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Abstract—We consider the problem of blind identification and yi[n
equalization of single-input multiple-output (SIMO) nonlinear > h; 1(+)
channels. Specifically, the nonlinear model consists of miple U
single-channel Wiener systems that are excited by a common s[n] —
input signal. The proposed approach is based on a well-known ya[n m
blind identification technique for linear SIMO systems. By > h, f20) > 29[n]
transforming the output signals into a reproducing kernel Hilbert U
space (RKHS), a linear identification problem is obtained, vhich
we propose to solve through an iterative procedure that altmates  Fig. 1.  The block diagram of a SIMO system consisting of twoehér
between canonical correlation analysis (CCA) to estimatehe systems. The proposed method aims to identify the entiréesysand to
linear parts, and kernel canonical correlation (KCCA) to edimate  estimates[n] given only z1[n] and zz2[n].
the memoryless nonlinearities. The proposed algorithm is lde
to operate on systems with as few as two output channels, on
relatively small data sets and on colored signals. Simulains
are included to demonstrate the effectiveness of the proped Which, despite their simplicity, have been used succegsful

(A—> w1l

]
]

technique. in applications including biomedical engineeringl[14]ntwol
Index Terms—Wiener systems, SIMO nonlinear systems, blind Systems [[15], digital satellite communicatioris I[16], thgi
identification, kernel canonical correlation analysis. magnetic recording [17], optical fibore communicatiohs][18]
and chemical processes [19].
. INTRODUCTION A considerable number of techniques have been proposed in

V(gecent years to tackle the problem of supervised identificat
r%f- Wiener systems, both single-input single-output (SISO)
ystems![B],[[20],[121],[22] and multiple-input multipeatput
MIMO) systems [[23], [[24], [[25]. Nevertheless, relatively
gtle research has been conducted on the blind identifinati

LIND identification and equalization have been acti
research topics during the last decades. In digital co
munications, blind methods allow channel identification g
equalization without the need to send known training signal

thus saving bandwidth. While a lot of attention has gone problem. For SISO Wiener systems, some blind identification

the analysis of linear systems, many real-life systemsbsiixhit hni h b d that mak " th
nonlinear characteristics. As a result, the field of norai'me_eC niques have been propose at make assumptions on the

system identification has been studied for many years alhd %ggm ;;gntf;l]l S-ta'[ISttIC.S (Slef’ 122, .Pa(;t tIVE)). .In d partuzjula:, d
remains a very active research area [1], [2], [B], [4]- |, [27] the input signal is required to be independent an

igentically distributed (i.i.d.) and Gaussian. A less rietive

In contrast to linear systems, which can be identifie . ;
uniquely by their impulsg response, there does not ex%qproach was followed by Taleb et al. in 28], where the input

a corresponding canonical representation for all nontine%llgnal is only reqwr-ed FO be. '_"'dj . ) )
systems. Hence, different approaches are followed to paramThe problem of blind identification of nonlinear single-utp
eterize different subclasses of nonlinear systems, ifrmiud Multiple-output (SIMO) systems has also been addressed,
descriptions such as Volterrd [5] and polynomial [6] system@/though only for the class of \olterra models. The SIMO
While these techniques allow for adequate representatid@del can be obtained for instance by measuring a single
of many nonlinear systems, the number of parameters tHRHICe using a sensor array. In[29] it was shown that a
require becomes excessive for high degrees of nonlineafffyité impulse response (FIR) linear filter can perform zero-
or high input dimensionality. Therefore, several authasen fOrcing (ZF) equalization of SIMO Volterra systems under
considered approximating the unknown nonlinear systems @&tain conditions. In'[30] a different technique was pregb

simplified block-based models, including Wiener systenjs [#0F Plind equalization of SIMO Volterra models, based on
[8], which comprise a cascade of a linear filter and a merf€cond-order statistics (SOS), that improved severalcespe
oryless nonlinearity; Hammerstein systerfis [9],][10], whic®f [29], including computational complexity and robustsies
correspond to the inverse configuration; and combinatioRSth Methods require at least three output channels to pera
of both [11], [12], [13]. We will focus on Wiener systems, In this paper we will focus on the blind identification

and equalization of SIMO Wiener systems, as depicted in

The authqrs are with t_he Advanceq Signal Processing Groepaifiment Fig. . We propose a blind technique that requires looser

of Communications Engineering, University of Cantabriantander 39005, restrictions than blind SISO techniques, and that is able to
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identification approach is based on a well-known technique r1[n]

in blind identification of linear SIMO systems [31], [32]. h,

For SIMO Wiener systems the blind identification problem

is more challenging, as it includes nonlinearities. By drayv °" e[

on the framework of kernel methods, however, the problem hy 2 A

can be linearized. Some preliminary results of the proposed

method were presented in [33]. We extend these results with N ) N ,

an identifiability analysis, a general formulation for nipik: linear SIMYO system

outputs, a formulation that exploits identical nonlinées in

each channel and more exhaustive numerical experimentsFig. 2. A linear SIMO system and the corresponding blind iifieation
The rest of this paper is organized as follows: Secfion ¢jagram. Ifh; = hy andhz = hs, the output erroe[n] will be zero.

gives a brief review of blind identification methods for lare

SIMO systems based on SOS. This scenario is extended to R R

SIMO Wiener systems with two output channels in Sedfign IWith respect toh; andh,, where

and generalized to systems with multiple outputs in Section N .

V] Section[V contains a series of numerical experimentd, an z1[n] = ha[n] x 21[n] = ha[n] * (ha[n] * s[n]),

the main conclusions of this work are presented in Se€fion VAnd 2
Throughout this paper the following notation is used: Scala

variables are denoted as lowercase letters,and vectors

\4
=
o

e[n]

z1[n]
]
29[n]

Y
=
=

v
Identification diagram

[n] is constructed in a similar fashion.
In order to solve this minimization problem, we define the

. data matrix
as boldface lowercase letters, defined as column vectors.
Matrices are indicated by boldface uppercase letters, asch xin+L—-1 --- x;[n]
X. Square brackets denote the instance of any variable at time ) . : .
n, or then-th element of a matrix or vectox[n], and a hat X = 3 E 3 , =12
denotes an estimate of a variable, zin+N—1] -+ zyln+ N — L]

1. BLIND IDENTIEICATION OF LINEAR SIMO SYSTEMS By denoting the estimate of the channel impulse response

We start by reviewing the basic blind identification probler1\1/eCt0rs as T

of a linear system with two outputs. The extension to mugtipl h; = |h[0],... AL —1]|
outputs is straightforward, as shown in_[31] andl[32]. The
Signa|s used in this paper are real, a|though the propoébgan be easily verified that in a noiseless case the solution
methods can be easily extended for complex signals. should satisfy
Consider a system that consists of two linear chanhels X hy = X5hy, (2)
and h, that share the same zero-mean input sigsgl], as
depicted in F|g[p Assuming FIR Channe|s, the Output of tHs illustrated in the identification diagram of F 2. Catre

i-th channel can be written as identification is guaranteed when the channiglslo not share
1 any common zeros and the linear complexity of the input
zi[n] = Z hilllsin — 1] = hi[n] * s[n], sequence is sufficiently high [B1]. For real-world signdiis t
=0 is generally satisfied, see [31].

7 . In case the outputs;[n| are corrupted by additive noise,
whereh; = [A[0],..., hi[L —1]]" denotes the impulse re-gq m) cannot be fulfilled in general, and the optimal filters
sponse vector of theth channel.L is the maximal channel j, "4 f, need to be determined by solving an optimization
length (which is assumed to be known), @ndn] + s[n] is the  5roniem. In order to avoid the zero-solutidn — 0, either
convolution betweet; and the input signai[n|. This system ne norm of the filtersh; or the norm of the output signal
can be obtained for instance by oversampling a single “ne_’ﬁrﬁj is typically fixed. A restriction on the filter norm was
channel when the source signal has some excess bandwigth,j in [31] to develop a least-squares (LS) method. With thi

which is the bandwidth occupied by the signal beyond tnﬁstriction, the minimization problerfil(1) becomes
Nyquist frequencyl /2T (see [[34, Section 9.2.1]).

The identification method presented by Xu et al. [in][31], minimize lHX b — Xk H2
which is closely related to linear prediction, exploits the hy.hy 2 [T 2
commutativity of the convolution, in particular subject to Hflle n Hflez -1
ha[n] * (ha[n]  s[n]) = ha[n] * (ha[n] = s[n). Its solution is obtained by solving the eigenvalue problem
This property inspired the design of the identification daag - -
shown in Fig[2, which allows to find estimates of the channels X3 X2 X3 Xy h— ph 3)
h; andhy, by minimizing the following cost function -XTx, X7TX; ’
N N
1 1 i ish b — BT WT ;
J—= sl — zolnll2 = = en]|?, (1) in which h = [h{,h;]" is found as the eigenvector corre-
2 Z' ifn] = z2ln] 2;' il sponding to the smallest eigenvalue.

n=1
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If a constraint is applied on the output signal energy (as f Blind identifiability

[32]), the following optimization problem is obtained We start by pointing out some ambiguities that need to
2 be taken in mind when identifying a SIMO Wiener system.
‘ Throughout this discussion it is understood that any idienti

) ) (4) cation solution is only given up to a set of scalar constants,
subject to [ X;hy|? = [[Xohy||? = 1. which represent scalings of its unknown internal signgls]

: . . . and its source signal[n]. Furthermore, the linear channels
Problem(i) !saganqnlcal correlathn a}nalys!s (CCA) peab| of the SIMO Wiener system should be of length > 1.
whose solution is given by the principal eigenvector of th

i ; . X system with . = 1 represents a degenerate case, as it
following generalized eigenvalue problem (GEV) (see [35])is impossible to identify its nonlinearities: For instaneay

. 1 . .
minimize = HX1h2 — Xsh;
hy,hy 2

0 xXIx,] . XIX, 0 . monotonic transforma.tiorﬂ(-) of its source signal would
XTX o |P= o  xix. | (® allow to construct a different SIMO Wiener system that has
12 1 different nonlinearities,f;(#~'(-)), while having the same

Note that both the LS and CCA-based algorithms requif$!tPut signals. o _ _
knowledge of the maximum channel lengthMore generally, An important observation is that the described system is

the following assumptions are required in order to guamnt@Ot identifiable in general when the input signal is of finite
identifiability [31]: length. In order to prove this statement we will make use

of the concept ofamplitude order based on order statistics:
Given a sequence of samples, we define the amplitude order as
the order of these samples when they are sorted ascendingly,
where samples with identical values are given the same.order
N N SFor instance, the amplitude order of the sequgice, 3, 3] is

Once the channeld; and hy have been estimated by[1,3 2,2]. An interesting property is that if two sequences
solving either one of the eigenvector probleri$ (3) [Or (Shave the same amplitude order there exists a monotonic

system equalization can be performed by applying the zefanctiond(-) that transforms one sequence into the other one.

forcing (ZF) or the minimum mean-square error (MMSE _ . .
algorithm. For the proposed technique we choose to wo mma 1. A SIMO Wiener system with a monotonic invertible

with the constraint based on the output signal energy, aHanlin_e{:\rity is not identifiable in general if its input sigins[n]
its corresponding CCA formulatiof](5), since it reduces tHa of finite length.
noise enhancement problem, especially in the case of ablore Proof: We first show that a SISO Wiener system is not
signals or a small number of observations| [36]. identifiable in general for finiteV. The proof is given by a
simple counterexample. Denote hythe linear channel of a
given Wiener system, by(+) its nonlinearity and byy[n] its
intermediate signal. Considér to be the minimal distance
between any two consecutive ordered samp(e$. Since the
The problem of interest consists of nonlinear SIMO systeimput signal s[n] to this system is of finite length, we can
identification, in which each channel is modeled as a Wienassume thad will be small but non-null.
system. This model can be obtained by using a sensor arrajNow consider an alternative Wiener system with input signal
at the receiving end, given that each individual sensomallo §[n] = s[n]+e[n], linear channeh+v and intermediate signal
to be represented as a Wiener system. In accordance to dhg, wheree[n] represents a perturbation signal ands a
nomenclature used in the literature we call this system a®IMhannel perturbation that is not a scalingloflt is clear that
Wiener system. Fid.]1 displays a system with two outputs, by choosing the perturbations small enough wd,tbut not
encountered for instance in [37]. The output of tita channel zero, the amplitude order of eag| can be made identical to

Al. The linear channels; are coprime, i.e. they do not shar
any common zeros.

A2. The linear complexity of the input signal is at ledgt+
1, whereL is the maximum length of the linear channel

IIl. BLIND IDENTIFICATION AND EQUALIZATION OF
SIMO WIENER SYSTEMS

is obtained as the one of its correspondingn]. Thereforeg[n] andy[n] can
I be transformed one into the other through a functjpm =
_ 6(y[n]). By choosing the nonlinearity of the alternative Wiener
iln] = fi hilllsin =1] | . : i i '
zln] = £ (; sl ]> system to bef(6~1(-)) a Wiener system is obtained that is

different from the given system but whose output sequence

We will restrict the nonlinearitiesf;(-) to be monotonic is identical. Hence, the given Wiener system is not uniquely
and invertible in this work, since the proposed identifati jdentifiable.
method is based on estimating the inverse nonlinearitiesThe previous counterexample can be applied to each branch
This restriction is fulfilled in many practical scenariogrf of a SIMO Wiener system independently. Therefore, if no
instance when the nonlinearities are modeled as saturatifflitional assumptions are made, a SIMO Wiener system is
nonlinearities (which is the case for saturating amplifignsit  not uniquely identifiable when its input signal has finitegém
switch devices in mechanical systems and overflow valves ]
among others — see examples|(inl[22]). While Lemmal[l may seem discouraging, it requires to

Before describing the details of the proposed method viee put in a practical perspective. As the previous example
discuss the identifiability conditions of this system. shows, the norm of the allowed perturbations depends on the
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differencesd between consecutive ordered samples. If tHeexibility of the nonlinearities, the solutions will reqeito be
length N of the input signal grows and the nonlinearitiesestricted in several ways. We will resort to the framework o
become completely excited in their ranges, it is reasonatdernel methods to implement these restrictions and tolinea
to assume that thé&values will shrink. As a result, the normthe problem.
of the allowed perturbations will shrink as well, and hence
the identification error reduces. In the limit case df— oo
the system becomes completely identifiable. Note that tﬁ:e
reason the system is not identifiable in theory for finle = Kernel methods are powerful nonlinear techniques based
is the unrestricted flexibility of the nonlinearities, repented on a nonlinear transformation of the datainto a high-
by 6(-) in the example. If this flexibility is somehow limited, dimensional reproducing kernel Hilbert space (RKHS), in
though, identifiability becomes possible. In a practicaigrio which it is more likely that the transformed datdx) is lin-
this is generally true, as can be motivated by the principtarly separable. In this feature space, inner productseaalb
of parsimony. Therefore, as long as the nonlinearities atglated by using a positive definite kernel function saiisfy
sufficiently smooth, it is possible to identify a SIMO WieneMercer’s condition([38, Chapter 5k(x, x’) = (®(x), (x')).
system using only a finite number of samples. We will moddlhis simple and elegant idea, also known as the “kernel'trick
the nonlinearities as non-parametkernel expansiongsee allows us to perform inner-product based algorithms inihyic
Section[MI=Q), which allow to impose different degrees oin feature space by replacing all inner products by kernels.
smoothness on the nonlinearities without limiting theiag The solution of the resulting linear problem in feature gpac
to any particular model. then corresponds to the solution of the nonlinear problem in
Based on the previous discussion we can formulate a $ae original space. Common kernel-based algorithms irclud
of assumptions, in addition to A1 and A2, that guaranteeipport vector machines (SVM)_[38, Chapter 5] and kernel

Kernel methods

identifiability in most practical situations: principal component analysis (KPCA) [39].
A3. L>1; Thanks to the Representer theorem|[40], a large class of
A4. The nonlinearities are invertible and monotonic; optimization problems in RKHS have solutions that can be

A5. N > 1 and eachf;(-) is sufficiently excited in its range. expressed as kernel expansions in terms of the availakde dat

Appropriate values oV depend on each scenario individuall _Specmcally, it allows us to model a nonlineariy-) as

Specifically, the smoother the nonlinearities of the systim N
lower N can be. As we will see in Sectid V, relatively small y=g(x)=>_ an]x(x,x[n]). (8)
sample sizes are sufficient in practice. n=1

where{x[n]|n = 1,..., N} are the training data. It has been
B. Outline of the proposed method shown that this expansion acts as a universal approximator

We now describe the proposed blind identification methot#1] for sufficiently rich kernels such as the Gaussian kirne
starting with the two-channel Wiener system. The proposed
identification diagram, which has the structure of a mudtipl
input single-output (MISO) Hammerstein system, is pictureor a given set ofN input-output data pairgx[n],y[n]),

in Fig. [3. In particular, since the nonlinearitigg(-) of the Eq. (8) can be written in matrix form as
SIMO Wiener system are assumed to be invertible, they

can be canceled out by applying the inverse nonlinearities y =Ka, 9)
g:(-) = f;1(-) to the system outputs; [n]. If the nonlinearities B T B 7

were known, the problem would reduce to identifying th her&%xj_v .[y[a],.l.(.,y[ll\f]] e _.h[a[ll]""’a[NH , and
linear channelsh; and h,, which is achieved by applying € IS the kernel matrix with elements

r(x, %) = exp(—[x - x'||/20?).

either one of _the discussed linear techniques. Howevergesin Kli, 5] = r(x[i], x[5]). (10)
the nonlinearitiesf;(-) are also unknown, they need to be
estimated jointly with the linear part. As we will see in the sequel, smoothness constraints can

Similarly to the linear scenario, we define the cost functidpe imposed on the represented nonlinearity by restrictieg t
N N norm of . First, though, we outline the proposed optimization
1 1 blem using kernel expansions to represent the estimated
J == z1[n] — zo[n]|? = = 6712, 6 pro_ i 9 P P
2;' ] ] 2;' I ©) nonlinearities.

which uses the identification diagram outputs, defined as

I D. Proposed optimization problem

ziln] = ) ho[l]gr (z1[n —1]), (7)  Consider the output; [n] of the first branch of the proposed
! identification scheme of Fid.] 3. By introducing the kernel
and equivalent forz,[n]. The minimization of Eq.[{6) rep- expansion[(8) into Eq[{7), it can be written as
resents a nonlinear optimization problem, which is gemheral -1 N
hard to solve. In order to avoid trivial solutions such as the 2 [n] = Z ho[l]K1[n — 1, m]éq[m], (11)
zero-solution and overfit solutions caused by an excessive =0

|
—_

Il
o
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nli oo mibl S abl —
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SIMO Wiener system Identlﬁcatlon diagram

Y

s[n]

Y

Fig. 3. A SIMO system consisting of two Wiener subsystemiodieed by the proposed identification diagram in the form dflESO Hammerstein system.

where K; is the kernel matrix of the available data 1) Iteration 1: givena;, obtainﬁi: If estimates of&; and

x1[n] of this branch. The entire output vectat; = ¢&- are given, the output; [n] is
[21[1], z1[2], .. ., 21[N]]* can thus be written as _
_ Ng1[n — 1], (24)
z; = Kiro, Zo:
in which the elements oK, € RN*(LM) are defined as in which the elementgj;[n] are obtained with Eq.[18). In
matrix form, Eq. [(I#) becomes
Kl[nalM+m]:Kl[n_lam]v Z1:Y1ﬁ27
apd ry represents the Kronecker product di, = where then-th row of the matrixY; contains the elements
[h2[0], ..., ho[L — 1]]T and &1 = [a41[1],...,a1[N]]7, from g1 [n] until g1[n + L — 1]. This allows us to rewrite the

minimization problem[(T3) as

minimize || Y1hy — Yohy|?
by bz (15)
subject to || Y1ho||? = || Yohy|? = 1.

r2=f12®d1.

After obtaining a similar expression for the second output
channel, i.ez, = Ksry, the linear optimization probleni(4)

is extended for SIMO Wiener systems as This problem is equivalent to the CCA problefd (4), whose
_ _ solution is found by solving the GE\(5) [44].
minimize  |[Kir; — Kor|? 2) lteration 2: givenh;, obtainé;: If estimates ofh; and
e _ h, are given, we obtain
subject to [Kirs||? = |[Kor|* =1 (12) N
=h®a zaln] = Wiln, mjé[m], (16)

ry = fll R Qa.
L , where the auxiliary variable
For simplicity, we denote this problem as

L—-1

minimize |z — 2] Wiln,m] =Y holl]Kin —1,m] (17)

hy,hs,é1,é0 (13) =0

subject to  ||z1]|? = ||z2* =1, is introduced. In matrix form, Eq[{(16) can be written as
where we have omitted the trivial dependencyzgfand z, z1 = Wiay,
onhy, hy, & anday, see Eq.[(T1). with W, € R¥*¥, By doing so, the minimization problem

(I3) becomes
E. Alternating optimization procedure miéfllirgize W11 — Wadnl|® a8)
The optimization problenf(13) is not convex and generally subject to |[W1éy|® = [[Waae|* =1

hard to solve. However, ifx; and a; were available, this
problem would reduce to the easier probléin (4). Equivafent
if h; andh, were known, a similar reduction would lead t
another optimization problem of the form df] (4) that woul
yield solutions foré&; and as. This suggests an iterative
scheme that alternates between updating the estimatesT-ofFomputational issues and regularization

the linear channel; and the nonlinearity estimate&;. We now discuss some of the computational issues that need
Convergence is guaranteed because each update may eithbe solved to guarantee that the proposed procedure perfor
decrease or maintain the coist[42],1[43]. correctly and efficiently.

which establishes a kernel CCA problem that accounts for the
bstimation of the nonlinearities (). The solution is found by
olving the associated GEV, which is similar fd (5).
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1) Low-rank approximations:Solving a GEV generally Algorithm 1 Alternating KCCA (AKCCA) for Blind Equal-
requires cubic time and memory complexity in terms of thigation of SIMO Wiener Systems
involved matrix sizes, i.eO(N3). Accordingly, if the training  input: Output data sets;[n] of the Wiener system.
set is large, the GEV for Eq[(I18) will pose very large Obtain the decomposed kernel matriggs, see Eq.[(19).
computational requirements. Interestingly however, &kmma- CenterG; with Eq. (22). R
trices usually have a quickly decaying spectruml [45]] [46], initialize: Setg;[n] = z;[n] and construcly;.
which allows to approximate them reliably by a low-rank repeat

decomposition of the form CCA: With given Y, updateﬁi by solving Eq. [(1b).
With new h;, updateW; as in Eq. [(Z1).
K; = G;G/, (19) KCCA: With given W, updatec; by solving Eq. [2B).

With new &;, updatey; as in Eq.[(2D) and construdt;.
whereG € RV** andM < N. Following Eq. [9), we obtain  yntil convergence

A . Apply linear ZF or MMSE equalization og;[n] andh,;.
yi = Gia, (20)  output: s[n]

whereé; now contains a reduced set df expansion coeffi-

clents. - . , . regularization
The auxiliary variables defined in Ed._{17) are replaced by

L l 0o Wi WQ] lall
Wiln,m] = Y holl]Giln — 1,m]. (21) Wiw: 0 G2
1=0  (Wiw 0 & (24)
The new matrice3V,; have dimensiond’ x M, which reduces -7 0 WIW, + | |éao

the complexity of the GEV for EqL{18) t&(M?3). Several

methods have been proposed to retrieve suitable kerneixmafe- Initialization and algorithm overview

decompositions iNO(NM?) time, most notably Nystrom Analogously to many other iterative techniques, the pro-
approximation [[45], sparse greedy approximatidns [46 aposed cyclic minimization algorithm could suffer from lbca
incomplete Cholesky decomposition (ICD) [47]. We will useninima. In practice, local minima can be avoided by means
the latter in the simulations. of a proper initialization technique. A straightforwardtial-

2) Data centering: An important requirement of CCA is ization consists in estimating the initial nonlinearities the
that the input data be centered. For KCCA, this translaties irdentity functiong;(x) = z, and obtaining the initial estimate
the need to center the data in feature space [47]. While ita$ the linear channelk; by solving the linear CCA problem
hard to remove the mean explicitly from the transformed dafd) for the system outputs;[n].
®(x[n]), the approximate kernel matri®G” can be centered In case a more accurate initialization is required, the-opti
easily in feature space by performing the transformation mization problem[{I2) can be solved directly with respect to

r; andr,, after making the necessary modifications to take
G <I _ il) G, (22) into account regularization and low-rank decompositidrie
Kronecker structure can be forced a-posteriori onto thie est
mates ofr; andr; by applying singular value decomposition
(SVD) on them (specifically, on th&/ x L matrices that are
obtained by ordering their elements column-wise).

wherel is the unit matrix and is an N x N all-ones matrix.
This operation simply removes the column means frGm

and can thus be implemented without explicitly calculating The entire alternating technique for two output channels

any N x N m.atrlf:es [43]. ] o ] is summarized in Alg[Jl. We denote this technique aks

3) Regularization:If any of the matricesW; is invertible, ternating kernel canonical correlation analysgAKCCA).
the.GEV [18) does no_t yield a useful solution as it a”OW;‘éssumingL < M, the computational complexity of a single
to find perfect correlation between any two data sets. Thigration of this algorithm is dominated by the KCCA prob-
is a standard issue in KCCA that stems from the unboundggh, |n particular, constructing its matrices and solvihe t
flex!b|llty of the honlmeanhes, Whlch is a property we kge GEV (22) requireO(NM) and O(M?) time, respectively.
avoid (see Sectidn IIA). A straightforward fix is to regrif® |t more than two output channels are present, the proposed
the flexibility of the projectiongy; by penalizing their norms, 41gorithm follows exactly the same course, although theluse

as follows [47], [44]: formulae require to be extended, as shown in the sequel.
minimize  |[W1é: — Wads|2 A Matlab implementation of AKCCA can be obtained at
&y, 60 http://gtas.unican.es/people/steven.

subject to [|[W1é|? + ¢jay|®> = 1 (23)

o o IV. EXTENSIONS
IW2é|” + clléz|” = 1,

A. Algorithm for systems with multiple outputs

where ¢ is a small regularization factor. This yields the The proposed algorithm for systems wihoutputs can be
following GEV, which combines low-rank approximation andxtended to systems with an arbitrary number of outputs, say
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Fig. 4. A SIMO system consisting of three Wiener subsysteand, the proposed identification diagram.

P, in a straightforward fashion. The probleim1(13) is extenddd is a block-diagonal matrix whoséth block on the

from 2 to P outputs as diagonal |szj 1 Yij, i.e.
T V . ...
minimize Z |zi; — 2 Y Y)Y, 0
dl,...,ap,hl,...,hp ,7 1 Dd — : ... : (29)
1757 ' '
25 P v,
(25) 0 .. ijl Y;TFYJ-
subject to Z 25112 = . . . . s
J and h contains the different estimated filterh =

e (b7 hY,... hI]T.

2) Iteratlon 2: Subsequently, the estimates lof are fixed
and new estimates a¥; are obtained by solving
P
minimize Z HWUdz — WjideQ

wherez;; = [z;[1],...,2;[N]]T contains the signat;;[n]
obtained by transforming the output signa(n| by g;(-) and
filtering it by h;. The identification diagram of Fid.l 4 illus-

trates this optimization diagram for the casefoft= 3. While S P4
the energy restriction of probleni_(25) is slightly diffeten Z’Z:’;.l
compared to the restriction of the probleml(13) fasutputs, it b P (30)

was shown in[[32] that they are equivalent for these problems g pject to Z W jé|? + Cz 6% =
The optimization probleni (25) can be solved by extending )
the iterative technique of Ald] 1 to multiple channels. Tsth i#j
end, the problem§(15) arld {23) in Alg. 1 require to be relacghere the auxiliary varlabIeWU are defined as
by their multi-channel equivalents:
1) lteration 1: Given estimates af;, a set of new estimates [, m] Z Byl m]
of h; is found by solving Wij

Again, the m|n|m|zat|on problem[CBO) can be solved by

P
1 H 1 ¥ . I ¢ — ¥ . n . 2 - . . - .
minimize Z Ysh; —Y;h] retrieving the principal eigenvector of the correspondsigV,

hi,...,hp

i’i;:jl which is found as
A (26) R;& = pDj &, (31)
subject to Z Y:h;|* =1, in which
U;l 0 WLWy 0 WIL,Wp
i#y
P : W3, Wi 0 - W5, Wpy
where the elements of the matrick§ are obtained through . _ . (32)
(20). The solution of the minimization proble {26) can be : : - :
found as the principal elqenvectoerf the GEV WL Wip W5L,Wap - 0
Rah = pDah, (27) D, is a regularized block-diagonal matrix whos¢h block
in which on the diagonal iile;#i WIW,;, ie.
YIY, --- YLY P
;) 2 Y1 AiAl SPLOWIWL 0
Y{Y, 0 - YpYo . ) .
Ra=1 | . |, (@8 Di= : s ; +

VIV, YIVe - 0 (33)
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TABLE | TABLE 1l
IMPULSE RESPONSES OF THE LINEAR CHANNELS USED IN THE ESTIMATED IMPULSE RESPONSES IN EXPERIMENT FORN = 256. TOP:
SIMULATIONS. AKCCA (BLIND). BOTTOM: SUPERVISEDKCCA FROM [21]].
i hi[0] hi[1] hi[2] hi[3] hi[4] i h;[0] hi[1] hi[2] hi[3] hi[4]
1 0.4115 0.4165 0.2249 —0.0233 —2.1971 1 0.4145 0.4171 0.2285 —0.0235 —2.1961
2 —-0.5734 0.1021 —0.1259  —0.4176 0.6657 2  —0.5740 0.1034  —0.1303  —0.4153 0.6655
3 1.4255 0.6457 —0.9509 —0.1657 —0.2512 3 1.4271 0.6466 —0.9483 —0.1655 —0.2502
4 0.2846 —0.3880 0.5373 0.7983 0.4093
5  _08769 —03056 —01160 08130  —0.8007 1 0.4115  0.4165 0.2249  —0.0232  —2.1971
2 —0.5742 0.1019 —0.1271 —0.4151 0.6663
3 1.4256 0.6458 —0.9508 —0.1657 —0.2512
A AT AT ATT
anda = [a; ,a;,...,ap]

The parameters of the AKCCA algorithm are set as follows:
B. Algorithm for systems with identical nonlinearities A Gaussian kernel is used with a different kernel widtrfor

| it is k iori that tienonli i each channel. The kernel widths are chosen using Silvesaman’
n some cases it is known a priori tha nonlinearities [49, Section 3.4.2],

fi(-) are identical, for instance if the SIMO Wiener system is

obtained by oversampling a SISO Wiener system. The validity o= AN_%,

of the oversampled model follows from the fact that the SISO . ) ]

system’s nonlinearity is memoryless, and thus it appliehéo 1N Which IV is the number of data points antl= min(d, (g3 —

signal y[n] on a sample-by-sample basis. Therefore, it dods)/1.34) is the _m|n|mum_0f the empirical standard deviation

not matter if one oversamples the internal siggfa (similar ¢ @nd the data interquartile range scaled1b¥4. The kernel

to the linear case of Sectidd I1) or the output signt)]. matrix decompositions from Eq. {[L9) are obtained by apglyin
The knowledge that the nonlinearities are identical can el [47] on the available data;[n]. The precision of ICD

: : _ & _8 L e
exploited to obtain a more accurate estimate. Specifichiy, 1S chosen ad0 %, resulting in values ofi/ within the range
datay = [y7,...,y%]T can be estimated jointly as 10 < M < 50 for all experiments. A standard regularization

coefficient ofc = 10~° is fixed. Convergence of the AKCCA
y = Ga, algorithm is assumed when the change in cost between two

. . _ iterations is less thah0~1©.
whereG = [GT,...,GE]T is obtained by decomposing the

kernel matrix of all datax[1],21[2],...,z,[N]]7 and the . _ o
vector & € RM*! contains the expansion coefficients. Thé. Experiment 1: System identification

matricesRy, (32) andDy, (3) in the GEV problem[(31) |n the first experiment we study the influence of the number

reduce to thel/ x M matrices of data, N, on the identification performance of the proposed
P algorithm. We also compare some results to a related super-
R,= Y W/ W, vised method.
ij=1 An ii.d. Gaussian signal is used as the input td & 3
i#j Wiener SIMO system, with linear channdig, h, and hs
and (from Table[]) and nonlinearitieg;, fo and f3. No noise is
P assumed in first test. We perform system identification with
D; = Z WzTJWw + L. AKCCA for input signals of three different sizesy = 16,
irj=1 N =64 and N = 256.
7 The results of AKCCA are shown in Fifl 5. Each column
We denote this extension of the algorithm as AKCCA-l.  of plots shows the three estimated inverse nonlinearijjes
corresponding to one value fd¥, and the last column shows
V. EXPERIMENTS the estimated impulse responses of the linear channels for

N,= 256. In order to account for the unknown scaling factor

We. now demonstrate the performancg of the propos%t is inherent to Wiener system identification, all estesa
algorithm through a number of computer simulations. S‘:‘Weﬁfi}ere scaled to obtain the same norm as their true values.

dlﬁere_nt SIMO V‘."eﬂer systems are used throughout the§\‘?hile perfect system identification is only possible for sz
experiments. Their linear channels are taken from Table I,

X . _ éignals of infinite length, it is clear that by forcing smoo#iss
which the impulse responses are chosen randofly] € onto the solution through a small amount of regularization

N(0,1). Their nonlinearities are chosen from the fOIIOW'the number of data to reach an acceptable solution is fairly

monotonic invertible functions: low: Reasonable estimates are obtained for> 64 in this

1) fi1(y) = tanh(0.8y) + 0.1y, a smooth saturation; experiment.

2) fa(y) = —0.1sin(3y) — 0.33y, a “stairway” function; Table[Tl displays the impulse responses f§r = 256 as

3) fsly) = 1.5y — 2-5%&:3: a smooth deadzone.  estimated by AKCCA. As a benchmark, we include the esti-
The inverse functions of these nonlinearities can be olesenmates obtained by the supervised KCCA-based identification
in Fig.[8 of the first experiment. algorithm method froni[21] in the lower part of this table.ig'h
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Fig. 5. Estimated inverse nonlinearities and linear chienfoe a1 x 3 Wiener system with different numbers of da¥ Each row shows the estimates for
one branch of the system; the solid line in the first threesplepresents the true nonlinearity, and the dots indicadrtiex versus the estimateg-values.

algorithm is performed in batch mode, on each subchanne
individually. As can be observed, the performance of the ‘
proposed blind algorithm is fairly close to the performance -10/y:
of this related supervised technique. P
In order to study the convergence of the proposed AKCCA 5 _oo -
algorithm we plot its equalization MSE versus the number= \
of iterations in Fig.[b. Equalization is carried out here by<“f>J
performing zero-forcing on the system identification resul =~
previously obtained. In addition to the noiseless scenago

Sl

30r--

-150-§ -

also include results for the case 26 dB SNR. As can be 40

observed, the algorithm typically converges in few itemas. ‘

For the noiseless case, convergence times 8Gldz 64-bit B 20—
Intel Core 2 PC with4 GB RAM running Matlab R2009b 012 3iéra5ti0?,s7 8910 012 3“‘;30‘?157 8910
totaled respectively).34s, 0.46s, 0.72s, 1.67s and3.05s, for (a) no noise (b0 dB SNR

N ranging from64 to 1024, as in Fig[®6.
Fig. 6. Convergence of equalization MSE of AKCCA in expeniné.

B. Experiment 2: Comparison of equalization performance

In the second experiment we examine the performanceRgfrformed after convergence is reached (see Algorlthm 1).
the proposed algorithm on the problem of blind equalizatioffe compare the equalization performance of the following
of SIMO Wiener systems. The length of the source signalgorithms:
is fixed asN = 256. The chosen SIMO Wiener system 1) CCA on linear SIMO system: As a benchmark, we
consists of the channelh;, h, and hs and an identical apply the blind linear CCA-based equalizer with zero-
nonlinearity, f1, in each branch. Since all SIMO branches forcing from [32] on a system that only contains the
share the same nonlinearity, we can compare the performance linear channeld, h, andhs.
of the standard AKCCA algorithm to the performance of 2) CCA on SIMO Wiener system The same blind linear
AKCCA-I, which exploits this property. Different amounts method is applied to the chosen SIMO Wiener system.
of additive Gaussian white noise are added to the output 0of3) AKCCA on SIMO Wiener system: The proposed
the system. In order to perform equalization, zero-fordeg algorithm, applied to the SIMO Wiener system.
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Fig. 7. Equalization MSE of CCA and KCCA-based algorithmslioear Fig. 8. Equalization MSE of AKCCA with a Gaussian i.i.d. irimignal.

SIMO systems and SIMO Wiener systems.

4) AKCCA-I on SIMO Wiener system: The extension of
the proposed algorithm that takes into account that the

TABLE Il
AVERAGE EXECUTION TIMES ON A3GHz 64-BIT INTEL CORE2 PC WITH
4 GB RAM RUNNING MATLAB R200%.

nonlinearities are identical (see Section TV-B). 0dB SNR | 30dB SNR | 60 dB SNR
Fig. [@ shows the equalization MSE, calculated between the 2 channels 0.52s 0.14s 0.11s
true input signal and the estimated input signal. Averages | 3chamnels| — 1.25s 0.40s 0.275
’ 4 channels 2.89s 0.84s 0.63s

are taken ovet00 independent Monte-Carlo simulations. The
results indicate that the proposed algorithms AKCCA and
AKCCA-I show good overall performance, and AKCCA-I

obtains an advantage over AKCCA at high SNR values starti§§enarios. Note also that the computational complexitjesca
at 40 dB. cubically with the amount of subchannels of the system, see

Section 1M-G.
C. Experiment 3: Influence of input characteristics and num- 2) Colored input signal:in a secqnd tes_t we _study the
ber of output channels performance of AKCCA when the input signal is colored.

) In order to color the source signaln] before it enters the
In the last experiment we study the performance of the prg;vo wiener system, we apply 20-tap low-pass FIR filter

posed AKCCA algorithm for different system configuration§l onto it, i.e.s'[n] = he * s[n], with cut-off frequency at
and input signal characteristics. _ _ 0.7 radians per sample and a stopband attenuatici0oB.
We perform three tests with different input signal charaggycca is then performed to retrieve the filtered input signal
teristics. In each test we compare the performance on thrg . As the linear channels; are now hardly excited in the
systems with different numbers of output cha_nnels. Theg pband frequency range, it is much harder or even impessib
systems have, 3 and4 output channels, respectively, whosg, genify their complete frequency responses. Neveetlit
linear channels are taken in order from Tafile I, and Whogg,, il 'be possible to estimate the colored input signae T
nonlinearities are all chosen &s. The length of the source g 5)ization MSE of AKCCA is shown in Fifl] 9. Interestingly,
signal is fixed asV = 256. the results are only slightly affected w.r.t. to the prewdest

i The ava.ilabil?ty Of extra Cha””?'s_ allows to exploit addi(see Fig[B), which demonstrates that the proposed method is
tional spatial diversity, and thus it is expected that aEbettalso suitable for colored source signals, up to some extent.
result will be obtained. Nevertheless, when additionahcteds 3) Binary input signal: Finally, the test is repeated on a

are available, the number of parameters to estimate is tem with a binary inputs[n] € {—1,+1}. The obtained
higher, Whi(.:h raises the computatior_1al cost and could ff ER values are shown in Fig.110. We7 include the results for
the results 'f °”'>’. few. data were ayallable. . a system that uses a fifth channel as an additional subchannel
1) Gau_s&an_ Li.d. input signal:First, we perform bl'_nd h; in this case. As can be observed, the performance of the
equallz_ano_n_ W't.h AKC.CA on t_he three systems using @, channel system is substantially improved by addingrd th
Gaussian .i.d. input signal as in the previous experiments, -hannel. By including additional subchannels, furtiee,

i.e. s[n] € N(0,1). The results for the final MSE after equaly, o performance keeps improving, though slightly less &ahe

?zation are shown in Fid.]8. As can be observed, performan(g:r(;:amneI added.
improves when channels are added, although the improvement

per extra channel is smaller as more channels are added. In

Table[1ll the average execution times are displayed, for the

three systems and for different amounts of SNR. As expected\We have considered the problems of blind identification and

the algorithm requires more iterations to converge in noidlind equalization of SIMO Wiener systems. These systems

VI. CONCLUSIONS
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based systems such as multiple-input multiple-output (K2)M
Wiener systems and configurations with Hammerstein systems
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