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Abstract—In this paper we propose a new interference align-
ment (IA) algorithm specifically designed to work with struc-
tured channels (e.g., diagonal or block-diagonal). Multiple-input
multiple-output (MIMO) structured channels arise when symbol
extensions -either in time or frequency- are employed jointly with
the spatial dimension in the design of the precoders. In this case,
the rank constraint in the direct channels must explicitly be taken
into account into the optimization problem to ensure that there
is no degrees-of-freedom (DoF) loss. To this end, we propose
an algorithm that minimizes the interference leakage while
ensuring that the direct links are full rank and the transmitters
satisfy a power constraint. The algorithm is based upon an
alternating optimization procedure, which solves a generalized
eigenvalue problem at each step. We show through simulations the
advantages of the proposed algorithm in several scenarios that use
symbols extensions or improper (a.k.a. asymmetric) signalling.

Keywords—Interference alignment, interference channel,
degrees-of-freedom, generalized eigenvalue problem.

I. INTRODUCTION

Interference alignment (IA) is a key technique to achieve
the degrees-of-freedom (DoF) of interference networks [1],
[2]. With IA, the available space-time-frequency dimensions
are utilized in such a way that the interference at every
receiver is confined into a reduced-dimensional subspace,
leaving the other dimensions free of interference. Since the
majority of interference channels do not admit closed-form
alignment solutions, it is usually necessary to resort to iterative
algorithms such as those proposed in [3]–[5]. These algorithms
minimize, in slightly different forms, the interference leakage1,
and are specially suited when the alignment is performed
over the spatial dimension only. The multiple-input multiple-
output (MIMO) channels for spatial IA techniques are typically
assumed to be generic with entries drawn from a continuous
distribution. Under this assumption, constraining the precoders
and decoders to be full column rank matrices (e.g., unitary)
ensures that the equivalent direct channels after applying the
precoders and decoders will also be full rank almost surely.
Minimizing the interference leakage without paying attention
to the direct links is then sufficient to achieve perfect align-
ment with generic MIMO channels. However, when symbol
extensions are applied, the block-diagonal structure induced
in the channel matrices makes this property no longer true,

1Algorithms that minimize other cost functions (e.g., mean-squared error)
have also been proposed in the literature [6]–[9], but they do not attain in
general perfect alignment solutions and hence are not useful to elucidate
whether an alignment problem is feasible or not.

and therefore these algorithms may converge to rank-deficient
solutions.

To overcome this problem, other IA algorithms have re-
cently been proposed that consider the rank of the direct
channels into the optimization problem. In [10] the nuclear
norm of the interference subspace is minimized subject to a
constraint in the minimum eigenvalue of the direct channels,
in an attempt to preserve the dimension of the desired signal
space while reducing the dimensionality of the interference
subspace. However, probably due to the convex relaxation and
other heuristics in the method, it fails to provide all available
DoF for many feasible scenarios. Alternatively, the algorithm
proposed in [11] minimizes the total interference leakage while
constraining the direct channels to be the identity matrix.
The whole procedure consists of an alternating optimization
procedure that has closed-form solution at each step. How-
ever, the proposed solution depends on the inverse of the
interference covariance matrices, which become rank-deficient
as the algorithm converges. Therefore, it may experience
severe numerical errors when perfect alignment solutions are
computed.

As an alternative to these methods, in this paper we
propose an algorithm that minimizes the interference leakage
subject to a rank constraint on the direct channel (expressed
as a minimum eigenvalue constraint), and a constraint on
the transmitted power. We use an alternating optimization
procedure which, at each step, finds the optimal precoders and
decoders as the solution of a generalized eigenvalue problem.
The computational cost is therefore similar to the original
method for generic channels [3]. Likewise to other alternating
minimization or coordinate descent procedures, there is no
guarantee of global convergence. However, simulation results
indicate that the proposed method provides better results
than [4], [10]. The remainder of the paper is organized as
follows: Section II describes the system model. The proposed
algorithm is derived in Section III. In Section IV we provide
some numerical examples to illustrate its performance. Finally,
Section V concludes the paper.

II. SYSTEM MODEL AND PREVIOUS WORK

Let us consider a multiple-input multiple-output (MIMO)
interference channel (IC) comprised of K transmitter-receiver
pairs that uses symbol extensions for the alignment. The
ith transmitter and receiver are equipped with Mi and Ni
antennas, respectively, each user wishes to send di data streams
and the number of symbols extensions is set to L. Symbol
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extensions over time or frequency dimensions are necessary to
achieve IA when no spatial dimensions are available (single-
input single-output -SISO- systems) and may increase the
achievable DoF of MIMO-ICs [1]. We denote this general
IC as [

∏K
k=1(Mi ×Ni, di), L], modifying the notation in [12]

to include the symbol extensions. The channel matrix from
transmitter j to receiver i at the symbol extension n is denoted
as Hij [n], and the overall LNi×LMi channel matrix has the
following block-diagonal structure

Hij =


Hij [1] 0 · · · 0

0 Hij [2] · · · 0
...

...
. . .

...
0 0 · · · Hij [L]

 , (1)

where 0 denotes a zero matrix of the appropriate dimensions.
Notice that in the case of constant channels, the blocks along
the main diagonal are identical.

The signal received by user i is given by

yi =
K∑
j=1

HijVjsj + ri , (2)

where Vj ∈ CMjL×dj is the precoding matrix of transmitter
j, sj ∈ Cdj is the vector of symbols transmitted by user j and
ri ∈ CNiL is the additive white Gaussian noise with zero mean
and variance σ2. At the receiver side, we apply a decoding
matrix, Ui ∈ CNiL×di , to the received signal (2) yielding

zi = UH
i HiiVisi︸ ︷︷ ︸

desired signal

+
∑
j 6=i

UH
i HijVjsj + UH

i ri︸ ︷︷ ︸
interference+noise

. (3)

The interference alignment problem is to design the de-
coders and precoders in such a way that the interfering signals
at each receiver fall into a reduced-dimensional subspace. The
receivers can then extract the projection of the desired signal
that lies in the interference-free subspace. To this end, it is
required that the polynomial equations

UH
i HijVj = 0, i 6= j (4)

are satisfied, while the signal subspace for each user must
be linearly independent of the interference subspace and must
have dimension di, that is

rank
(
UH
i HiiVi

)
= di, ∀i . (5)

When no symbol extensions are applied and the MIMO
channels Hij are generic (which happens for instance when
their entries are independently drawn from a continuous dis-
tribution), condition (5) is satisfied with probability one if the
precoders and decoders are full rank. In other words, with
generic channels there is no need to explicitly introduce the
rank constraint into the optimization problem. That is why, if
the problem is feasible, the well-known alternating minimiza-
tion algorithm [3], [4], is able to find an alignment solution
by simply minimizing the interference leakage function:

minimize
{Ui}{Vj}

∑
i

∑
i6=j

∥∥UH
i HijVj

∥∥
F
. (6)

where ‖·‖F denotes Frobenius norm. However, when IA is also
performed over symbol extensions in time or frequency, the
resulting block-diagonal structure in the channel matrices, see
Eq. (1), makes this property no longer true. In such scenarios,
algorithms that minimize interference leakage without explic-
itly taking (5) into account, may yield rank-deficient direct
channels.

Several worthy attempts have recently been made to avoid
this problem and hence develop a fully general IA algorithm.
In [11], the authors propose to constrain the direct links to
be the identity matrix, i.e., UH

i HiiVi = I, using again the
interference leakage as the cost function to be minimized. The
problem is also solved by alternating the optimization of the
precoders and decoders. However, the solutions at each step
depend on the inverse of the interference plus noise covariance
matrix. When IA solutions are wished to be computed, i.e., the
noise term is set to zero, the interference covariance matrix
becomes rank deficient as the algorithm proceeds, which may
cause severe numerical issues. Further, the norms of the
precoders and decoders are not constrained in the optimization
problem. It might happen that after a normalization step, which
is necessary in practice to satisfy the maximum transmitted
power budget, the minimum eigenvalues of the direct channels
would end up with a too low value, thus yielding a DoF loss
in practice. Another method relevant for the present discussion
is described in [10]. This work minimizes the nuclear norm (a
convex relaxation for the rank) of the interference matrices
subject to the constraint that the minimum eigenvalue of the
direct channels is equal to or greater than a given parameter.
This method works satisfactorily in some simple scenarios,
but in others a DoF loss is observed as pointed out in
[10]. Moreover, no norm constraints are considered in the
optimization, and therefore the rank of the direct channels is
again not guaranteed after the normalization step.

III. PROPOSED ALGORITHM

In this section, we propose an algorithm that avoids the
main drawbacks of the methods in [10] and [11]. Our proposal
minimizes the interference leakage as in [3], but introduces
two additional constraints. First, the minimum singular value
of UH

i HiiVi for all direct links must be greater than or equal
to a given parameter,

√
ε. This ensures the desired rank for the

signal subspaces. Second, the Frobenius norm of the precoders
and decoders must be smaller than or equal to the available
power budget (fixed to one without loss of generality). This
avoids the need of any final normalization step that might
result in a violation of the minimum eigenvalue constraint.
With these considerations, our optimization problem can be
written as follows

minimize
{Ui}{Vj}

∑
i

∑
j 6=i

∥∥UH
i HijVj

∥∥
F
, (7)

subject to UH
i HiiViV

H
i HH

iiUi � εI ,
Tr
(
UH
i Ui

)
≤ 1 ,

Tr
(
VH
j Vj

)
≤ 1 ,

where i, j = 1, . . . ,K and Tr(·) denotes the trace of a matrix
and A � B implies that A−B is positive semidefinite.

Problem (7) can be solved using an alternating optimization
procedure similar to [3]. First, consider that Vj is kept fixed
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for all j. Then, (7) can be decomposed into K independent
problems, ∀i ∈ {1, . . . ,K}, as

P1 : minimize
Ui

Tr
(
UH
i QIiUi

)
, (8)

subject to UH
i QDi

Ui � εI ,
Tr
(
UH
i Ui

)
≤ 1 ,

where QIi =
∑
j 6=i HijVjV

H
j HH

ij is the interference covari-
ance matrix at the i-th receiver, and QDi

= HiiViV
H
i HH

ii is
the covariance matrix of the transmitted signal. The optimal
solution of P1 is formalized in the ensuing lemma.

Lemma 1: The optimal solution of P1 is given by

U?
i =
√
εŬi

(
ŬH
i QDi

Ŭi

)− 1
2

, (9)

where Ŭi contains the di smallest generalized eigenvectors of
the matrix pencil (QIi + µiI,QDi

), with µi ≥ 0 being the
Lagrange multiplier associated to the last constraint in P1.

Proof: The Lagrangian of (8) is given by

Li (Ui,Λi, µi) =Tr
(
UH
i QIiUi

)
+ Tr

(
Λi

[
εI−UH

i QDiUi

])
+ µi

[
Tr
(
UH
i Ui

)
− 1
]
, (10)

where Λi � 0 and µi are the Lagrange multipliers associated
to the first and last constraint in P1, respectively. Equating the
complex gradient of (10) to zero yields

∇U∗
i
Li (Ui,Λi) = 0⇒ (QIi + µiI) Ui = QDiUiΛi . (11)

Equation (11) is a generalized eigenvalue problem, whose
solution satisfying the constraint in (8) is given by (9).

Finally, µi is chosen such that the norm constraint is satisfied.
If the constraint is active, the optimal value of µi can be ob-
tained using a bisection method. Since µi is unbounded above,
let us consider a new variable, µ̃i, such that µ̃i = µi/(1 +µi).
Notice that µ̃i ∈ [0, 1]. Taking this into account, it is easy to see
that (11) is equivalent to [(1− µ̃i)QIi + µ̃iI]Ui = QDi

UiΛ̃i,
where Λ̃i = 1/(1+µi)Λi. Therefore, the bisection method can
be performed over µ̃i, between 0 and 1. The optimal value of
µ̃i is thus successively bounded by checking the total power
required for the optimal solution given by (9), at each step of
the bisection method.

Analogously, with Ui fixed for all i, (7) can be decomposed
into K independent problems, ∀j ∈ {1, . . . ,K}, as

P2 : minimize
Vj

Tr
(
VH
j RIjVj

)
, (12)

subject to VH
j RDjVj � εI ,

Tr
(
VH
j Vj

)
≤ 1 ,

where RDj
= HH

jjUjU
H
j Hjj and RIj =∑

i6=j HH
jiUiU

H
i Hji are again the signal and interference

covariance matrices, respectively. For completeness, the
optimal solution of P2 is formalized in the following lemma,
whose proof is analogous to that of Lemma 1.

Lemma 2: The optimal solution of P2 is given by

V?
j =
√
εV̆j

(
V̆H
j RDj

V̆j

)− 1
2

, (13)

where V̆j contains the dj smallest generalized eigenvectors of
the matrix pencil

(
RIj + νjI,RDj

)
, with νj ≥ 0 being the

Lagrange multiplier associated to the last constraint in P2.

A. Some final remarks

Remark 1: Let us notice that both the objective function,
representing the total interference leakage, and the constraints,
are in fact identical for problems P1 and P2. Therefore, at each
iteration of the proposed alternating optimization procedure the
objective function cannot increase and, as it is bounded below
by zero, the convergence to a stationary point is guaranteed.

Remark 2: At each step of the algorithm the norm of the
precoders and decoders is always equal to or smaller than 1.
Upon convergence, if a norm turns out to be smaller than
1 we can always normalize it to satisfy Tr((V?

i )
HV?

i ) = 1
or Tr((U?

i )
HU?

i ) = 1. This normalization would cause no
harm, since the minimum eigenvalue of all direct channels
after normalizing would still be larger than

√
ε.

Remark 3: Notice finally that the noise power can also be
incorporated into the optimization problem. Specifically, the
interference covariance matrices in P1 and P2 can be modified
as QIi + σ2I and RIi + σ2I, respectively, for i = 1, . . . ,K.
However, if we desire to compute a perfect alignment solution
(for instance, to have evidence about whether a given IA
problem can be feasible or not), the noise term must be
omitted.

IV. NUMERICAL RESULTS

In this section we provide some numerical examples that
illustrate the performance of the proposed method in different
scenarios, and compare it with other existing algorithms,
namely the alternating minimization algorithm (Alt-IA) [3], the
rank-constrained rank-minimization algorithm (RCRM) [10]
and the iterative algorithm (It-IA) [11]. In each simulation, the
algorithms are evaluated in 500 different channel realizations.
The entries of the channel matrices are i.i.d. zero-mean circular
complex Gaussian random variables with unit variance. We
set ε = 10−3, consider unit transmit power and define the
signal-to-noise ratio as SNR = 10 log10

1
σ2 . Finally, as we are

interested in computing perfect alignment solutions, we do not
consider noise power in any of the algorithms.

In Fig. 1 we evaluate the aforementioned algorithms for the
[(1×1, 3)4, 8] scenario with time-varying channels, which has
4 · 3/8 = 1.5 DoF. In Fig. 1(a), we plot the average sum-rate
versus the SNR, which is obtained as

sum-rate
(
σ2
)

=

K∑
i=1

log2

∣∣∣I +
(
σ2UH

i Ui + QIi

)−1
QDi

∣∣∣ .
(14)

The average sum-rate of the proposed method is clearly higher
than that obtained with the other algorithms. Alternatively, we
show in Fig. 1(b) the complementary cumulative distribution
function (CCDF) of the sum-rate when the SNR is 40dB.
It can be observed that the proposed method is more likely
to achieve higher sum-rate than the other algorithms. For
instance, the proposed algorithm achieves a sum-rate of at least
13.7 bps/Hz in 81% of the channel realizations, whereas the
percentages for the Alt-IA, RCRM and It-IA are 5%, 0% and
19%, respectively.
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Fig. 1. Performance of the different algorithms in the [(1× 1, 3)4, 8] scenario.
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Fig. 2. Performance of the different algorithms in the [(1× 1, 1)4, 3] scenario with constant channels and improper signaling.

Then we consider the 4-user SISO interference channel
with constant channel coefficients. According to [13], for this
system it is feasible that each user transmits a complex data
stream using L = 3 symbols extensions and improper signaling
[14], thus achieving 4·1/3 ' 1.33 DoF per channel use. Fig. 2
shows the average sum-rate (a) and the CCDF of the sum-
rate at 40dB (b). It can be observed that the proposed method
provides a significant gain in terms of average sum-rate. More-
over, as shown in Fig. 2(b), the statistics of the sum-rate are
more favorable than those obtained with the other algorithms.
For instance, the proposed method is able to achieve at least
9.7 bps/Hz in 80% of the channel realizations, while Alt-IA,
RCRM and It-IA in 8%, 43% and 46%, respectively.

Finally, we evaluate the algorithms for the [(2×1, 2)3(2×
1, 3)3, 6] scenario with time-varying channels, which has
(3 ·2 + 3 ·3)/6 = 2.5 DoF. In Fig. 3(a) we show the CCDF of
the sum-rate slope at 30dB. This measure provides us with an

idea of whether the algorithms converge to a perfect alignment
solution that extracts all available DoF or not. Hence, if
perfect alignment is achieved, i.e., the interference is perfectly
suppressed and the direct channels are full-rank, the slope of
the sum-rate at high SNR should be equal to 2.5. Notice that, in
practice, since the interference cannot be completely nullified,
an IA solution is expected to achieve a slightly less sum-
rate slope, but close to the theoretical value of 2.5. It can be
observed that the proposed method provides the highest slope
among all considered algorithms. For instance, the proposed
algorithm provides a slope higher than 2.25 (i.e., 90% of the
theoretical value) in 93% of the channel realizations, whereas
the percentage for the It-IA is 48%. Moreover, the minimum
slope achieved by the proposed algorithm is equal to 2, which
is more than twice the minimum value achieved by the other
algorithms. These results indicate that the proposed method
finds IA solutions in many more channel realizations than the
rest algorithms. To illustrate this fact, we show in Fig. 3(b)
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Fig. 3. Performance of the different algorithms in the [(2× 1, 2)3(2× 1, 3)3, 6] scenario.

the CDF of the minimum eigenvalue of the direct channels
(UH

i QDi
Ui, for all i) among all users. As expected, the

proposed method ensures the eigenvalues to be equal to or
greater than 10−3, thus successfully preserving the rank of the
signal subspace. The RCRM and It-IA methods, however, do
not guarantee the dimensionality of the signal subspace.

V. CONCLUSIONS

In this work we have proposed a new algorithm for com-
puting IA solutions in structured channels. We have expressed
the rank constraint as a minimum eigenvalue constraint, which
has allowed us to minimize the total interference leakage while
ensuring full-rank direct channels. A power constraint has been
also incorporated into the optimization problem, avoiding the
need of a normalization step that might reduce the numerical
rank of the signal subspace. The proposed algorithm is based
upon alternating optimization, solving a generalized eigenvalue
problem at each step. We have shown through simulations that
the proposed method provides a significant gain in the sum-
rate performance in different structured scenarios. Moreover,
simulations have also shown that the proposed method is more
likely to find IA solutions than other existing algorithms when
structured channels are considered.
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