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Abstract—Spectrum sensing is a key component of the cognitive
radio paradigm. Primary signals are typically detected with un-
calibrated receivers at signal-to-noise ratios (SNRs) well below de-
codability levels. Multiantenna detectors exploit spatial indepen-
dence of receiver thermal noise to boost detection performance and
robustness. We study the problem of detecting a Gaussian signal
with rank-P unknown spatial covariance matrix in spatially un-
correlated Gaussian noise with unknown covariance using mul-
tiple antennas. The generalized likelihood ratio test (GLRT) is de-
rived for two scenarios. In the first one, the noises at all antennas
are assumed to have the same (unknown) variance, whereas in the
second, a generic diagonal noise covariance matrix is allowed in
order to accommodate calibration uncertainties in the different an-
tenna frontends. In the latter case, the GLRT statistic must be ob-
tained numerically, for which an efficient method is presented. Fur-
thermore, for asymptotically low SNR, it is shown that the GLRT
does admit a closed form, and the resulting detector performs well
in practice. Extensions are presented in order to account for un-
known temporal correlation in both signal and noise, as well as
frequency-selective channels.

Index Terms—Cognitive radio, generalized likelihood ratio test
(GLRT), macimum likelihood (ML) estimation, spectrum sensing.

1. INTRODUCTION

OGNITIVE Radio (CR) has the potential to improve
wireless spectrum usage and alleviate the apparent
scarcity of spectral resources as seen today [1], [2]. The key
idea behind CR is to allow opportunistic access to temporally
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and/or geographically unused licensed bands. Thus, spectrum
sensing constitutes a key component in CR, in order to iden-
tify vacant channels and avoid interference to rightful license
owners [3].

The wireless medium makes reliable detection of these
users a very challenging task: Due to fading and shadowing
phenomena, the received primary signal may be very weak,
resulting in very low signal-to-noise ratio (SNR) operation
conditions [4]. Any structure in the primary signal, such as
the presence of pilots or cyclostationary features, could, in
principle, be exploited for detection purposes. However, most
such approaches require some level of synchronization with
the primary signal, which cannot be guaranteed in very low
SNRs [4]. In order to avoid these drawbacks, asynchronous de-
tectors can be considered. The simpler asynchronous detectors,
including the popular energy detector, require knowledge of
the noise variance in order to compute the detection threshold.
Any uncertainty regarding this parameter translates in severe
performance degradation, so that the detection/false alarm
requirements may not be satisfied [5].

This serious drawback motivates the search for asynchronous
detectors robust to noise uncertainty, one possibility being the
use of multiple-antenna sensors. Several authors have explored
this strategy in order to enhance detection performance in the
context of CR systems. Assuming a temporally white Gaussian
model for both signal and noise, spatially white noise with
the same unknown variance across antennas, and an unknown
rank-1 spatial covariance matrix for the signal, a generalized
likelihood ratio test (GLRT) was proposed in [6]. Other ad hoc
detectors that have been proposed under this model include
those in [7]-[9]. A GLRT framework has also been applied
in [10] assuming certain prior information of the unknown
parameters.

However, in practical scenarios, the spatial rank of the
received signals may be larger than one. This is the case, for ex-
ample, if multiple independent users (e.g., from adjacent cells)
simultaneously access the same frequency channel. Alterna-
tively, many state-of-the-art communication standards consider
the simultaneous transmission of different data streams through
multiple antennas to achieve multiplexing gain and/or the use
of space-time codes to enhance spatial diversity. For these
systems, the signal received at the multiantenna sensor will ex-
hibit a spatial rank equal to the number of independent streams
or the spatial size of the code, respectively. Examples range
from broadcasting standards, such as the European DVB-T2
[11] which considers two-antenna space-time Alamouti codes,
to point-to-multipoint standards, such as IEEE 802.11n [12],
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IEEE 802.16 [13], or LTE [14], which support up to four
transmit antennas. Hence, it is of interest to develop detectors
for signals with spatial rank P > 1.

In this work, we focus our attention to the GLRT detection
of vector-valued rank-P signals when the noise covariance is
assumed unknown. In particular, the contributions of this paper
are as follows.

1) We derive the GLRT detector of vector-valued rank-P
signals for independent and identically distributed (i.i.d.)
noises at each of the components when both signal and
noise are assumed temporally white.

2) We formulate the GLRT detector for a similar scenario in
which the noise components present different (unknown)
variances. The GLRT for this case requires solving a non-
convex optimization problem. We propose an efficient nu-
merical method based on an alternating minimization ap-
proach to compute the exact GLRT statistic for noises with
different variances and for arbitrary SNR. Additionally we
show that this detector admits a closed form expression in
the asymptotic low SNR regime.

3) The proposed GLRT detectors are rederived for signals
with unknown PSDs, extending [15]-[17] to rank-P sig-
nals. This is of special interest in applications with fre-
quency selective channels and/or temporally colored noise.

Our results are related to previous works. When the signal
covariance matrix is unstructured, and the noise assumed i.i.d.,
the GLRT is the well known test for sphericity [18], which was
applied to CR in [19] and [20]. As previously pointed out, for
P =1 and i.i.d. noises the GLRT is derived in [6] and its appli-
cation to CR was presented in [21] and [22]. In [19] and [20], the
authors derived the GLRT for rank-P > 1 under the assumption
of i.i.d. noises with known variance. Furthermore, in [19], there
is also an heuristic approach to handle the case of unknown o2,
where the noise variance is estimated as the smallest eigenvalue
of the sample covariance matrix.

In [23], the GLRT was derived for the case of an unstructured
signal covariance matrix for non-i.i.d. noise. This detector was
later applied to array signal processing in [24] and [25]. Other
detectors which can handle different (unknown) noise variances
have been proposed in [26]-[28]. However, they either assume
rank-1 primary signals or unstructured signals.

Notation: We use light-face letters for scalars, and bold-face
uppercase and lowercase letters for matrices and vectors, re-
spectively. The elements of matrix A and vector x are denoted
by [A]; ; and z; respectively. Calligraphic uppercase letters de-
note block-Toeplitz matrices. diag(x) is a diagonal matrix with
the elements of vector x on its diagonal. Table I summarizes
other nonstandard notation.

II. PROBLEM FORMULATION

Consider a spectrum monitor equipped with L antennas
which is to sense a given frequency channel. The received
signals are downconverted and sampled at the Nyquist rate. No
synchronization with any potentially present primary signal is
assumed. Primary transmission, if present, is known to have
spatial rank P, and a frequency-flat channel is assumed. Thus,
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TABLE 1
NOTATION USED IN THE PAPER

) Estimated matrices, vectors or scalars
det(A), tr(A) Determinant and trace of A
vec (A) Column-wise vectorization of A
0r Zero L x 1 vector or L X L matrix
ay k-th column of matrix A
E[] Expectation operator
F() Discrete-time Fourier transform
X~ CATGR) | covarance mite B
® Hadamard product
(h*s)[n] Convolution operation between h[n] and s[n]
é§[m] Discrete delta impulse

for a single observation x € C¥, the hypothesis testing problem
can be written as

Hy:x=Hs+v,
Ho:x=v, )

where s € C* is the primary signal, H € CZ** is the unknown
multiple-input multiple-output (MIMO) channel between the
primary user and the spectrum sensor, and v € C’ is the addi-
tive noise, which is assumed to be zero-mean circular complex
Gaussian spatially uncorrelated.

We model s as zero-mean circular complex Gaussian, which
is particularly accurate if the primary transmitter uses orthog-
onal frequency division multiplexing (OFDM). Even if this is
not the case, the Gaussian model leads to tractable analysis
and useful detectors. It is assumed that s is spatially white and
power-normalized, as any spatial correlation and scaling of the
primary signal can be absorbed in the channel matrix H. For the
time being, we will assume that the primary signal and the noise
are temporally white.! Taking this into account, the (spatial) co-
variance matrices of the primary signal and noise are given by

E [ssH] =1Ip, F [va] =% 2)
where Ip is the identity matrix of size L x L and X? is an
unknown diagonal covariance matrix. The detection problem
in (1) amounts to testing between two different structures

for the covariance of the vector-valued random variable
x ~ CN (01,R):

Hi: R =HH + %2,
Ho : R =32, 3)

That is, under Hy the covariance matrix R is diagonal whereas
under H; it is a rank-P matrix plus a diagonal one. We shall
assume that H has full rank.

IThese results will be extended in Section V to the case in which noise and
primary signals are time series with unknown temporal structure.
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III. DERIVATION OF THE GLRT FOR 1i.i.d. NOISES

As a first step, we derive a detector for the simpler case of
i.i.d. noises, i.e., 2 = ¢2I, which amounts to saying that all
the L analog frontends are perfectly calibrated. As there are un-
known parameters under both hypotheses, the Neyman—Pearson
detector is not implementable for this composite test. Therefore,
we adopt a GLRT approach, since it usually results in simple de-
tectors with good performance [29].

We shall consider M > L snapshots xq,...,Xp—1.
Assuming that the channel remains constant during the
sensing period, these can be regarded as i.i.d. realizations of
x ~ CN (0, R). The likelihood is given by the product of the
individual pdfs, i.e.,

1 A1
- L el (R} @
LM det (R)M
where R = Vi ZM 01 x,,xH is the sample covariance matrix.
The GLRT for Hy : R = 021 versus H; : R = HHY + 021 is

based on the generalized likelihood ratio .¥ [29]

maxq2 p (Xo, ..., XM
& = ( =1 )
maxg, 2 P (Xo, - - -,

with 7 a threshold. First, the maximum likelihood (ML) estimate
of the noise variance under Hy is given by
5= 1r (R). ©6)

L
In order to obtain the ML estimates under H7, we consider two
cases depending on the rank P.

Lemma 1: If P > L — 1, the ML estimates of H and o>

satisfy HHY 4 6°1 = R.

Proof: For P > L—1,R = HH" + 51 has no additional
structure besides being positive definite Hermitian. In that case,
the log-likelihood is maximized for R = ft as shown in [30].m

Thus, for P > L — 1, the GLRT is the well-known Sphericity

test [18]
det™ (f{)

log ¥ = MLlog %tTe(f{)

)

When P < L—1, the low-rank structure of the primary signal
can be used to further improve the detection. In that case, to
obtain the ML estimates under H;, let HHH = U®2U# pe
an eigenvalue decomposition (EVD) of HH | with

T = diag(43, 93, ..

with ¢ > by > -+ > ¥p.
Lemma 2: Let R Wdiag (A1, ...,A) W be an EV de-
composition of the sample covariance matrix, with Ay > Ay >
- > A\p.For P < L — 1, the ML estimates of U, ¥? and o2
under H; are given by

,$$,0,0,...,0), (®)

. 1
U=W, &*=5—5 > X ©)
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P2 =\ — 62, (10)
Proof: This result was proved by Anderson in [31]. ]
Taking into account (6) and Lemma 2, the log-GLRT for
P < L — 1 is given, after some straightforward manipulations,
by

L T
(1)
log ¥ = MLlog %
IR
1=1
L (L—P)
)\,L->
0
M (L — P)log R = . (1)
LiP > A T
i=P+1

Note that the logarithmic terms in (11) are functions of the ratio
between the geometric and arithmetic means of all eigenvalues
and the L — P smallest eigenvalues of R, respectively. The first
term is the statistic of the sphericity test (7), whereas the second
term can be seen as a test for the sphericity of the noise subspace,
or as a reference for sphericity due to finite sample size effects
(since as M —s oo, then R — R and thus \; — o2 fori = P +
1,..., L, so that the second term in (11) goes to zero). Thus, the
log-GLRT may be seen as a sphericity ratio (quotient between
the sphericity statistics of the sample covariance matrix and its
noise subspace).

Remark 1: The GLRT in (11) generalizes the results in [6],
[21], and [22] obtained for the special case of P = 1.

IV. DERIVATION OF THE GLRT FOR NON-1.1.D. NOISES

In this section, we derive the GLRT for the more involved
model of non-i.i.d. noises. In this case, the only constraint on
2 is being diagonal with positive entries. Let us start by the
ML estimate of 2 under H,,, which is given by [24], [25]

= diag ([R]l,l, L [R]L,L) =D. (12)
Similar to the case of i.i.d. noises, we study first the effect of the
signal rank P on the ML estimate of the covariance matrix.

Lemma 3: 1If P > L — /L, the ML estimates of H and X2
under H; satisfy HHZ + 32 = R.

Proof: The proof can be found in [16], [24]. It hinges on
the fact thatif P > L — \/Z, then HH¥ + X2 has no further
structure beyond being positive definite Hermitian. ]

Hence, for P > L—+/L, the GLRT is given by the Hadamard
ratio of the sample covariance matrix [23]-[25]:

— (13)
l:[l[R]z',i

If P < L — /L, the low-rank structure of the primary signal
can be further exploited. In order to simplify the derivation of the
ML estimates under H1, let Ry = S~IRX! (the whitened
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sample covariance matrix) and Hy, = >~1H. We can rewrite
the log-likelihood as

log p (xo, .- ., xn—1; Hg, £?)
= —LM logm — M logdet (HsHE + 1)
— M log det (£?)
~ Mtr [Rg (HsHE + I)’l} . (14)

Let HzHg = G®2GH pe the EVD of HgHg. The ML esti-
mates of G and ®2 are given next.

Lemma 4: Let Ry = Qdiag (71, ...,7v.) Q" be the EVD
of f{)g, with v; > .-+ > 7. The ML estimates of G and

®? = diag (¢1,. .., ¢r) (which are functions of X?) are
G=Q, (15)
22 "}/i—l./ ZZI,P,
"51'_{07 i=P+1,...,L. (16)

Proof: Once R and H have been prewhitened, the problem
reduces to the i.i.d. case and, therefore, the proof follows the
same lines as those in [31]. [ ]

Finally, replacing the ML estimate of HyHE into (14), we
obtain

logp (X07 ce XM 22) =—LMlogm — MP
L

— M log det (R) - M Z [vi —logvi]. (17)
i=P+1

As previously mentioned, for unstructured covariance ma-
trices, i.e., P > L — \/f, there does exist a closed-form GLRT
given by (13). However, to the best of our knowledge, the maxi-
mization of (17) with respect to X2 does not admit a closed-form
solution if P < I, — \/I.. We present two different approaches:
an alternating optimization scheme and a closed-form GLRT de-
tector obtained in the limit of asymptotically small SNR.

A. Alternating Optimization

The ML estimation problem in (14) can be written as

minimize
2

tr (RE'R5'=7)
— log det (2_2) + log det Ry,

subject to Ry = Iy + HgHEI
[E]i;i > 0. (18)

While this optimization problem is nonconvex, it is possible
to partition the free variables in two different sets to obtain an al-
ternating optimization scheme. Then, we will alternatively per-
form the minimization over each set of parameters while the
remaining ones are held fixed. Since at each step the value of
the cost function can only decrease the method is guaranteed to
converge to a (local) minimum.

From (18), we note that the individual minimization with re-
spect to 3 (considering Hy fixed) and with respect to Hy, (con-
sidering 3 fixed) can be easily written as convex problems in-
dividually and, therefore, they can be efficiently solved.
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Algorithm 1: Iterative Estimation of Hy, and ¥ Via
Alternating Optimization

Input: Starting point e gy and R.
Output: ML estimates of Hy; and 3.
Initialize: n = 0;
repeat
Compute E(_nl; = diag(am));
Obtain RE™ = 37 |RX 7} and its EVD;
Compute HgLH) from (19) (fixed Eg_nl));
Solve (21) to obtain @, 41 (fixed HE);
Updaten = n + 1;
until Convergence;

1) Minimization With Respect to Hx:: For fixed ¥, the op-
timal Hy; minimizing (18) is (up to a right multiplication by a
unitary matrix) given by Lemma 4, that is
19)

Hs = [q qp](diag('yl,..,ﬁp)_lp)%.

2) Minimization With Respect to 3.: For fixed Hy, the mini-
mization problem in (18) reduces to

minignize tr (f{E_lelE_l) — log det (2_2) ,

subject to  [X],; > 0. (20)

Defining the vector @ = [[£~11,...,[2 " z.2]". the trace

term in (20) can be reorganized to obtain an equivalent mini-
mization problem given by

L
TS T/ DT —1 _ 2
minimize @ (R" ORg ) E_l log o,

subject to «a; > 0. 21

Note that, given the trace term in (20), the matrix R” ® Rgl
is positive semidefinite. Hence, the problem (21) is convex with
respect to the parameter vector a and, therefore, it can be effi-
ciently solved using any convex optimization solver.

The proposed alternating minimization algorithm is summa-
rized in Algorithm 1. While the alternating minimization ap-
proach does not guarantee that the global maximizer of the log-
likelihood is found, in the numerical experiments conducted this
detector shows good performance.

B. Low SNR Approximation of the GLRT

The usefulness of the detector given in Algorithm 1 in prac-
tical settings may be hindered by its complexity. In this con-
text, simpler closed-form detectors become of practical interest.
Now, we derive a closed-form expression for the GLRT in the
low SNR regime, of particular interest in CR applications. As
the SNR goes to zero, the covariance matrix will become close
to diagonal, and thus it is possible to approximate the ML esti-
mate of £2 as 32 ~ D defined in (12). Substituting this back
into (17), we obtain the final compressed log-likelihood:

logp (xo,...,%Xp—1) = —LMlogm — MP

L
— M log det (R) M S (B -logB]. (22
1=P+1
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where f3; is the ith largest eigenvalue of the sample spatial co-
herence matrix C = D~1/2RD~'/2. Then, the asymptotic
log-GLRT is

log ¥ ~ M Z [log B; — Bi] + MP (23)
=1 Hy
Alternatively, (23) can be rewritten as
Ho
log & ~ MP~|—M10gH[36 =y, (24)
Hi

=1

and, thus, the test statistic is seen to be given by the product of
the P largest eigenvalues of C, each equalized by an exponential
term Note that Be~ is maximum at 3 = 1. Hence, the statistic
HL | Bie=P" measures, in some sense, how far the vector of
the P largest eigenvalues [0; - - - Bp] is from the vector of all
ones. Note that (23) yields a closed-form test, in contrast with
the iterative scheme presented in the previous section.

V. EXTENSION TO TIME SERIES WITH TEMPORAL STRUCTURE

We extend now the detectors in Sections III and IV in order
to deal with frequency-selective channels, as well as unknown
temporal correlation in signals and noise.

A. Problem Formulation

The detection problem can be expressed now as

Hi :x[n] = (H*s) [n] + v[n],
Ho = x[n] =v[n], n=0,...,N—-1, (25)
where s[n] € CF is the wide sense stationary (WSS) zero-mean
circular complex Gaussian primary signal; H[n] € CZ* P is the
frequency-selective MIMO channel between the primary user
and the spectrum monitor; and v[n] € C” is the additive noise
vector, which is assumed to be WSS zero-mean circular com-
plex Gaussian and spatially uncorrelated, i.e., E [v; [n]v}[m]] =
0 for 7 # k and Vn, m. No assumptions are made about the fem-
poral correlation of the primary signal or the noise processes.
Note, however, that any spatial and temporal correlation present
in the signal can be absorbed in the unknown channel without al-
tering the model. Therefore, the matrix-valued covariance func-
tion of the primary signal and the noise are given by

E [s[n]s"[n — m]] =16 [m] (26)
E [v[n]vH[n —m]] = =% [m] (27)
where X2 [m)] is a diagonal matrix for all values of m.
Let us introduce the data matrix
X =[x[0] x[1] ... x[N—-1]]ecN — (8)

where the ith row contains N samples of the time series {z;[n]}
at the sth antenna, and the nth column is the nth sample of the
vector-valued time series. The vector z = vec (X) stacks the
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columns of X, and in view of the WSS assumption, its block-

Toeplitz covariance matrix R € CEV*IN s given by
RJ[0] R[-1] R[-N +1]
R[1] R|[0] -+« R[=N +2]
R = ) ) . . ;29
R[N —1] R[N —2] RI0]
where R[m] = E [x[n]x" [n — m]| is a matrix-valued covari-

ance function. Therefore, under the Gaussian assumption, the
hypothesis testing problem becomes

Hl ZZNCN(OLN7R1)7

HO :ZNCN(OLN,Ro). (30)
We are testing two different block-Toeplitz matrices where each
block has a different structure under each hypothesis. Under H
each block R[m] = X2[m)] is diagonal, whereas, under H;, it
is given by

R[m] =

> H[EH" [k — m] + £°[m]. (31)

B. Asymptotic Log-likelihood

The structure of R; induced by the rank-P primary signal,
along with the block-Toeplitz structure, prevents the ML esti-
mation of R in closed-form, even in the case of i.i.d. noises.
In fact, the ML estimation of Toeplitz covariance matrices is
known to be a nonconvex problem with no closed-form solu-
tion [32]. To overcome this limitation, we introduce Theorem
1, which states the convergence (in the mean square sense) be-
tween the log-likelihood and its asymptotic version. This the-
orem allows us to work with the log-likelihood in the frequency
domain which, as we will see, simplifies the derivation of the
GLRT (actually, the asymptotic GLRT). The asymptotic log-
likelihood is now a function of the estimated and theoretical
power spectral density (PSD) matrices instead of being a func-
tion of the estimated and theoretical covariance matrices. Ad-
ditionally, the proposed asymptotic log-likelihood is an exten-
sion of Whittle’s likelihood [33], [34] to multivariate Gaussian
processes.

Let us introduce some definitions before presenting the the-
orem. Consider an experiment producing M (M > L) indepen-
dent realizations? of the data vector z. Then, its log-likelihood
is given by

. Zpm—1;R)=—LNMlog
~Mlogdet (R) — Mtr (RR—l) . (32)

log p (zo

and the asymptotic (N — o) log-likelihood is

JZM—13S (eje))

s

logp(zo,...

= —LNMlogm — NM [ logdet (S (%)) ;1_9
g
tr (S (e’%) S 1(619)) o

o =T

- NM (33)

2In this case, the snapshots are matrix-valued.
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where R is the theoretical block-Toeplitz covariance ma-
trix, S (/) = F(R[m]) is the theoretical PSD matrlx

and their sample estimates are R = 1 ZM 'z H and

S1(e];:)N—:1 ?]Zf\ig_lxl (e??) xH (639), with x; (eJ(’) =
N 2n=0 Xi [0 e I7m,

Theorem 1: As N — oo, the asymptotic log-likelihood con-
verges in the mean square sense to the true log-likelihood:

Algn E [ N [logp (zo,- .- zZm—1;R)
' 2
—logp (2o, .-, 2rm—1;S (e/%))] ] =0. (34)
Proof: The proof can be found in the Appendix. [ |

As a direct consequence of Theorem 1, the hypothesis test
asymptotically becomes

Hy:x () ~CN(0,8; (7)), (35)
Ho :x (e!*) ~ CN (0,8 (¢/%)), (36)

where S, (¢7) = H (¢7) HY (%) + 3 (3%), Sg (¢7%) =
2 (eje), H (eje) is the Fourier transform of the MIMO
channel and X2 (ej 9) is a diagonal matrix which contains the
PSD of the noises. Therefore, under Hy the PSD matrix is
diagonal, whereas under H; it is the sum of a rank-P matrix
plus a diagonal one.

C. Derivation of the GLRT

Without imposing any temporal structure to the time series,
the ML estimation of the unknown parameters can be carried out
on a frequency-by-frequency basis. Thus, we can directly apply
the results from Sections III and I'V. First, the log-GLRT for the
case of noises with equal PSDs, i.e., £%(e?) = S, (e?%)I and
assuming P < L — 1, is given by

.\t
- (xen)
AL 9
1og$:NML/ log |~=L— /2| *Z
o 1 ‘0 2r
T 2 Ai(ed?)
=1
[/ L NTEH
™ ( L (eﬁ)> d6
~ NM(L-P) / log | ~——H— 5= 3D
T = X Ai(e?)
i i=P+1

where \; (¢/%) is the ith largest eigenvalue of S (e/?). The
asymptotic log-GLRT for time series with unknown temporal
structure is the integral of the frequency-wise GLRT statistic
for white vector-valued time-series, derived in (11).

For the case of noises with different PSDs along the antennas,
and assuming P < L — /L, the log-GLRT in the low SNR
region3 is approximately given by

log ¥ ~ NM Zlogﬂl (%) —
T =1
—NM Z@ eﬂ’ —|—NMP (38)

VT =1

3For other SNR regimes, it would be possible to apply, on a frequency-by-fre-
quency basis, the alternating minimization algorithm presented in Section IV-A.
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where (; is the ¢th largest eigenvalue of the coherence matrix

¢ () = D-1/2 (e7%) S (619) —1/2 (%) (39)

and
D () = diag (18 ()1 1. . [8 (#)e.r)

The asymptotic log-GLRT is, again, the integral of the GLRT
for vector-valued random variables.

(40)

VI. NUMERICAL RESULTS

In this section we evaluate the performance of the proposed
algorithms under different scenarios by means of Monte Carlo
simulations. First, we consider frequency-flat channels and tem-
porally white signals and noises. Unless otherwise specified, the
noise level at each antenna is fixed for each experiment, and for
each Monte Carlo realization the entries of the channel matrix H
are independently drawn from a Gaussian distribution (thus ob-
taining a Rayleigh fading scenario) and scaled so that the SNR
is constant during the experiment

tr(HH)

(=) @b

SNR (dB) = 10logy,

We evaluate two detectors derived under the i.i.d. noise as-
sumption: the proposed GLRT statistic in (11) denoted here
by i.i.d.-GLRT, and the sphericity test or GLRT for nonstruc-
tured primary signals [18] (denoted as Sphericity). In addition,
three detectors derived for uncalibrated receivers (X2 diagonal
with positive entries) are also evaluated: the proposed alter-
nating optimization scheme from Algorithm 1 denoted here as
alterntng-GLRT,* the asymptotic closed-form detector in (23)
(asympt-GLRT), the Hadamard ratio test [23] or GLRT for un-
structured primary signals (13) (Hadamard). Additionally, we
also include two heuristic detectors for comparison: the detector
based on statistical covariances [28, Alg. 1] (Covariance) and
that of (33) in [19] (Lim et al.).

A. Detection Performance for Rank-P Primary Signals

First we compare the performance of the different schemes in
terms of the spatial rank of the signal. Fig. 1 shows the missed
detection probability in a scenario with SNR = —6dB, L = 6
antennas for primary signals with rank P = 1,...,5, for i.i.d.
and non-i.i.d. noises. Note that, for increasing P the structure
present in the covariance matrix decreases. This effect trans-
lates into the performance degradation for all the detectors under
study.

From Fig. 1(a) and (b), we can see that both for i.i.d. and
non-i.i.d. noises the proposed GLRT detectors are the best per-
forming detectors for arbitrary values of P. While the GLRTSs
for P = 1 present poor performance if the actual rank of the
signal is larger than one, Sphericity and Hadamard ratio tests

4Given the observed convergence properties, the iterations are stopped when
the cost improvement between iterations is less than 10 ~3 with a maximum of
100 allowed iterations. As starting point we use an estimate glven by the scaled

low SNR asymptotic solution a o) =/ 725, P) (D], D27
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Fig. 1. Missed detection probability versus P: (a) i.i.d. noise and (b) non-i.i.d.
noise.

(which do not assume any structure on the primary signal) de-
grade for strong structure, i.e., small P. It is interesting to note
however that as the rank of the signal grows (for P > 4) the
Sphericity and Hadamard ratio tests offer similar performance
to that of the rank-based detectors at a lower computational cost.
Regarding the heuristic detectors, the covariance based detector
(Covariance) presents virtually the same performance as the
Hadamard ratio test and it was not included in the plot for clarity.
On the other hand, the detector by Lim et al. [19] can be seen
to present a poor performance for all values of P, which can be
attributed to the heuristic estimation of the noise variance.
Finally, it is interesting to note that for P > 1, the advan-
tage of the iterative scheme alterntng-GLRT over the asymptotic
GLRT decreases. This can be explained from the fact that, as the
total SNR is divided among a growing number of dimensions,
the effective SNR per dimension decreases and one gets closer
to the asymptotic regime for which asympt-GLRT was derived.

B. Noise Mismatch Effect on the Detection Performance

We now investigate the effect of a noise level mismatch at the
different antennas on the different detectors. To focus on this ef-
fect we fix P = 1. Fig. 2 shows the corresponding receiver oper-
ating characteristic (ROC) curves in a scenario with i.i.d. noises.
Note that the i.i.d.-GLRT test, corresponding to the GLRT under
this model (rank-1 signals and i.i.d. noises), yields the best de-
tection performance, whereas the detectors designed for nonuni-
form noise variances suffer a noticeable penalty. From the detec-
tors designed for uncalibrated receivers, it is seen that the GLRT
based schemes, both asymptotic and iterative, behave similarly
and outperform the Hadamard ratio detector. The heuristic de-
tector based on statistical covariances [28] presents almost the
same performance as the Hadamard ratio test, while the detector
by Lim et al. suffers a penalty compared to the GLRT for the
same model.
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Fig. 2. ROC for the different detectors (SNR = —8dB, L = 4 antennas,
M = 128 samples) without noise power mismatch (noise level at each antenna
equal to 0 dB).
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Fig. 3. ROC for the different detectors (SNR = —8dB, L = 4 antennas,
M = 128 samples) with noise power mismatch (noise powers at each antenna
equal to 0, —1, 1.5, and —0.5 dB, respectively).

In Fig. 3, we represent the same scenario as in Fig. 2 except
for set of noise variances at each of the antennas, now given by
0, —1, 1.5, and —0.5 dB. Note that the behavior of the detectors
designed for uncalibrated receivers has not changed with respect
to that in Fig. 2; however, the detectors based on the i.i.d. noise
assumption suffer an important performance degradation.

C. Asymptotic GLRT Performance for Finite SNR Values

Although the asymptotic GLRT detector (asympt-GLRT)
given by (23) is appealing due to its computational simplicity,
it is not clear how much can be gained when the iterative
scheme (alterntng-GLRT) is used in order to implement the
exact GLRT. Fig. 4 shows the missed detection probability
of the detectors versus the SNR in a scenario similar to the
previous subsection (P = 1, L = 4, M = 128, different
noise levels at each of the antennas fixed to 0, —1, 1.5, and
—0.5 dB, respectively). The probability of false alarm is fixed
to Pra = 0.01 and 0.1. In Fig. 4, it is seen that for very low
SNR values the asymptotic detector presents the same perfor-
mance as the alternating minimization scheme. However, as
the SNR increases, the GLRT outperforms the detector derived
for asymptotically low SNR, as it could be expected. Note,
however, that the performance loss of the asymptotic detector
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Fig. 4. Missed detection probability versus SNR for different detectors. Same
scenario as in Fig. 3.

is rather small, and therefore it offers a good tradeoff between
performance and complexity.

D. Detection Performance in Environments With Unknown
Temporal Structure

Now, we evaluate the performance of the proposed detectors
in environments with unknown temporal structure. We consider
an scenario with primary signals of rank P = 2, a receiver
with L = 5 antennas, which captures M = 5 realizations of
length N = 100 or N = 20 for the detection process. The
transmitted signals use OFDM modulation, have a bandwidth
of 7.61 MHz, and undergo propagation through a 5 x 2 uncorre-
lated frequency-selective channel with exponential power delay
profile and delay spread 0.779 ps [35], which is fixed through
the experiment. At the receiver, temporally white noises are
added and the signals are sampled at 16 MHz. The SNR, de-
fined in a frequency selective environment as

7 tr (H (e30) HA (e39)) 42

27
SNR (dB) = 101log;, T e (32 (o9)) 2 , (42)

is given in the figures.

First, we assume i.i.d. noises. The ROC curves for the GLRT
[given by (11)] and the frequency-domain GLRT for i.i.d. noises
[which assumes frequency-selective channels and is given by
(37)] are shown in Fig. 5(a). The advantage of exploiting the
temporal structure of the time series is clear. However, as can be
seen in the figure, this improvement becomes smaller when the
number of available samples decrease. Similar conclusions can
be drawn from Fig. 5(b), which shows the performance of the
two GLRT detectors for uncalibrated receivers, given by (23)
and (38). In this experiment the noise variance values at the
different antennas were drawn from a uniform distribution in
linear scale to obtain mismatches no larger than 7.5 dB.

VII. CONCLUSION

We have derived the GLRTs for the problem of detecting
vector-valued rank-P signals when the noise covariance is as-
sumed unknown. In particular, when the noise at each of the
components is assumed i.i.d. and for uncorrelated noises non
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Fig. 5. Performance comparison of the frequency-domain GLRT against the
GLRT: (a) i.i.d. noise and (b) non-i.i.d. noise.

necessarily i.i.d.. As it turns out, detectors derived under the as-
sumption of i.i.d. noises are not robust to a mismatch in noise
levels across the antennas. Although the GLRT for the more
challenging non-i.i.d. noise case does not admit a closed form,
one can resort to numerical optimization techniques. A closed-
form low SNR approximation of the GLRT has also been pre-
sented, providing a tradeoff between complexity and perfor-
mance. These detectors include as particular cases several pre-
vious schemes derived either for P = 1 or for large P. These
results have also been extended to a model considering vector-
valued time series with unknown PSDs, of interest in applica-
tions with frequency selective channels and/or temporally col-
ored noise.

All of the detectors considered here assume knowledge of the
signal rank P. While this may be reasonable in some contexts,
for example if the space-time coding scheme used by primary
transmitters is known, there are scenarios in which P is un-
known, for example if it is related to the number of primary
users simultaneously transmitting. Future research should con-
sider estimation of P [36] and primary signal detection jointly.

APPENDIX
PROOF OF THEOREM 1

In this Appendix, we prove the mean square convergence
of the log-likelihoods, which can be seen as an extension of
Whittle’s likelihood [33], [34] to multivariate processes. We
shall start by the conditions under which the theorem holds:

c.1 The block-Toeplitz matrices are generated by continuous
symbols, i.e., each matrix block is given by the Fourier
coefficients of an L X L continuous matrix function.

c.2 The power spectral matrices are positive definite.

In order to proceed, let us rewrite (32) as follows:

. Zyv-1;R) = —LNMlogm
M—1
—Mlogdet (R) — > zAR 'z,,, (43)
m=0

logp (2o, . .
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where R is given by (29). Additionally, let us introduce the
block-Toeplitz matrix R which is given by

RO] R o RN+
. R[1] R[0] R[-N +2]
R= : : : , (44
RIN —1] R[N —2] RJ0]

where R[m] = F ’~1 [S7! (¢’?)]; and the sum of quadratic
forms of the matrix R

M-1 ~ - o ' 20
gzngm = NM/_ﬂtr (s COEs (eﬁ)) 7 (49

The mean-square convergence of a random variable is defined
as follows (see, e.g., [37]):

1
lim FE HN [logp(zo,...,2p—1;R)

N — oo
' 2
—logp (2o, .. ..2m—1;S (¢/%))] ] =0. (46)
Substituting (32) and (43) into the left-hand side of (46), one has
M-1
. L _ Hp-1
Jlim B || | —Mlogdet (R) 2_:0 zZHR 'z,
’T df
+ NM —

log det (S (/%)) 5

o s

M /_’; tr (S (/) s (eje)) %}

T

Y i oom| L dt(R)—/ﬂl det (s (7)) L[
_Ninoo N ogde ._ﬂ_Og (§] (& o
| Mol
. Hp—1
+N121002E N zzjosz Zm
T ey et oy A9
M [ (S() 87 () 5 ] [(47)

where (a) follows from [37, Th. 8, p. 287]. We shall proceed by
splitting the proof in two parts, one for each term in the right-
hand side of (47). It is easy to show that under c.1 and c.2, the
following holds (see [38, Th. 6])

. 1 ” oy d
N1£1)1OO I log det (R) — /_7T log det (S (e’)) 5 = 0. (48)
Then, taking into account that
lim ay=0 = lim Jay|*=0 (49)
N — oo N — oo

where ay is any sequence of real numbers, it follows that

N — oo

1
lim 2M ‘N log det (R)

™ 2
- / logdet (S (%)) | = 0,

_77 2

(50)
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Now, taking into account (45), it is readily shown that

1 M-1

: L Hpy—1

Jim B Nz_:ozmn Zon
L oy df |2
-M t (S 70y g=1 (i )_
(s @) o
| M1 2
_ : - H -1 _ 71
= Jim B || Z_Ozm (R R) 7| | . (51

We now prove that (50) converges to zero. First, we must note
that it is a mean of the square of a sum of quadratic forms. There-
fore, taking into account that the quadratic forms are uncorre-
lated and the formulas for the mean and variance of a quadratic
form of a multivariate normal distribution [39], it follows that

| M=t 2
Jim B ‘N gzg (R—l - R) Zom

- it o ([ (5]

+2Mtr [R (R*l _ R) R (R*l _ R)] } -0 (52)

where we have applied [38, Th. 3 and Th. 5] and (49). Therefore,
(51) converges to zero, i.e.,

M-1

. 1 Hp—1
NlinOOE N E_Osz Zim,
- o N o
_ 76 -1 76 - —
M 7wtr(S(e )S () %H 0. (53)
Finally, the proof follows from (50) and (53). ]
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