constraints.

Lemma 1: Let S; € Sj\_/lj and v; € CMi*1, Then VjvjH =<
S; holds if and only if VJHS;1VJ- <1

Proof: Tt is easy to see that vjvf = S; is equivalent
to )\max(S;lvjvf) < 1, where Apax(-) denotes maximum
eigenvalue. Since this matrix is rank-one, its maximum eigen-

value is given by vJH S;lvj, which concludes the proof’. m

Corollary 1: The IT constraint is equivalent to the spatial
shaping constraint vjvf =< pj(Hé{onU{f{HOj)_l, where p;
is the IT for user j.

The above corollary shows that the IT constraint is equivalent
to a fixed spatial shaping, which suggests that (4) is in fact a
generalization of the traditional IT constraint. Therefore, the
algorithms that we propose in this paper can be applied to IT
constraints by replacing S; with p;(H{;UoU{ Ho;)~".

To obtain suitable spatial shaping matrices, S;, we can
consider the following optimization problem

K
Py  maximize Tr (S;) ,
{Sj}{(ﬁQ Jz:; ( J)
subject to Rppr (Q) > (1 — Oé) Rppr (0) R 5

K
> U'H,;SH{ U = Q,
j=1
0<S;<PI,j=1,...,K,

where P; is the power budget of the jth transmitter. In Py, the
total allowed transmit power of the IC is maximized subject to
the rate constraint of the PPL. This problem, however, is non-
convex due to (5), which makes the problem difficult to solve.
In [31], an optimization framework for finding local optima
of non-convex problems was proposed, based on convex ap-
proximations of the non-convex constraints. The key idea is to
replace the non-convex constraints by a convex approximation
at a given point, and solve the resulting convex problem.
Doing this iteratively the method is shown to converge to
a local optimum of the original non-convex problem. This
approach, although being effective, may suffer from slow
convergence depending on the complexity of the function to be
approximated. In order to alleviate the computational demands
of such successive convex approximation algorithms, we make
a first approximation on the rate constraint (5) to reduce the
number of variables and to simplify the rate function, by
constraining the interference covariance matrix to be diagonal,
ie.,

Q=CeD{, (6)

where Df denotes the set of N x N diagonal matrices with
positive elements. Therefore, the rate achieved by the primary
user as a function of C can be expressed as a sum of loga-
rithms, simplifying the rate constraint (5) and, consequently,
easing the application of a successive convex approximation

3Notice that if S; is rank deficient, there are some transmit direction in
which user j is not allowed to transmit. In this case we have g/’ Ej_lgj <1,
where 33; is a diagonal matrix containing the non-null eigenvalues of S; and
vj = F;g;. with F; being the eigenvectors of S; associated to the non-null
eigenvalues.

algorithm. On the other hand, when we constrain the interfer-
ence covariance matrix, Q, to be diagonal, the Léwner ordering
in P can be replaced by a more convenient matrix partial
ordering that expands the feasible set as much as possible. To
this end, we consider the following partial ordering

K
> UlHy;S;H{ U, =p C, @)

J=1

where A <p B means (A);; < (B)y, for all 4, with (A);;
denoting the ¢th element of the diagonal of A. Note that
=p establishes a partial order on Sfrv since it is reflexive,
antisymmetric and transitive [32]. As we show in the following
lemmas, the partial ordering (7) increases the size of the
feasible set without affecting the rate of the primary user.

Lemma 2: Let L={Qe Sl : Q=<C}and G ={Q¢
Sf“ : Q =<p C} for a given C € Dﬂlro. Then £ C G.

Proof: Suppose that Q < C for a given Q. Therefore,
all Qa < a’Ca, for all a. Setting a an all-zero vector with a
one in the ith entry, it is clear that Q =<p C also holds, which
proves that £ C G. To prove that £ is strictly a subset of G,
suppose that Q =p C for a given Q, i.e., (Q); = (C);; for
all 7. As the eigenvalues of any Hermitian matrix majorize its
diagonal [33], it turns out that Q A C, which concludes the
proof. [ ]

The foregoing lemma shows that the partial ordering (7) is
less strict than the Lowner ordering. Furthermore, as shown
by the following lemma, it can also be used to ensure the rate
requirement of the primary user.

Lemma 3: Let Q € Si“ be any matrix such that Q =<p
C, for a given C € Di‘). Then Rpp.(Q) > RppL(C), where
RppL(+) is given by (3).

Proof: To prove the lemma, we must show that the off-
diagonal elements of QQ do not reduce the achievable rate when
its diagonal is fixed. To this end, let us consider that Q =p C,
i.e., Q = C+0O, where O is any off-diagonal Hermitian matrix
such that C + © = 0. Notice that, if Rpp.(Q) > Rppr(C)
holds for all ©, then Rpp (Q’) > Rppr(C) for any Q' <p Q.
The lemma is therefore proved if the following holds

det (T+(C+©) 7' 5g) > det (1+C ') . (®)

Applying the determinant identities det(AB) =
det(A) det(B), for any squared matrices A and B, and
det(A™!) = 1/det(A); the foregoing expression can be
equivalently given by

det (C+ =g+ ©)
det (C + Es)

det (C + @)
ot (C)

©)

As det(A) < [],(A);, with equality only when A is diagonal,
and Xg is a diagonal matrix with positive entries, (9) holds
for any ®, which concludes the proof. [ ]

Finally, using Lemma 2, it is easy to see that the transmit
covariances satisfying (4) also satisfy (7) for all S; such that

SN UHy,S; HI Uy <p C.



Set f7*5? =0, kK = 0 and a tolerance, ¢; where f7*5§ denotes

the optimal value of PF.
Choose an initial point C° = Cjy.
repeat
) k=k+1.
2)  Update the power allocation at the PPL by water-
filling, taking C*~! into account.
3) Replace (10) by its first order approximation at
C*~! to obtain Pf, and solve this convex problem.
until f%f — [ S e

Algorithm 1: Successive convex approximation algorithm for
finding local optima of P;.

Finally, using (6) and (7), P; can be approximated by

K
Py :  maximize Tr (S;) ,
{s;}.C ; ’

Rppr. (C) > (1 — ) Rppr (0) ,  (10)

subject to
K
> UHyS;H{ Uy <p C,
j=1

0<S,<PI,j=1,.. K.

Although P; is still a non-convex optimization problem, the
first approximation of the rate constraint (10) facilitates the
application of successive convex approximation methods. This
is due to the fact that, as we have already pointed out, the
rate function in (10) can be expressed as a sum of logarithms
and depends on less variables than (5) (recall that C is a
diagonal matrix), leading to less computational complexity
and a less number of local optima. Following the optimization
framework in [31], the rate constraint (10) is replaced by its
first-order approximation at a given point, resulting in a convex
problem. Doing this iteratively yields a sequence of convex
approximations of P;, {PX}, that can be solved efficiently
using standard numerical methods. The proposed successive
convex approximation algorithm is described in Algorithm 1.
Note that we have included a waterfilling step in Algorithm 1
to optimize the worst-case rate of the PPL, thus increasing the
total allowed transmit power of the IC.

To obtain a good initial point for Algorithm 1, Ciy, we
propose the following optimization problem

Tr (Cinil) )

Rppr, (Cinit) > (1 — «) Rppr, (0)
0 j Cinit j Cmax )

where (Cpax)ii = (Z;il P;U{H;H{Up)s; and zeros
elsewhere. In P, the allowed interference power at the PPL
is maximized subject to the minimum rate constraint and
an additional constraint that bounds the maximum allowed
interference level at each stream to the worst case, which is
represented by each entry of Cp,.x. This may occur if the
transmit directions are aligned to the channel eigenmodes from
the secondary transmitters to the primary receiver. To solve this
non-convex problem, we use the ensuing lemma.

P> :  maximize

init

subject to

Lemma 4: Let us denote by C7; = diag(cy,...,cy,) the

optimal solution of P,, where c}k is associated to the jth

Set C = diag(cy,...,cn,) =0and j = 1.
whilej < NO and RPPL(C) > (1 — Oé)RppL(O) do
AR = Rpp (¢j) — (RppL(C) — (1 — a) Rppr(0)).
if AR <0 then
¢j = (Cmax)jyj-
else s
cj = min (% — 0'27 (Cmax)jj)'
end if
j=j+1.
end while
where R}y (a) is the rate achieved by the PPL at mode j
when it experiences an interference power of a.

Algorithm 2: Algorithm for solving P2 and find a good initial
point for Algorithm 1.

weakest mode of Hyg. Then, the following holds

& < (Cmax);; = €41 =0,j=1,...,Ng—1. (1)

Jj

Proof: As Ciy is diagonal, we have Rpp(Cini) =
> 1og[1 4 (Xs)j5/(0” + ¢;)]. The derivative of Rppr (Cinic)
with respect to c¢;, V., RppL, is monotone decreasing and
vchPPL § vcj+1RppL for Cj = C]'Jrl, j = ]., ey N() — 1, i.e.,
the weaker the mode, the more interference power it tolerates
to meet a given data rate. As the interference level is limited
by Cinax, We obtain (11), which concludes the proof. |

The above lemma allows us to find the optimal solution of Po
stream-wise and with a closed-form expression, as detailed in
Algorithm 2.

IV. PRECODING DESIGN UNDER SPATIAL SHAPING

In this section, we propose two different precoding de-
signs that consider the spatial shaping constraint (4). More
specifically, we extend the well-known MinlIL. and MaxSINR
algorithms to obtain precoders satisfying (4), and therefore
guaranteeing the rate of the primary user. Recall that, by
Corollary 1, the IT constraint can also be considered as a
particular case of (4) in the proposed algorithms. Notice that,
in our model, the additional constraint affects only the design
of the precoders, whereas the decoders are optimized exactly as
in the original algorithm*. Hence, we consider in the following
the design of the transmit directions, v;.

A. MinlL algorithm

At each step of the MinlL, the precoders (decoders) are
optimize subject to norm constraints, while the decoders (pre-
coders) are fixed, so that the IL is successively minimized [11].
Therefore, for fixed decoders, the optimal precoder of the jth
transmitter is obtained by solving the following optimization
problem

Ps:  minimize vi'R;v;
J
subject to Vij = Amax(S;) ,
Ha—1
vi'Silv; <1, (12)

4The additional interference from the PPL transmitter can be included in
the interference covariance matrix when computing the decoders.



where R; = Zf;] Hg-uiuf[Hij. Recall that (12) is equiv-
alent to (4) due to Lemma 1. The optimal solution of Ps3 is
formalized in the following lemma.

Lemma 5: The optimal solution of Ps is given by

Vi =\ Amax(Sj)vmin [(1— ) Ry + 5871, (13)

where min(+) denotes eigenvector with minimum eigenvalue
and p; € [0, 1].

Proof: The Lagrangian of Ps is given by
L (vj, iz ;) =vi RV + fi; (viiS; vy — 1) +
77j [)\max(sj) - V]HVj} ) (14)

where 7, /i; > 0 are the Lagrange multipliers of the first
and second constraints of Ps, respectively. Evaluating the
derivative of the Lagrangian with respect to v} we obtain

Ve Z (v, fij, 1) = 0= (R; + 1,87 ") v = n;v; . (15)

The above expression is an eigenvalue problem, whose solution
satisfying the power constraint is given by (13), where ; =

i

1+ |
. Ha-1 .

Since p; € [0,1] and v; S; v, decreases monotonically as

jt; increases, its value can be easily obtained using bisection,
such that (12) is satisfied with equality (if active).

B. MaxSINR algorithm

The MaxSINR algorithm follows the same alternating
optimization approach as the MinIL [11]. Therefore, for fixed
decoders, the optimal precoder of the jth transmitter is ob-
tained by solving the following optimization problem

o viH uul Hyjv;
P, : maximize
Vi vAR,v; + 52
j
subject to viisilv; <1, (16)
where 0% = 02 + |[uf'H;oVl|* and the power constraint is

implicit in (16) (notice that, with the MaxSINR criterion, the
power constraint can be relaxed to an inequality). The optimal
solution of Py is formalized in the following lemma.

Lemma 6: The optimal solution of Py is given by

Vi = Vmax [S (HHuJu Hj; - *RJ')} ) a7
* U 'Y V.
V] — (H uju H]] ,V*RJ) v V] ) (18)

where V.« (+) denotes eigenvector with maximum eigenvalue
and v* is the optimal SINR.

Proof: P4 can be equivalently expressed as

maximize v, (19)
Vi
H H
Hjuju; HH ;v
\& R]VJ + 52

Hqg-1
ijj ngl.

subject to

repeat
1)  Perform one step of the MinIL or MaxSINR algo-
rithm.
2)  Perform the power control to obtain the scaling
factors, ¢;, for j =1,..., K.
3)  Update the maximum transmit power of each sec-
ondary user by setting S; = ¢;S;, for j =
1,..., K.
until Stopping criterion is met

Algorithm 3: MinlL. and MaxSINR algorithms with power
control.

For a fixed value of ~, (19) can be written as a minimization
problem with a SINR constraint as follows

minimize viSitv;, (20)
Vi
H H
. Hjju;uj TH v,
subject to >

\& RJVJ + 42

After some manipulations in the last constraint of the foregoing
problem, the Lagrangian of (20) can be written as

G (v;,B5) = HS \Zhs

B; [U v v (HHuJu H;; — ij)vf],

1)

where ; > 0 is the Lagrange multiplier associated to the last
constraint of (20). Equating the derivative of the Lagrangian
with respect to v} to zero yields

1
Vv:9 (v, 8;) =0=8; (H uju; AH;; —YR;) v; = Evj .

J

(22)
The above expression is an eigenvalue problem, whose solution
achieving the optimal SINR is given by (17) and (18). [ ]

The optimal SINR, v*, can be easily obtained using bisection
as follows. First, it is easy to see that the optimal objective
value of problem (20) increases monotonically with ~, which
make it possible to apply a bisection method to obtain ~*.
Second, 7 is bounded above and below as v € [0,7Y], where
YV = )\,mx(H fuju HH]],R +21), with Adpax (A, B) being
the maximum generallzed eigenvalue of the matrix pencil
(A,B).

C. Power control step

Even when the TA problem is feasible, the IC may achieve
a low sum-rate performance due to the shaping constraint. In
these cases, optimizing the transmit power of each secondary
user may play an important role to increase the sum-rate of
the IC. To this end, we propose a simple centralized power
control based on applying a gradient method at each step of
the alternating optimization algorithm. This method optimizes
the sum-rate of the secondary network as a function of the
transmit powers by means of a gradient descent procedure. To
this end, we express the sum-rate achieved by the IC as

SRIC {¢]}1 Zlog <1+m> , (23)
g1 6ij Pi
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Fig. 2. Achievable sum-rate of the (3 x 2, 1)2 IC with a 3 x 3 PPL for spatial
shaping and IT constraints, and o« = 0.5. Situations with (a) and without (b)
interference coming from the PPL are depicted.

where (;; = |[uffH;;v;|> and 0 < ¢;|v;]|> < P;. The
gradient of (23) with respect to the scaling factors of the
transmit powers, ¢;, is given at the bottom of this page. The
resulting MinIL. and MaxSINR algorithms with power control
are summarized in Algorithm 3.

V. NUMERICAL RESULTS

In this section we provide several numerical examples that
illustrate the performance improvements that can be achieved
by the proposed spatial shaping constraints in comparison to
the traditional IT. In all the examples we consider a (3 x 2,1)3
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Fig. 3. Achievable sum-rate of the (3 x 2, 1)3 IC with a 3 x 3 PPL for spatial
shaping and IT constraints, and ov = 0.1. Situations with (a) and without (b)
interference coming from the PPL are depicted.

IC and a 3 x 3 PPL, and define the signal-to-noise ratio
as SNR = 10log,((1/0?), i.e., we consider the same SNR
for both primary and secondary networks. The entries of the
channel matrices are i.i.d. complex Gaussian random variables
with zero mean and unit variance. All results are averaged over
100 different channel realizations.

Fig. 2 and Fig. 3 show the achievable sum-rate of the IC for
a = 0.5 and a = 0.1, respectively, and for both interference
constraints (spatial shaping and IT). Two different cases are
depicted in the figures: with interference from the PPL (a)
and without interference from the PPL (b). The latter may

Vg y SRic = S

GijGii @i

i i

1ﬂ2<02 + > Cji¢i) {1 + (02 + > Cji(bi)ilgjj(bj} ; 1112(‘72 + > Cik¢k)2 [1 + <02 + > Cikék)71Cii¢i] ,

ki ki

(24)
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Fig. 4. Achievable sum-rate versus « for a (3 x 2,1)3 IC with a 3 x 3 PPL,
for spatial shaping and IT constraints, and SNR = 15dB. In this example,
the PPL does not interfere the IC.

occur in scenarios where the primary transmitter is deployed
far from the secondary network. While with both constraints
the rate of the PPL is guaranteed, the spatial shaping constraint
allows the IC to achieve much higher data rates than the IT
thanks to controlling the spatial interference distribution at the
primary receiver. We also observe that the MaxSINR algorithm
provides significantly better results than MinlIL in the whole
SNR regime. When comparing situations with and without
interference coming from the PPL, we observe that in the
latter case the sum-rate performance is monotone decreasing
from some SNR onwards. This is explained as follows: when
the SNR increases, the effective noise tends to be dominated
by the interference generated by the primary transmitter, thus
avoiding the secondary network to improve any further. This
effect, along with the fact that both interference constraints
become more stringent as the SNR increases, explain the result
observed in the Fig. 2(a) and 3(a).

Now we set SNR = 15dB and show the sum-rate of the
IC as a function of « in Fig. 4. In this example, we assume
that the PPL does not interfere the secondary network. The
same relationship between the algorithms and both interference
constraints as in the previous examples is observed. Also,
IT and spatial shaping constraints attain practically the same
performance as « approaches 1. This is reasonable since, when
« = 1, the IC is not constrained by the PPL. Alternatively, we
consider now different SNR for the primary and secondary
networks, and plot in Fig. 5 the achievable sum-rate of the IC,
for the MaxSINR algorithm, as a function of its SNR when the
SNR of the primary user is kept fixed, and o = 0.5. The figure
shows that, when the primary user experiences high SNR, the
sum-rate of the secondary network decreases, which is owing
to the fact that the waterfilling power allocation at the PPL
tends to assign the power uniformly among the streams, thus
resulting in a more stringent spatial shaping constraint.

VI. CONCLUSION

In this paper we have studied network coexistence between
an IC and a PPL in the context of CR. We have shown that

sum-rate [b/s/Hz]

0 5 10 15 20 25 30
secondary network SNR [dB]

Fig. 5. Achievable sum-rate of the (3 x 2, 1)3 IC for the MaxSINR algorithm
as a function of its SNR, with a 3 x 3 PPL whose SNR is kept fixed at 10 dB,
20dB and 30dB, respectively; and a = 0.5.

controlling the spatial structure of the interference is critical
in order to provide high sum-rate to the IC, while ensuring the
rate requirement at the PPL. We have observed that the spatial
shaping constraint generalizes the IT in single-beam secondary
networks, providing it with more flexibility to design the trans-
mit directions. A successive convex approximation algorithm
has been proposed to obtain the shaping matrices and we
have then extended the MinIL. and MaxSINR algorithms to
incorporate such constraints. An additional power control step
has been included to enhance the sum-rate of the IC. We have
shown through different numerical examples the importance of
controlling the spatial structure of the interference when the
PPL transmits multiple streams.
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