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ABSTRACT

We present a kernel-based recursive least-squares (KRLS) algorithm
on a fixed memory budget, capable of recursively learning a nonlin-
ear mapping and tracking changes over time. In order to deal with
the growing support inherent to online kernel methods, the proposed
method uses a combined strategy of growing and pruning the sup-
port. In contrast to a previous sliding-window based technique, the
presented algorithm does not prune the oldest data point in every
time instant but it instead aims to prune the least significant data
point. We also introduce a label update procedure to equip the algo-
rithm with tracking capability. Simulations show that the proposed
method obtains better performance than state-of-the-art kernel adap-
tive filtering techniques given similar memory requirements.

Index Terms— Kernel methods, machine learning, recursive
least-squares, nonlinear filtering, fixed budget

1. INTRODUCTION

During the past decade there has been a growing interest in kernel
methods, motivated by their successful applications in many fields
such as image processing, biomedical engineering and communi-
cations. Similar to neural networks, kernel methods are universal
nonlinear approximators, but they show the advantage of yielding
convex optimization problems. Popular kernel-based algorithms in-
clude support vector machines (SVM) and kernel principal compo-
nent analysis (KPCA) [1].

An online scenario assumes that data is received as a stream of
input-output patterns {(x1, y1), (x2, y2), · · · }, in which xi is a vec-
tor and yi is a scalar, for i = 1, 2, . . . Notice that we assume a
supervised setting in which input and output data are provided. The
goal of online algorithms is to update their solution in every itera-
tion n, based on the new available data (xn, yn), while maintaining
a low computational complexity. In their classic formulation, kernel
methods are not suitable for online applications, as their functional
representation grows linearly with the number of processed patterns.
This poses both computational as well as memory issues. Therefore,
substantial effort has gone into designing “sparsification” techniques
that curb the growth of the networks constructed by these methods.

Recently a number of kernel adaptive filtering algorithms have
been presented that introduce sparsification procedures similar to the
resource-allocating networks (RAN) proposed by Platt [2]. In [3],
Engel et al. introduce an approximate linear dependency (ALD) cri-
terion that constructs a dictionary of significant patterns based on the
dependency of feature vectors. In [4], Liu et al. propose a criterion
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that measures the information a point can contribute to the learn-
ing system, based on Gaussian process theory. Unlike ALD, this
“surprise”-based criterion also takes into account the output data yi.

As a counterpart to criteria that optimally construct a sparse net-
work, a number of pruning criteria have been developed that discard
redundant patterns from existing large networks. Pruning techniques
have been well studied in the context of neural network design, for
instance in optimal brain damage [5] and optimal brain surgeon [6],
which are based on an analysis of the Hessian of the error surface. In
[7, 8] a number of different, easier to evaluate criteria were presented
to prune least-squares support vector machines (LS-SVM).

A few methods have been proposed that combine growing and
pruning procedures, for instance generalized growing and pruning
(GGAP) [9], the forgetron [10], and sliding-window algorithms [11,
12, 13], which limit the memory to the M newest patterns. These
approaches are interesting with practical applications in mind, such
as implementations on a microchip, since they allow to put an exact
upper bound on the memory size and the number of computations
needed. Moreover, they are capable of forgetting past data, which
makes them suitable for operating in time-varying environments.

The contributions of this paper are threefold. First, we show how
the solution of the kernel recursive least-squares (KRLS) algorithm
can be updated when one new point is added to the support and one
chosen point is discarded. Second, we show how to choose the point
to discard by using a suitable, easy to evaluate pruning criterion.
And third, we introduce a label update procedure that equips the
proposed algorithm with tracking capability.

The rest of this paper is organized as follows. In section 2 we
briefly overview the basics of KRLS, followed by a description of
the proposed method in section 3. The results of two numerical ex-
periments are reported in section 4 and, finally, the main conclusions
of this work are listed in section 5.

2. KERNEL RECURSIVE LEAST-SQUARES

2.1. Kernel Methods

Kernel methods are powerful nonlinear techniques based on a non-
linear transformation of the data xi into a high-dimensional feature
space, in which it is more likely that the transformed data Φ(xi)
is linearly separable. In feature space, inner products can be calcu-
lated by using a positive definite kernel function satisfying Mercer’s
condition [14]: κ(xi, xj) = 〈Φ(xi), Φ(xj)〉. This simple and ele-
gant idea, also known as the “kernel trick”, allows to perform inner-
product based algorithms implicitly in feature space by replacing all
inner products by kernels. A commonly used kernel function is the
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Gaussian kernel

κ(xi,xj) = exp(−‖xi − xj‖
2/2σ2). (1)

In kernel-based regression techniques, a nonlinear mapping is
evaluated as a linear combination of kernels of support vectors xi

f(x) =
N∑

i=1

αiκ(xi,x). (2)

Thanks to the Representer Theorem [1], the nonlinearity f can be
represented sufficiently well by choosing the training vectors as the
support of this expansion.

2.2. Recursive Least-Squares in Feature Space

In an offline scenario where M input-output patterns are available,
the standard kernel-based least-squares (LS) problem [1] can be de-
fined as finding the coefficients αi that minimize

min
α

|y − Kα|2 + λα
T
Kα, (3)

where y ∈ R
M×1 contains the outputs yi of the training data, K ∈

R
M×M is the Gram matrix (or kernel matrix), with elements Kij =

κ(xi,xj), and λ is a regularization parameter which introduces a pe-
nalization on the solution norm and therefore imposes smoothness.
The solution of (3) is found as

α = (K + λI)−1
y, (4)

where I represents the unit matrix.
The goal of kernel recursive least-squares is to update this solu-

tion recursively as new data become available [15]. However, in con-
trast to linear RLS, which is based on the covariance matrix, KRLS
is based on the Gram matrix K, whose dimensions depend on the
number of input patterns, not on their dimensionality. As a conse-
quence, the inclusion of new data into the solution (4) causes the
kernel matrix to grow without bound.

2.3. Curbing the Growth of the Support

Several techniques have been proposed to curb this growth, includ-
ing the ALD criterion [3], the surprise information measure [4] and
sliding-window techniques [11, 12, 13]. These methods assemble a
limited dictionary of input-output patterns (xi, yi) which are used
to construct the nonlinear mapping (2). In order to obtain a con-
fident estimate, these patterns should represent the complete input-
output data distribution sufficiently well. Simultaneously to this se-
lection process, KRLS performs kernel least-squares regression on
these patterns to obtain the optimal nonlinear mapping.

The proposed method builds upon ideas presented in [12, 13],
in which the memory size is fixed to M patterns. However, it takes
a more active role in the building of the dictionary. Specifically,
in every iteration it first adds a new point to the memory, and then it
determines the least relevant data point present in the memory, which
is subsequently pruned. The result of this active learning strategy is
that at any time instant the memory will contain only the M most
relevant patterns seen up till that moment.

3. FIXED-BUDGET KERNEL RLS

An important aspect of online algorithms is that their computational
complexity should be moderate in every iteration. Therefore, one of
the design goals for the proposed method was to obtain a complexity
not higher than O(M2), where M is the number of patterns stored
in memory.

In the following, we describe the different parts of the algorithm,
starting by the algebraic operations necessary to update the KRLS
solution efficiently. The criterion used to determine the least signif-
icant pattern in memory is discussed in section 3.2, and in section
3.3 we propose a simple memory update formula that allows to deal
with time-varying nonlinear mappings. By Kn we will denote the
regularized kernel matrix K + λI obtained in the n-th iteration.

3.1. Update of the Kernel LS Solution

The inversion of the M ×M matrix in (4) is computationally expen-
sive, requiring O(M3) calculations. However, in [12], a matrix up-
date procedure of O(M2) was proposed that allows to compute the
inverse matrix K−1

n given the previous inverse kernel matrix K−1

n−1.

3.1.1. Adding a row and column to the kernel matrix

In the n-th iteration, a new pattern (xn, yn) is first added to the mem-
ory, which corresponds to adding one row and one column to the
kernel matrix Kn−1. We call this operation “upsizing” the matrix,
and the result is denoted as K̆n. Given the inverse matrix K−1

n−1, the

inverse of the upsized matrix, K̆−1
n , can be obtained by calculating

K̆n =

[
Kn−1 b

bT d

]
⇒ K̆

−1
n =

[
K−1

n−1 + geeT −ge
−geT g

]
, (5)

in which e = K−1

n−1b, g = (d − bT e)−1, and b and d contain
kernels between xn and the other points in memory (see [12]).

3.1.2. Removing the i-th row and column from the kernel matrix

In the sliding-window approach from [12], the first row and col-
umn of the upsized kernel matrix K̆n are removed in every iteration,
yielding the “downsized” matrix Kn. The inverse of this matrix can
be obtained efficiently based on the knowledge of K̆−1

n , as follows

K̆n =

[
a bT

b Kn

]
, K̆

−1
n =

[
e fT

f G

]
⇒ K

−1
n = G−ffT /e. (6)

The proposed method requires to remove an arbitrary row and
column of the matrix K̆n. In order to do this, the matrix inversion
formula can be extended by applying a few permutations, based on

Pi =

⎡
⎢⎣

0 0 1 0

0 Ii−2 0 0

1 0 0 0

0 0 0 IM−i+1

⎤
⎥⎦ , Qi =

⎡
⎣0 Ii−1 0

1 0 0

0 0 IM−i

⎤
⎦ ,

(7)
in which Ij is the unit matrix of size j and 0 is the all-zeroes matrix
of adequate dimensions. Notice that P−1

i = Pi and Q−1

i = QT
i .

Algorithm 1 summarizes the steps necessary to obtain the required
inverse matrix. In the first step, the result of pre-and post-multiplying
by Pi is an exchange of the first and i-th row and column. In the last
step, pre- and post-multiplying a matrix by Qi puts its i-th row and
column in front of the others. In practice, these calculations can be
implemented as fast matrix operations.
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Algorithm 1 Procedure to obtain the inverse of a matrix K̆n whose
i-th row and column are removed

Compute K̆i
n = PiK̆nPi and (K̆i

n)−1 = PiK̆
−1
n Pi with (7).

Remove the first row and column of K̆i
n to obtain Ki

n.
Calculate the inverse (Ki

n)−1 by applying (6).
Obtain K−1

n = Qi(K
i
n)−1Qi using (7).

3.2. Discarding criterion

In the n-th iteration, the pattern (xn, yn) is first added to the mem-
ory, which now contains M+1 patterns. The inverse kernel matrix is
updated as described in section 3.1.1, and the regression coefficients
αi can be recalculated according to (4). In this section we discuss
a criterion that determines the least significant of the M + 1 stored
patterns. Once it is found, the kernel matrix is downsized as in Alg.
1, and αi is recalculated through (4).

Ideally, the pruning criterion should take into account the infor-
mation present in the stored input data xi and the stored labels yi. A
simple criterion consists in selecting the pattern that bears least error
after it is omitted. As shown in [7], this error can be obtained as

d(xi, yi) =
|αi|

[K̆−1
n ]i,i

, (8)

which is easily found since α and K̆−1
n have been calculated pre-

viously. Moreover, experiments in [7, 8] show that this criterion
obtains significant better performance than various related criteria.

3.3. Memory Update for Tracking Time-Varying Mappings

The above described procedure is capable of identifying a static
nonlinear mapping, by selecting patterns to store in memory and
performing regression on these patterns. If the nonlinear mapping
changes over time, however, it is likely that the memory contains
patterns that do not reflect the current mapping well. Since regres-
sion is performed only on the memory, these invalid patterns can
remain in the memory and affect the algorithm’s performance.

On the other hand, it is reasonable to assume that after a number
of iterations the input space will be sufficiently well sampled. Since
the change in the observed system’s response is reflected only on
the output data yi, we only need to adjust the outputs stored in the
memory in order to achieve tracking capability. We propose to use
the following update for all stored data labels yi, whenever a new
input-output point (xn, yn) is received

yi ← yi − μκ(xi,xn)(yi − yn), ∀i, (9)

where μ ∈ [0, 1] is a step-size parameter.
The “relabeling” equation (9) takes into account the similarities

in input and output space, measured respectively by the kernel func-
tion and the difference yi − yn. As a consequence, it only affects
patterns xi that are close enough to the new pattern xn in the sense
measured by the kernel. Concordantly, the change in the labels will
be proportional to yi − yn. For instance, if the new point xn coin-
cides with some stored xi and its label yi is very different from yn,
this label will be changed proportionally to the difference yi − yn.
Notice that if μ = 0 this update has no effect, and the algorithm
assumes the observed nonlinear system to be static. The final algo-
rithm is summarized in Alg. 2.

Algorithm 2 Fixed-Budget Kernel Recursive Least-Squares
initialize

Memory = {(x1, y1)}. Calculate K−1

1 and α with (4).
for n = 2, 3, . . . do

Update all stored labels yi with (9).
Add (xn, yn) to memory and obtain K̆−1

n with (5).
if memory size > M then

Determine least significant stored point (xL, yL) with (8).
Prune (xL, yL) from memory and obtain K−1

n with Alg. 1.
end if
Obtain KRLS solution based on updated memory, with (4).

end for
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Fig. 1. Top: Learning curves for one-step prediction on the Mackey-
Glass time-series. Bottom: indices of the patterns stored in memory
by ALD-KRLS (ν = 0.43) and FB-KRLS. Note that the final mem-
ory of FB-KRLS consists of patterns selected over the whole series.

4. SIMULATIONS

4.1. Prediction of a Steady-State Nonlinear Time-Series

In a first experiment we perform one-step prediction on the nonlinear
Mackey-Glass time-series with a number of online algorithms. The
data are corrupted by zero-mean Gaussian noise with 0.001 vari-
ance. The algorithms are trained online on 500 points of this se-
ries, and in each iteration the MSE performance is calculated on
a test set of 100 points. A time-embedding of 7 is chosen, i.e.
xn = [xn, . . . , xn−6]

T and the desired output is yn = xn+1.
The learning curves of the different algorithms are shown in Fig.

1. For the kernel-based algorithms, the Gaussian kernel with σ = 1
and regularization λ = 0.1 is chosen. As a lower bound for the MSE,
the results of the ALD-KRLS algorithm with ν = 0 are included,
which uses a growing memory and has complexity O(n2). For SW-
KRLS and FB-KRLS the memory size is fixed to 50 patterns. It is
remarkable that the FB-KRLS technique obtains results that are very
close to the lower bound. By setting ν = 0.43, ALD-KRLS stores
53 patterns in memory, which is similar to FB-KRLS. Nevertheless,
in this case ALD-KRLS performs worse.
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Fig. 2. Performance on a time-varying Wiener system. In the first
zone (“H1”) all algorithms reach optimal steady-state performance,
and ALD-KRLS and FB-KRLS coincide. After the abrupt change at
iteration 500, only the tracking algorithms are able to recover.

Table 1. Performance comparison of final MSE values.
Algorithm MSE memory size
ALD-KRLS 0.0951 ± 0.1363 16
RLS 0.0084 ± 0.0099 n/a
SW-KRLS 0.0020 ± 0.0087 50
FB-KRLS 0.0012 ± 0.0018 16

4.2. Identification of a Time-varying Nonlinear System

For the second experiment, we consider a nonlinear communications
channel composed of a linear filter followed by a static nonlinearity,
also known as a Wiener system. As the system input we choose a
binary signal, xi ∈ {−1, +1}, and 30dB of white Gaussian noise
is added at its output. The binary input signal is time-embedded
with 4 taps, resulting in the input space showing 16 clusters. The
static nonlinearity is f(x) = tanh(x). During the first 500 it-
erations the linear filter is fixed as H1(z) = 1 − 0.2663z−1 −
0.5541z−2 + 0.1420z−3. On iteration 501, the channel is abruptly
switched to H2 = 1+0.1050z−1−0.3760z−2−0.4284z−3, which
is then changed linearly until becoming H3(z) = 1− 0.4326z−1 −
0.1656z−2 − 0.3153z−3 on the 1500-th iteration.

The algorithms use the following parameters: A Gaussian ker-
nel with σ = 0.1 and λ = 0.01 are chosen for ALD-KRLS and
FB-KRLS. Both methods only require 16 points in their dictionary,
which is obtained for ALD-KRLS by setting ν = 0.1, and for FB-
KRLS by fixing M = 16. ALD-KRLS and RLS use a forgetting
factor β = 0.99, and for FB-KRLS μ is set to 0.8. SW-KRLS uses a
Gaussian kernel with σ = 2 and M = 50. The results, averaged out
over 100 Monte Carlo simulations, are shown in Fig. 2. FB-KRLS
obtains better performance than SW-KRLS, since the latter does not
actively select significant patterns. Moreover, due to the fact that
ALD-KRLS is not designed to be a tracking algorithm, it performs
worst in this experiment. Table 1 displays the MSE averaged out
over the last 500 iterations.

5. CONCLUSIONS

We presented a new fixed-budget kernel recursive least-squares al-
gorithm for online identification of nonlinear systems. To maintain

its memory size, it combines a growing memory with a discarding
criterion previously proposed for LS-SVM. We also presented an ef-
ficient updating method for pruning an arbitrary point from the dic-
tionary, and a label update procedure to provide tracking capability.

The proposed method represents a significant improvement over
the previously proposed SW-KRLS algorithm, and given similar
memory requirements it also outperforms ALD-KRLS. Moreover,
it is capable of tracking changes of a time-varying nonlinear map-
ping. Future research topics include the study of more sophisticated
pruning criteria, and a comparison with other nonlinear trackers.
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