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ABSTRACT
In a recent work we proposed a kernel recursive least-squares tracker
(KRLS-T) algorithm that is capable of tracking in non-stationary en-
vironments, thanks to a forgetting mechanism built on a Bayesian
framework. In order to guarantee optimal performance its parame-
ters need to be determined, specifically its kernel parameters, regu-
larization and, most importantly in non-stationary environments, its
forgetting factor. This is a common difficulty in adaptive filtering
techniques and in signal processing algorithms in general. In this
paper we demonstrate the equivalence between KRLS-T’s recursive
tracking solution and Gaussian process (GP) regression with a spe-
cific class of spatio-temporal covariance. This result allows to use
standard hyperparameter estimation techniques from the Gaussian
process framework to determine the parameters of the KRLS-T al-
gorithm. Most notably, it allows to estimate the optimal forgetting
factor in a principled manner. We include results on different bench-
mark data sets that offer interesting new insights.

Index Terms— kernel recursive least squares, Gaussian pro-
cesses, forgetting factor, adaptive filtering

1. INTRODUCTION

The recursive least-squares (RLS) algorithm is one of the most popu-
lar adaptive filters of the past few decades [1, 2]. It allows to retrieve
the least-squares linear predictor of a stationary system in an efficient
recursive manner. The standard RLS formulation often includes a
forgetting factor λ ∈ (0, 1] that allows it to deal with non-stationary
systems to some extent, while in order to obtain true tracking capa-
bilities a more general extended recursive least-squares (EX-RLS)
algorithm is required [1, 2].

Recently, a class of kernel-based adaptive filter algorithms have
emerged [3, 4], following the success of kernel methods such as
the support vector machine and kernel principal component analy-
sis [5, 6]. By casting the data into a high-dimensional reproducing
kernel Hilbert space, kernel methods allow to solve nonlinear learn-
ing problems in the input space as convex optimization problems in
the transformed space. We focus on kernel recursive least-squares
(KRLS) algorithms, which are kernelized versions of classical RLS
algorithms. Standard KRLS algorithms are designed for stationary
scenarios only, and they have been successfully applied to signal
processing, communications, control and pattern analysis [3, 4]. In
order to equip KRLS algorithms with tracking capabilities, addi-
tional measures are required. Some interesting approaches include
the sliding-window approach from [7] and the kernel-based EX-RLS
algorithm from [4].
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In [8, 9], a novel KRLS Tracker (KRLS-T) algorithm was de-
vised that explicitly handles uncertainty about the data, based on
a probabilistic Bayesian framework. This algorithm incorporates a
new forgetting mechanism called “back to the prior” (B2P) that en-
ables it to handle non-stationary scenarios. The KRLS-T algorithm
is rooted in Gaussian processes (GP), which are stochastic processes
that can be used as a prior over functions within the Bayesian frame-
work. They are often used in the batch regression setting: By assum-
ing that a regression data set has been generated by a latent function
plus Gaussian noise and by placing a GP prior over such latent func-
tion, it is possible to analytically infer a posterior distribution over
latent functions and thus perform predictions. On the other hand,
KRLS algorithms are designed to perform regression in an online
manner, i.e., when data points are made available on a one-at-a-time
basis. After all data points have been observed, a properly imple-
mented KRLS achieves the same solution as a batch GP. This equiv-
alence has been shown in [8, 9, 10, 11]. Indeed, the standard KRLS
can be understood as an online GP [8, 9, 10].

This paper is devoted to show the equivalence between the
KRLS Tracker with back-to-the-prior forgetting and a standard GP
with a specially crafted covariance function. This is relevant for two
reasons: First, it proves that back-to-the-prior forgetting is a prin-
cipled forgetting approach that fits nicely within a global Bayesian
model; and second, and practically more relevant, it provides a
method to select all the hyperparameters of KRLS, including its
forgetting factor, a problem that had not been addressed to date in
kernel adaptive filtering literature.

The rest of this paper is structured as follows: In Sections 2 and
3 we provide short reviews of Gaussian process regression and the
KRLS-T algorithm, respectively. In Section 4 we link both concepts
by demonstrating how KRLS-T is equivalent to Gaussian processes
regression with a specific class of spatio-temporal covariance. We
then indicate how this equivalence allows the estimation of KRLS-
T’s forgetting factor and other hyperparameters through standard GP
regression. In Section 5 we illustrate the proposed procedure with a
set of numerical examples, and we finish by summarizing the main
conclusions of this work in Section 6.

2. REVIEW OF GAUSSIAN PROCESS REGRESSION

We begin with a brief review of GP regression. The interested reader
is referred to [12] for a thorough treatment.

Assume we are given a set of independent and identically dis-
tributed (i.i.d.) samples D ≡ {xt, yt|t = 1, . . . n}, where each D-
dimensional input xt is associated to a scalar output yt. The regres-
sion task goal is, given a new input x∗, to predict the corresponding
output y∗ based on D.

The GP regression model assumes that the outputs can be mod-
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eled as some noiseless latent function of the inputs plus an indepen-
dent noise yt = f(xt) + εt, and then sets a zero mean1 GP prior
on f(x) and a Gaussian prior on εt:

f(x) ∼ GP(0, k(x,x′)), εt ∼ N (0, σ2),

where σ2 is a hyperparameter that specifies the noise power. The
notation GP(m(x), k(x,x′)) refers to a GP distribution over func-
tions in terms of a mean function m(x) (zero in this case) and a
covariance function k(x,x′). The covariance function specifies the
a priori relationship between values f(x) and f(x′) in terms of their
respective locations, and it is parameterized by a small set of hyper-
parameters θ.

By definition, the marginal distribution of a GP at a finite set of
points is a joint Gaussian distribution, with its mean and covariance
being specified by the homonymous functions evaluated at those
points. Thus, the joint distribution of outputs y = [y1, . . . , yn]

�

and the corresponding latent vector f = [f(x1), . . . , f(xn)]
� is

[
y
f

]
∼ N

(
0,

[
K+ σ2I K

K K

])
.

K is a matrix with elements k(xi,xj) and I is used to denote the
identity matrix of the appropriate size. By conditioning on the ob-
served outputs y, the posterior over the latent vector can be inferred

p(f |y) = N (f |K(K+ σ2I)−1y,K−K(K+ σ2I)−1K)

= N (f |μ,Σ), (1)

being the most expensive operation the inversion of the n×n matrix
K+ σ2In, which is computable in O(n3) time. This posterior can
also be computed incrementally in an online manner as samples are
made available. In that case, the cost of adding sample t is O(t2),
resulting in the same overall cost.

If the posterior over the latent function given the observations is
known to be N (f |μ,Σ), the predictive distribution of a new output
y∗ at location x∗ can be computed as

p(y∗|y) =
∫

p(y∗|f∗)p(f∗|f )p(f |y)dfdf∗

=

∫
N (y∗|f∗, σ2)N (f∗|q�f , γ2)N (f |μ,Σ)dfdf∗

= N (y∗|q�μ, σ2 + γ2 + q�Σq), (2)

where we have defined q = K−1k∗ and γ2 = k∗∗ − k�
∗ K

−1k�
∗ ;

k∗ is a vector with elements k(xi,x∗) and k∗∗ = k(x∗,x∗). Eq.
(2) provides the test predictive distribution given any posterior over
f . If we plug in the posterior obtained in (1), we get the familiar
equations

p(y∗|x∗,y) = N (y∗|μGP∗, σ
2
GP∗) (3a)

μGP∗ = k�
∗ (K+ σ2I)−1y (3b)

σ2
GP∗ = σ2 + k∗∗ − k�

∗ (K+ σ2I)−1k∗. (3c)

1It is customary to subtract the sample mean to data {yt}nt=1, and then to
assume a zero mean model.

Algorithm 1 Kernel Recursive Least-Squares Tracker
Parameters: Forgetting factor λ, regularization, kernel function
k(x,x′) including its parameters, and budget M .
Observe (x1, y1).
Initialize μ1, Σ1, Q1.
for t = 1, 2, . . . do

Forget: update μt, Σt.
Observe new input xt+1

Calculate predictive mean ŷt+1.
Calculate predictive variance σ̂2

yt+1.
Observe actual output yt+1.
Compute μt+1, Σt+1, Qt+1.
Add basis xt+1 to the dictionary.
if Number of bases in the dictionary > M then

Determine the least relevant basis xi.
Remove basis xi from μt+1, Σt+1, Qt+1.
Remove basis xi from the dictionary.

end if
end for

3. KERNEL RECURSIVE LEAST-SQUARES TRACKER

Standard KRLS focusses on obtaining the solution (3b) in an online
recursive manner. Its main problem consists in limiting the growth
of the functional representation during online operation, for which it
typically builds a compact dictionary of relevant bases (see [3]).

Though standard KRLS is an online algorithm, it assumes a sta-
tionary scenario, i.e. the latent function does not change over time.
In a non-stationary scenario, however, the algorithm should track
the changes of the latent function. This is possible by weighting past
data less heavily than more recent data, i.e. it should forget past ob-
servations. Unlike linear RLS, the standard KRLS formulation does
not allow to include such a forgetting mechanism directly. Neverthe-
less, in [8, 9] it was shown that tracking capabilities can be included
into KRLS by explicitly modeling the algorithm’s uncertainty about
the data, which becomes possible by adopting a Bayesian frame-
work. A summary of the resulting KRLS-T algorithm can be found
in Alg. 1. In the sequel we highlight its main characteristics. For a
more detailed description refer to [9].

3.1. Algorithm variables

KRLS-T stores and updates three variables: 1) the current predictive
mean values μt corresponding to the bases in its dictionary; 2) the
corresponding inverse kernel matrix Qt = K−1

t , which represents
the prior, and 3) the corresponding predictive variance Σt, which
captures the covariance of the posterior.

3.2. Forgetting mechanism

KRLS-T includes a forgetting mechanism that admits different
forms of forgetting. We focus on back-to-the-prior forgetting, in
which the mean and covariance are updated through

μ←
√
λμ (4a)

Σ← λΣ+ (1− λ)K. (4b)

As shown in [9], this particular form of forgetting corresponds to
blending the informative posterior with a “noise” distribution that
uses the same color as the prior. In other words, forgetting occurs
by taking a step back towards the prior knowledge. Since the prior



has zero mean, the mean is simply scaled by the square root of the
forgetting factor λ. The covariance, which represents the posterior
uncertainty on the data, is pulled towards the covariance of the prior.

If the forgetting step is omitted, the recursively constructed so-
lution is equivalent to the standard GP solution in the batch setting.
By introducing forgetting, though, the KRLS-T algorithm may de-
viate from the purely Bayesian setting, depending on the type of
forgetting. In Section 4 we will show that this is not the case for
back-to-the-prior forgetting.

3.3. Fixed budget through pruning

Finally, in order to deal with very large data sequences, KRLS-T also
includes a pruning mechanism that allows it to maintain its dictio-
nary size M low or even fixed. The latter is achieved by accepting
every basis into the dictionary (as long as this does not render Qt

rank-deficient), and by pruning the least relevant basis at the end of
each iteration, once its information is projected onto the remaining
bases. Note that this procedure induces a pruning error, rendering
the obtained solution an approximation of the optimal solution.

4. GAUSSIAN PROCESS REGRESSION WITH
SPATIO-TEMPORAL COVARIANCE

4.1. A non-stationary GP regression model

The standard GP framework that has been described in Section 2
is designed to deal with stationary regression: All observed data
points are assumed to have been generated following the same input-
output mapping. However, as mentioned in Section 3, it is of high
practical interest to be able to deal with non-stationary regression,
i.e., to assume that there is some kind of smooth drift in the mapping
function, so that it evolves smoothly over time.

Fortunately, it is very simple to use the GP framework from Sec-
tion 2 to deal with non-stationarity, by extending the latent GP to be
a function both of space and time. This can be achieved by augment-
ing the input domain with an additional temporal dimension. Specif-
ically, each input sample is extended as x̃t = [t, x�

t ]
�, where an ad-

ditional time stamp has been included. For notational simplicity we
restrict this discussion to evenly spaced time intervals, which is the
most common case. Nevertheless, the GP can seamlessly deal with
uneven sampling, and also with several samples having the same
time stamp.

In order to apply the GP framework on this augmented input
domain, we need to define a spatio-temporal covariance function.
We will consider covariance functions of the type

kst(x̃, x̃
′) = kt(t, t

′)ks(x,x
′)

= λ
|t−t′|

2 ks(x,x
′) λ ∈ (0, 1], (5)

which are defined as the product of an Ornstein-Uhlenbeck tempo-
ral covariance function with any valid spatial covariance function
ks(·, ·). This defines an autoregressive (AR) process of order 1
over time. We will refer to the covariance model in (5) as “spatio-
temporal AR1” (STAR1) covariance.

All previous equations from the standard GP framework apply,
as long as the proper time stamp is added to each sample. In par-
ticular, if all samples have the same time stamp, kst(·, ·) reduces to
ks(·, ·) and time plays no role, so it does not need to be considered.
Also, when making predictions, one needs to know not only where
a prediction must be made, but also when. This is typically one or
more time-steps ahead into the future, but predictions about the past
are also possible, for instance when data smoothing is required.

4.2. Equivalence between KRLS-T and spatio-temporal GP re-
gression

The use of an AR(1) process over time results in interesting indepen-
dence properties. Let us have a look at the evolution of the posterior
over time. We will represent the latent vector at some set of locations
at time t as f t = [f([t, x�

1 ]
�), . . . , f([t, x�

n ]
�)]�. According to

the spatio-temporal covariance function, the joint distribution of the
latent vector at several consecutive time instants is

[f�1 , . . . , f�t , f
�
t+1]

� ∼ N (0,Λt+1 ⊗K),

where⊗ is the Kronecker product and ΛT is a T×T Toeplitz matrix

with λ
|j|
2 on the j-th diagonal.

From the joint, we can obtain conditional f t+1|f1, . . . , f t. In-
terestingly, due to the special structure of Λt+1, whose inverse is
tridiagonal, a term [λ

1
2 , λ

2
2 , . . . , λ

t
2 ]Λt = [λ

1
2 , 0, . . . , 0] ap-

pears in the conditional, canceling the contribution from all past in-
stants except the immediately previous, so that the previous condi-
tional equals f t+1|f t. In other words, due to the Markov property of
the AR(1) process, given the present value of the latent vector, f t,
we know that f t+1 is independent of all past values.

The joint distribution of the latent vector at two consecutive time
instants is

[
f t

f t+1

]
∼ N (0,Λ2 ⊗K) = N

(
0,

[
K

√
λK√

λK K

])
.

The conditional distribution p(f t+1|f t) is then

p(f t+1|f t) = N (f t+1|
√
λf t, (1− λ)K),

which means that, given the posterior distribution at time t, p(f t|y) =
N (μt,Σt), the posterior at time t+ 1 is

p(f t+1|y) =
∫

p(f t+1|f1, . . . , f t)p(f1, . . . , f t|y)df t

=

∫
p(f t+1|f t)p(f t|y)df t

=

∫
N (f t+1|

√
λf t, (1− λ)K)N (μt,Σt)df t

= N (f t+1|
√
λμt, λΣt + (1− λ)K), (6)

which corresponds exactly with the back-to-the-prior forgetting rule
of KRLS-T of Eq. (4), as introduced in [8] and further developed
in [9]. Thus KRLS-T (with unlimited budget M ) is exactly equiva-
lent to the described non-stationary GP. During its learning process,
KRLS-T updates its posterior with the corresponding observation at
each time step (this step does not require any temporal augmentation,
since all samples have the same time stamp and it would have no ef-
fect), and then propagates the posterior to the next time step using
(6) (i.e, it forgets). With the new posterior, it is capable of making
predictions at the new time step (which again requires no temporal
augmentation due to the previously mentioned reason). Then the
cycle is repeated.

Unlike the non-stationary GP, KRLS-T cannot provide predic-
tions for past time instants, since only the small part of the posterior
that is relevant for the current time instant is kept. Fortunately, pre-
dictions about the past are not generally required and computational
cost is greatly reduced.



4.3. Selecting the forgetting factor and other hyperparameters.

So far we have considered hyperparameters {θ, σ, λ} as known.
This is rarely the case in practice, but often the assumption found
in the signal processing literature. Even linear algorithms which
do not need kernel hyperparameters or noise power to be selected
(RLS, EX-RLS) require a forgetting factor to be specified. The
forgetting factor λ tells us whether we are assuming stationarity in
data (λ = 1) or not and to which degree (0 < λ < 1). Instead of
fixing it a priori, it is possible to let the data speak for itself. The
GP perspective brings us a principled method for hyperparameter
selection. We can marginalize out the latent function and express
the probability of the observed data given the hyperparameters as

log p(y|θ, σ, λ) =− 1

2
y� (

Λ ◦K+ σ2I
)−1

y

− 1

2
|Λ ◦K+ σ2I| − n

2
log(2π), (7)

where ◦ represents the Hadamard (element-wise) product, and then
maximize (7) w.r.t. the hyperparameters, which corresponds to type-
II maximum likelihood (ML-II). A fully Bayesian approach would
correspond to placing a hyperprior on these hyperparameters to
avoid overfitting, but since the posterior is highly peaked around
its mode, ML-II yields a good approximation in a computationally
efficient way. Gradients can be computed analytically:

∂ log p(y|θ, σ, λ)
∂θ

=
tr
[(

αα� − (
Λ ◦K+ σ2I

)−1
) (

Λ ◦ ∂K
∂θ

)]
2

∂ log p(y|θ, σ, λ)
∂σ

= tr
[
αα� − (

Λ ◦K+ σ2I
)−1

]
σ

∂ log p(y|θ, σ, λ)
∂λ

=
1

2
tr
[(

αα� − (
Λ ◦K+ σ2I

)−1
) (

K ◦Λ′)]

with α =
(
Λ ◦K+ σ2I

)−1
y and Λ′ being an n× n Toeplitz ma-

trix with |j|
2
λ

|j|
2

−1 in the j-th diagonal. Therefore, conjugate gradi-
ent ascent can be used for maximization as long as the spatial kernel
K is derivable w.r.t. its hyperparameters, which is almost always the
case.

Thus, the proposed procedure can be summarized as follows:

1. Cast the online adaptive regression problem as GP regression
with a STAR1 spatio-temporal covariance;

2. Choose the values for {θ, σ, λ} that maximize (7) on an ini-
tial, separate data set;

3. And finally use those values to keep learning and adapting
online with KRLS-T.

5. COMPUTER SIMULATIONS

We experimentally demonstrate the proposed procedure for selecting
KRLS-T’s parameters. In order to infer the hyperparameters we use
the GPML toolbox [13]. Matlab code for the KRLS-T algorithm is
available at http://www.tsc.uc3m.es/˜miguel.

Note that KRLS-T uses an additional parameter M that is to
be determined according to the available computational budget. We
choose this parameter sufficiently high in each experiment so as to
minimize the pruning error associated with it.
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Fig. 1. Rayleigh channel coefficients (real parts only) for Doppler
frequencies of fd = 100Hz and fd = 1000Hz, corresponding to the
normalized Doppler frequencies fdT = 10−4 and fdT = 10−3.

5.1. Tracking a Rayleigh fading channel

The first experiment is based on the Rayleigh fading channel track-
ing scenario from [2, chapter 12]. Rayleigh fading is a mathemati-
cal model used to characterize the fading properties of the channel
coefficients in wireless communications. The number of paths is
chosen as L = 5 and the sampling rate is set as T = 1μs. We con-
sider different scenarios with different Doppler frequencies, ranging
from fd = 100Hz, which represents a slowly fading channel, up
to fd = 10kHz, representing a fast time-varying channel. In gen-
eral, a communications channel is considered to be fast time-varying
when the normalized Doppler frequency satisfies fdT ≥ 0.001,
which corresponds to fd ≥ 1kHz for the given symbol period T .
A representative sample of two typical channel fadings is shown in
Fig. 1. Note that we will only consider the real parts of the channel
responses in this experiment.

The input signal to the channel consists of 500 Gaussian i.i.d.
samples, xt ∈ N (0, 1), and the output yt is corrupted with 30dB of
additive white Gaussian noise. Since we assume the channel order
to be known2, i.e. L = 5, the time-embedded input vector to the
algorithm is defined as xt = [xt, xt−1, . . . , xt−4]

T . The tracking
problem then consists in predicting the output yt+1 given the input
xt+1 and the data available up to time t, Dt. The experiment is
repeated for each chosen Doppler frequency.

Since this is a linear adaptive filtering scenario, the spatial co-
variance in Eq. (5) is chosen as the linear kernel ks(x,x′) = xx′T .
For each Doppler frequency we estimate the forgetting factor by
maximizing the log likelihood (7) of the available training data. The
results, averaged out over 25 simulations, are shown in Fig. 2 (top).

We then convert this scenario into a nonlinear tracking problem
by applying a saturation nonlinearity y′ = tanh(y) onto the channel
output before summing the additive noise. We repeat the estimation
of the forgetting factor for this scenario, where we now use a Gaus-
sian kernel as the spatial covariance in (5). The results are shown in
Fig. 2 (bottom). Interestingly, lower λ-values are required in the non-
linear scenario. This indicates that forgetting needs to occur faster,
which seems reasonable as this is a harder tracking problem.

5.2. Tracking a channel with abrupt changes

In the second experiment we investigate the tracking of a switch-
ing channel. Here, a communications channel is to be identified or

2If the channel order is not known it should be overestimated, as GP re-
gression allows to suppress any redundant input data components.

http://www.tsc.uc3m.es/~miguel
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Fig. 2. Estimated forgetting factors for tracking the linear (top) and
nonlinear (bottom) fading channels used in experiment 1.
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Fig. 3. Tracking results for KRLS-T on the switching channel
from experiment 2, using the estimated forgetting factor. Channel
switches are indicated as the vertical red lines at the bottom.

equalized, similar to the previous experiment, but instead of chang-
ing slowly it shows sudden abrupt changes in its impulse response.
While the STAR1 covariance (5) assumes gradual temporal changes
and hence does not adjust too well to this model, we can still apply
the proposed procedure in order to determine the optimal forgetting
factor in case KRLS-T is to be applied as a tracker.

The setup is as follows: At different times throughout the ex-
periment the channel is switched abruptly to a different channel. All
channel impulse responses consist of 5 randomly chosen taps. The
switch times are controlled by a Poisson process with arrival rate
λpp. Note that the Poisson process arrival rate λpp is not to be con-
fused with the forgetting factor λ central in this work. The tracking
experiment consists in predicting yt+1 given the time-embedded in-
put data xt+1 and all previous data Dt.

In a first setup we feed 5000 data points xt ∈ N (0, 1) into the
system and add white Gaussian noise to its output, with an SNR of
20dB. The first 1000 points are used to determine the hyperparame-
ters, and the remaining 4000 points are used for tracking with KRLS-
T. We fix the arrival rate of the Poisson process at λpp = 0.003,
resulting in 5 channel switches during the training period and 10
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Fig. 4. Top: MSE for KRLS-T with different forgetting factors. The
dot marks the estimated forgetting factor. Bottom: Estimated forget-
ting factor for different arrival rates.

channel switches during the rest of the experiment, in this particular
realization. For the spatial covariance we use a standard Gaussian
kernel. After maximizing the log likelihood (7) the forgetting factor
λ = 0.9918 is obtained. With this choice of λ we perform tracking
with KRLS-T on the next 4000 data. At each time step we measure
the MSE on a separate test set of 500 data that are generated with
the current channel response. The obtained MSE values are shown
in Fig. 3. The average MSE over the entire test data set is−18.06dB.

In order to verify the quality of the forgetting factor estimate, we
then run KRLS-T with different values of λ on the same 4000 data.
The result is shown in Fig. 4 (top). Observe that the forgetting factor
estimated by the proposed method yields an MSE value very close
to the minimum, which is found at −18.11dB for λ = 0.995. The
slight difference between the optimal value and the estimated value
is mainly due to the statistical differences between the training set
and the test set. This difference will disappear as more data are used
for training and testing.

Finally we calculate the estimated forgetting factors for different
values of the Poisson process arrival rate. The results, averaged out
over 15 Monte-Carlo simulations, are shown in Fig. 4 (bottom).

5.3. Prediction of chaotic time series

In the last experiment we apply the proposed procedure to the predic-
tion of two popular time series. The first series is the MG30 Mackey-
Glass benchmark, obtained as dxt/dt = βxt−τ/(1 + xn

t−τ )− γxt,
in which we set β = 0.2, γ = 0.1, n = 10 and τ = 30. The second
series is the first component of the Lorenz attractor, whose compo-
nents are defined as dy/dt = σ(z − y), dx/dt = σ(y − x), and
dz/dt = −βx+ yz. We set β = 8/3, σ = 10, ρ = 28, as in [4].

A common question in time-series prediction is how to choose
an adequate time-embedding. For time series generated by a deter-
ministic process, a principled tool to find the optimal embedding is
Takens’ theorem [14]. In case of the MG30 time series, Takens’ the-
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Fig. 5. Results on chaotic time-series prediction.

orem indicates that a good reconstruction of the time series can be
achieved with an embedding around 7. For the Lorenz attractor data
considered, the embedding should be 5 or higher.

We use the first 500 data of each time series to estimate the hy-
perparameters. The obtained λ-values are shown in Fig. 5 (top).
Since both time series are deterministic, the optimal forgetting fac-
tor is found as 1 when sufficient temporal embedding is available.
For the MG30 series it is slightly below 1 when the embedding is
insufficient, which suggests that it is actually beneficial to forget a
small amount of data during each iteration in this case.

In order to select an adequate value of the time-embedding we
plot the negative value of the log marginal likelihood (NLML) ob-
tained after optimizing Eq. (7). The results, shown in Fig. 5 (middle)
confirm Takens’ theorem: The MG30 series can be explained rea-
sonably well with an embedding of 6, while optimal results require
embeddings of 11 or higher. The Lorenz series obtains best results
for an embedding of 6 or higher. Finally, Fig. 5 (bottom) displays
the results for KRLS-T on both series. Embeddings of 12 and 10
were used, respectively, and the estimated λ are marked with a dot.

6. CONCLUSIONS

We have presented a Gaussian process regression model, based on
a specific spatio-temporal covariance, that is equivalent to the re-
cently introduced kernel recursive least-squares tracker algorithm.
This equivalence proves that the back-to-the-prior forgetting mech-

anism of KRLS-T fits within a principled Bayesian framework. As
a result, it becomes possible to determine all parameters of KRLS-T
by applying standard GP hyperparameter estimation. In particular,
it allows to determine the forgetting factor, which is an important
problem in tracking almost any non-stationary scenario.

The proposed technique has several interesting applications. In
this work we conducted experiments in which it was applied to de-
termine the optimal parameters for tracking different types of fading
and switching communication channels. We also applied it to the on-
line prediction of chaotic time series, where it allowed to empirically
confirm the optimal time-embedding indicated by Takens’ theorem.
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