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Abstract

In this work we introduce a mixture of GPs to address the data associa-

tion problem, i.e. to label a group of observations according to the sources

that generated them. Unlike several previously proposed GP mixtures, the

novel mixture has the distinct characteristic of using no gating function to

determine the association of samples and mixture components. Instead, all

the GPs in the mixture are global and samples are clustered following “tra-

jectories” across input space. We use a non-standard variational Bayesian

algorithm to efficiently recover sample labels and learn the hyperparameters.

We show how multi-object tracking problems can be disambiguated and also

explore the characteristics of the model in traditional regression settings.
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1. Introduction

The data association problem arises in multi-target tracking scenarios.

Given a set of observations that represent the positions of a number of moving

sources, such as cars or airplanes, data association consists of inferring which

observations originate from the same source [1, 2]. Data association is found

in tracking problems for instance in computer vision [3], surveillance, sensor

networks [4] and radar tracking [5]. An example of data association with two

sources is illustrated in Figure 1.
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(a) One-dimensional observations.
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(b) Solution obtained by the proposed

method.

Figure 1: Example of a multi-target tracking scenario. Data association aims to identify

what observations correspond to each source.

For a human observer, little effort is required to distinguish two noisy

trajectories in this example, representing the paths followed by two objects

in time. In this specific case, one observation of each target is available at

each time instant, and the measurement instants are equally spaced in time,

although neither of these properties are required in general.
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Typical multi-target tracking algorithms operate online. They include

joint Kalman filters [6] and joint particle filters [7]. Given the predicted po-

sitions of the targets and a number of candidate observed positions, they

usually make instant data association decisions based on nearest-neighbor

criteria or statistically more sophisticated approaches such as the Joint Prob-

abilistic Data-Association Filter (JPDAF) [5, 7] or the Multiple Hypothesis

Tracker (MHT) [6]. An important disadvantage of these classical techniques

is that they usually require to determine a large number of parameters.

This drawback motivated the development of several conceptually simpler

approaches based on motion geometry heuristics [2, 8, 9]. However, these

approaches are usually limited to specific scenarios, and they show difficul-

ties in the presence of noise and when several trajectories cross each other.

Most data association techniques can be significantly improved by post-

poning decisions until enough information is available to exclude ambiguities

[2], although this causes the number of possible trajectories to grow expo-

nentially. Some attempts have been made to restrain this combinatorial

explosion, including the heuristic methods from [10, 11].

In this paper we present an algorithm based on Gaussian Processes that

is able to consider all available data points in batch form whilst avoiding

the exponential growth in potential tracks. As a result, it is capable to deal

with difficult data association problems in which trajectories come very close

and even cross each other. Furthermore, the algorithm does not require any

knowledge about the model underlying the data, and it does not need time

instants to be evenly spaced, nor to contain observations from all sources.

Gaussian Processes (GPs) [12] are a powerful tool for Bayesian nonlin-
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ear regression. When combined in mixture models, GPs can be applied

to describe data where there are local non-stationarities or discontinuities

[13, 14, 15, 16]. The components of the mixture model are GPs and the

prior probability of any given component is typically provided by a gating

function. The role of the gating function is to dictate which GP is a priori

most likely to be responsible for the data in any given region of the input

space, i.e., the gating network forces each component of the GP mixture to

be localized.

In this work we follow a different approach, inspired by the data associa-

tion problem. In particular, for any given location in input space there may

be multiple targets, perhaps corresponding to multiple objects in a tracking

system. We are interested in constructing a GP mixture model that can

associate each of these targets with separate components. When there is

ambiguity, the posterior distribution of targets will reflect this. We therefore

propose a simple mixture model in which each component is global in its

scope. The assignment of the data to each GP is performed sample-wise,

independently of input space localization. In other words, no gating function

is used. We call this model the Overlapping Mixture of GPs (OMGP).

It has been brought to our attention that the proposed model bears re-

semblance with the work of [17]. However, the focus of application is clearly

different. In [17], the objective is to cluster a set of trajectories accord-

ing to their similarity, whereas in this work we tackle the task of clustering

observations into trajectories (a more demanding task, since only single ob-

servations, as opposed to full trajectories, are available). Also, [17] uses a

standard variational Bayesian algorithm, whereas in this work we take ad-
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vantage of non-standard variational algorithms [18, 19] to derive a tighter

bound.

The remainder of this paper is organized as follows: In Section 2 we pro-

vide a brief review of GPs in the regression setting. Section 3 first introduces

the OMGP model and then discusses how to perform efficient learning, hy-

perparameter selection, and predictions using this model. Experiments on

several data sets are provided in Section 4. We wrap up in Section 5 with a

brief discussion.

2. Brief Review of Gaussian Processes

In recent years, Gaussian Processes (GPs) have attracted a lot of attention

due to their nice analytical properties and their state-of-the-art performance

in regression tasks (see [20]). In this section we provide a brief summary of

the main results for GP regression, see [12] for further details.

Assume that a set of N multi-dimensional inputs and their corresponding

scalar outputs, D ≡ {xn, yn}mi=1, are available. The regression task is, given

a new input x∗, to obtain the predictive distribution for the corresponding

observation y∗ based on D.

The GP regression model assumes that the observations can be modeled

as some noiseless latent function of the inputs plus independent noise y =

f(x)+ε, and then sets a zero-mean1 GP prior on the latent function f(x) ∼
GP(0, k(x,x′)) and a Gaussian prior on ε ∼ N (0, σ2) on the noise, where

1To make this assumption hold, the sample mean of the set {y(xn)}mn=1
is usually

subtracted from data before proceeding further.
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k(x,x′) is a covariance function and σ2 is a hyperparameter that specifies

the noise power.

The covariance function k(x,x′) specifies the degree of coupling between

y(x) and y(x′), and it encodes the properties of the GP such as power

level, smoothness, etc. One of the best-known covariance functions is the

anisotropic squared exponential. It has the form of an unnormalized Gaus-

sian, k(x,x′) = σ2
0 exp

(
−1

2
x⊤Λ−1x

)
and depends on the signal power σ2

0

and the length-scales Λ, where Λ is a diagonal matrix containing one length-

scale per input dimension. Each length-scale controls how fast the correlation

between outputs decays as the separation along the corresponding input di-

mension grows. We will collectively refer to all kernel parameters as θ.

The joint distribution of the available observations (collected in y) and

some unknown output y(x∗) is a multivariate Gaussian distribution, with

parameters specified by the covariance function:



 y

y∗



 ∼ N



0,



K + σ2IN k∗

k⊤
∗ k∗∗ + σ2







 , (1)

where [K]nn′ = k(xn,xn′), [k∗]n = k(xn,x∗) and k∗∗ = k(x∗,x∗). IN is used

to denote the identity matrix of size N . The notation [A]nn′ refers to entry

at row n, column n′ of A. Likewise, [a]n is used to reference the n-th element

of vector a.

From (1) and conditioning on the observed training outputs we can obtain

the predictive distribution

pGP(y∗|x∗,D) = N (y∗|µGP∗, σ
2
GP∗) (2)

µGP∗ = k⊤
∗ (K + σ2IN )−1y σ2

GP∗ = σ2 + k∗∗ − k⊤
∗ (K + σ2IN)−1k∗ ,
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which is computable in O(N3) time, due to the inversion2 of the N × N

matrix K + σ2IN .

Hyperparameters {θ, σ} are typically selected by maximizing the marginal

likelihood (also called “evidence”) of the observations, which is

log p(y|θ, σ) = −1

2
y⊤

(
K + σ2IN

)−1 y − 1

2
|K + σ2IN | −

N

2
log(2π) . (3)

If analytical derivatives of (3) are available, optimization can be carried

out using gradient methods, with each gradient computation taking O(N3)

time. GP algorithms can typically handle a few thousand data points on a

desktop PC.

When dealing with multi-output functions, instead of a single set of ob-

servations y, D sets are available, y1 . . .yD, each corresponding to a different

output dimension. In this case we can assume independence across the out-

puts and perform the above procedure independently for each dimension.

This will provide reasonable results for most problems, but if correlation be-

tween different dimensions is expected, we can take advantage of this knowl-

edge and model them jointly using multi-task covariance functions [21].

3. Overlapping Mixtures of Gaussian Processes (OMGP)

The overlapping mixture of Gaussian processes (OMGP) model assumes

that there exist M different latent functions {f (m)(x)}Mm=1 (which we will

call “trajectories”), and that each output is produced by evaluating one of

2Of course, in a practical implementation, this inversion should never be performed

explicitly, but through the use of the Cholesky factorization and the solution of the corre-

sponding linear systems, see [12].
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these functions at the corresponding input and by adding Gaussian noise to

it. The association between samples and latent functions is determined by

the N ×M binary indicator matrix Z: Entry [Z]nm being non-zero specifies

that n-th data point was generated using trajectory m. Only one non-zero

entry per row is allowed in Z.

To model multi-dimensional trajectories (i.e., when the mixture model has

multiple outputs), D latent functions per trajectory can be used {f (m)
d (x)}M,D

m=1,d=1.

Note that there is no need to extend Z to specifically handle the multi-output

case, since all the outputs corresponding to a single input are the same data

point and must belong to the same trajectory.

For convenience we will collect all the outputs in a single matrix Y =

[y1 . . .yD] and all the latent functions of trajectory m in a single matrix

F(m) = [f (m)
1 . . . f (m)

D ]. We will refer to all the latent functions as {F(m)}.
Given the above description, the likelihood of the OMGP model is

p(Y|{F(m)},Z) =
N,M,D∏

n=1,m=1,d=1

N ([Y]nd|[F(m)]nd, σ
2)[Z]nm . (4)

Following the standard Bayesian framework, we place priors on the un-

observed latent variables

p(Z) =
N,M∏

n=1,m=1

[Π][Z]nm

nm , p(F(m)|X) =

M,D∏

m=1,d=1

N (f (m)
d |0,K(m)) , (5)

i.e., a multinomial distribution over the indicators (in which
∑M

m=1[Π]nm =

1 ∀n) and independent GP priors over each latent function.3 We allow

3If correlation between different trajectories is known to exist, trajectories can be jointly

modeled as a single GP, using a covariance function that accounts for this dependence.
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different covariance matrices for each trajectory. Though the multinomial

distribution is specified here in its more general form, additional constraints

are usually imposed, such as holding the prior probabilities constant for all

data points. For the sake of clarity, we will omit the conditioning on the

hyperparameters {θ,Π, σ2}, which can be assumed to be known for the mo-

ment.

Unfortunately, the analytical computation of the posterior distribution

p(Z, {F(m)}|X,Y) is intractable, so we will resort to approximate techniques.

3.1. Variational approximation

If the hyperparameters are known, it is possible to approximately com-

pute the posterior using a variational approximation. We can use Jensen’s

inequality to construct a lower bound on the marginal likelihood as follows:

log p(Y|X) = log

∫
p(Y|{F(m)},Z)p(Z)

M∏

m=1

p(F(m)|X)d{F(m)}dZ (6)

≥
∫

q({F(m)},Z) log p(Y|{F(m)},Z)p(Z)∏M

m=1 p(F
(m))|X)

q({F(m)},Z)
d{F(m)}dZ = LVB.

Here LVB is a lower bound on log p(Y|X) for any variational distribu-

tion q({F(m)},Z) and equality is attained if and only if q({F(m)},Z) =

p(Z, {F(m)}|X,Y). Our objective is therefore to find a variational distri-

bution that maximizes LVB, and thus becomes an approximation to the true

posterior. We will restrict our search to variational distributions that factor-

ize as q({F(m)},Z) = q({F(m)})q(Z).

This would increase the computational complexity of inference for this model, but the

following derivations can still be applied.

9



If we assume that q({F(m)}) is given (and therefore, also the marginals

q(f (m)
d ) = N (f (m)

d |µ(m)
d ,Σ(m)) are available), it is possible to analytically max-

imize LVB with respect to q(Z) by setting its derivative to zero and constrain-

ing it to be a probability density. The optimal q(Z) is then:

q(Z) =
N,M∏

n=1,m=1

[Π̂][Z]nm

nm with [Π̂]nm ∝ [Π]nm exp(anm) (7)

with anm =

D∑

d=1

(
− 1

2σ2

(
([yd]n − [µ(m)

d ]n)
2 + [Σ(m)]nn

)
− 1

2
log(2πσ2)

)
,

where we see that the (approximate) posterior distribution over the indicators

q(Z) factorizes for each sample.

Analogously, assuming q(Z) as known, it is possible to analytically ob-

tain the distribution over the latent functions that maximizes LVB. For the

OMGP model, this distribution factorizes both over trajectories and dimen-

sions, and is given by

q(f (m)
d ) = N (f (m)

d |µ(m)
d ,Σ(m)) (8a)

with Σ(m) = (K−1(m) + B(m))−1 and µ(m)
d = Σ(m)B(m)y(m)

d (8b)

where B(m) is a diagonal matrix with elements [Π̂]1m/σ
2 . . . [Π̂]Nm/σ

2.

It is now possible to initialize q(Z) and q(f (m)
d ) from their prior distribu-

tions and iterate updates (7) and (8) to obtain increasingly refined approx-

imations to the posterior. Since both steps are optimal with respect to the

distribution that they compute, they are guaranteed to increase LVB, and

therefore the algorithm is guaranteed to converge to a local maximum.

Monotonous convergence can be monitored by computing LVB after each
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update. LVB can be expressed as

LVB =
〈
log p(Y|{F(m)},Z)

〉

q({F(m)},Z)

−KL(q({F(m)})||p({F(m)}))−KL(q(Z)||p(Z))

where the first term is given by

〈
log p(Y|{F(m)},Z)

〉

q({F(m)},Z)
=

N,M∑

n,m

[Π̂]nmanm ,

and the two remaining terms are the Kullback-Leibler (KL) divergences from

the approximate posterior to the prior, which are straightforward to compute.

Update (7) takes only O(NM) computation time, whereas (8) takes

O(MN3) time, due to the M matrix inversions. The presented model there-

fore has the same limitations as conventional GPs regarding the size of the

data sets that it can be applied to. However, when the posterior probability

of some indicator [Π̂]nm is close to zero, sample n no longer affects trajectory

m and can be dropped in its computation, thus reducing the cost. Further-

more, it is possible to use sparse GPs4 to reduce this cost5 to O(MN) time

by making use of the matrix inversion lemma.

3.2. An improved variational bound for OMGP

So far we have assumed that all the hyperparameters of the model are

known. However, in practice, some procedure to select them is needed. The

4Such as the standard FITC approximation, described in [22] or the variational ap-

proach introduced in [23].
5Obviously, the cost also depends on the quality of the approximation by a constant

factor. If the FITC approximation with r pseudo-inputs (or other rank-r approximation)

is used, the computational complexity could be expressed as O(MNr2).
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most straightforward way of achieving this would be to select them so as to

maximize LVB, interleaving this procedure with updates (7) and (8). How-

ever, when the quality of this bound is sensitive to changes of the model

hyperparameters, this approach results in very slow convergence. A solution

to this problem is described in [18] where the advantages of maximizing an

alternative, tighter bound on the likelihood are shown.

The improved bound proposed in [18] is still a lower bound on the like-

lihood but it can be proved that it is also an upper bound on the standard

variational bound LVB. As shown in [18], if we subtract LVB from the im-

proved bound, the result takes on the form of a KL-divergence. This fact

can be used both to show that it upper-bounds LVB (since KL-divergences

are always positive) and to name the new bound, which is referred to as the

KL-corrected variational bound.

The KL-corrected bound for the OMGP model arises when the term

log
∫
p(Y|{F(m)},Z)p(Z)dZ from the true marginal likelihood (6) is replaced

with
∫
q(Z) log p(Y|{F(m)},Z)p(Z)

q(Z)
dZ, which according to Jensen’s inequality,

constitutes a lower bound for any distribution q(Z):

log p(Y|X) ≥ log

∫ M∏

m=1

p(F(m)|X)e
∫
q(Z) log

p(Y|{F(m)},Z)p(Z)
q(Z)

dZd{F(m)} =

LCorrVB =

M,D∑

m=1,d=1

logN (y(m)
d |0,K(m) + B−1(m))

−KL(q(Z)||p(Z)) + D

2

N,M∑

n=1,m=1

log
(2πσ2)1−[Π̂]nm

[Π̂]nm
.

The KL-corrected lower bound LCorrVB can be computed analytically and

has the advantage with respect to LVB, of depending only on q(Z) (and not
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q({F(m)})), since it is possible to integrate
∏M

m=1 p(F
(m)|X) out analytically.

Bound LCorrVB can be alternatively obtained by following the recent work

in [19] and optimally removing q({F(m)}) from the standard bound. In the

context of that work, LCorrVB is referred to as the “marginalized variational

bound”, and it is made clear that LCorrVB corresponds simply to LVB when,

for a given q(Z), the optimal choice for q({F(m)}) is made. In other words, for

the same set of hyperparameters and the same q(Z), if one choses q({F(m)})
according to (8), both LVB and LCorrVB would provide the same result.

Thus, learning is performed simply by optimizing LCorrVB with respect to

q(Z) and the hyperparameters, iterating the following two steps:

• E-Step: Updates (7) and (8) are alternated, which monotonically in-

crease both LVB and LCorrVB, until convergence. Hyperparameters are

kept fixed.

• M-Step: Gradient descent of LCorrVB with respect to all hyperparame-

ters is performed. Distribution q(Z) is kept fixed.

Note that it is in the M-step where LCorrVB becomes actually useful, since

this improved bound remains more stable across different hyperparameter

selections, due to it not depending on q({F(m)}), as demonstrated in [18].

Of course, any strategy that maximizes LCorrVB is valid, but we have

found the above EM procedure to work well in practice.

Computing LCorrVB according to the provided expression without incur-

ring in numerical errors can be challenging in practice, since several inver-

sions, which maybe unstable, are needed. Also, note that B(m) can take

arbitrarily small values and thus direct inversion may not be possible. An
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implementation-friendly expression where explicit inverses are avoided is

LCorrVB =
M∑

m=1

(
− 1

2

D∑

d=1

||R(m)⊤\(B(m) 1
2 y(m)

d )||2 −D
N∑

n=1

log[R(m)]nn

)

−KL(q(Z)||p(Z))− D

2

N,M∑

n=1,m=1

[Π̂]nm log(2πσ2) ,

where

R(m) = chol(I + B(m) 1
2 K(m)B(m) 1

2 )

and the backslash has the usual meaning of solution to a linear system.6

3.3. Predictive distributions

The OMGP model can be used for a variety of tasks. In the data asso-

ciation problem (i.e., clustering data into trajectories) the task at hand is

to cluster observations into trajectories, which can be achieved by assign-

ing each observation to the trajectory that more likely generated it, i.e., to

assign label m∗ = argmaxm[Π̂]nm to the n-th observation, so no further

computations are necessary. For other tasks, however, it can be necessary to

obtain predictive distributions over the output space at new locations. Under

the variational approximation, this predictive distributions can be computed

analytically.

The predictive distribution in the output dimension d corresponding to a

6Expressions of the type C\c refer to the solution of the linear system Cx = c and are

a numerically stable operation requiring only O(N2) time when C is triangular, which is

the case here.
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new test input location x∗ can be expressed as

p(y∗d|x∗,X,Y) =
M∑

m=1

[Π]∗m

∫
p (y∗d|f (m)

d ,x∗,X) p (f (m)
d |X,Y)df (m)

d

≈
M∑

m=1

[Π]∗m

∫
p (y∗d|f (m)

d ,x∗,X) q (f (m)
d |X,Y)df (m)

d

=
M∑

m=1

[Π]∗mN (y∗d|µ(m)
∗d , σ

2(m)
∗d )

with

µ
(m)
∗d = k⊤(m)

∗ (K(m) + B(m)−1)−1 yd,

σ
2(m)
∗d = σ2 + k∗∗ − k⊤(m)

∗ (K(m) + B(m)−1)−1 k(m)
∗ ,

i.e., a Gaussian mixture under the approximate posterior. The mixing fac-

tors [Π]∗m are the prior probabilities of each component, one of the given

hyperparameters of the model, and typically constant for all inputs.

Note the correspondence of these predictive equations with the standard

predictions for GP regression (2). The only difference is the noise compo-

nent, which is scaled for each sample according to [Π̂]−1
nm. In particular, as the

posterior probability of a sample belonging to the current trajectory (some-

times known as “responsibility”) decays, the amount of noise associated to

that sample is proportionally grown, thus reducing its effect on the posterior

process.

Due to the reasons mentioned in the previous subsection, the predic-

tive equations should not be implemented directly. Instead, the following
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numerically-stable expressions should be used:

µ
(m)
∗d = k⊤(m)

∗ B(m) 1
2 (R(m)\(R(m)⊤\(B(m) 1

2 y(m)
d ))),

σ
2(m)
∗d = σ2 + k∗∗ − ||R(m)⊤\(B(m) 1

2 k⊤(m)
∗ )||2 .

3.4. Batch versus online operation

Though the description of OMGP is oriented towards batch data associ-

ation tasks, this model can also be successfully applied to online tasks, by

using a data set that grows over time. New samples are included as they

arrive and the learning process is re-started, initializing it from the state

that was obtained as a solution for the previous problem. Depending on the

constraints of a given problem, many different optimizations can be made to

avoid an explosion in computational effort, such as using low-rank updates.

Note, however, that since in this model all the elements in each latent

function form a fully connected graph, the Markovian property does not

hold and the computation time required for each update is not constant.

A possible workaround to achieve constant-time updates is to use constat-

size data sets, for instance corresponding to a sliding window, and then

perform low-rank updates to include and remove samples. However, we will

not pursue that option in this work.

4. Experiments

In this section we investigate the behavior of OMGP both in data asso-

ciation tasks and regression tasks, showing the versatility of this model. We

use an implementation of OMGP in Matlab on a 3GHz, dual-core desktop

PC with 4GB of memory, yielding executions times of the order of seconds

for each experiment.
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4.1. Data association tasks

4.1.1. Toy data

We first apply OMGP to perform data association on a toy data set. The

sources perform circular motions, one clockwise and one counterclockwise,

as depicted in Fig. 2(a). The available observations represent the measured

positions of the sources (which include Gaussian noise) at known time in-

stants. However, it is not known which observed position corresponds to

which source. Since both trajectories are circles with the same center and

radius, the sources cross each other twice per revolution, making the cluster-

ing problem more difficult. However, as shown in Fig. 2(b), OMGP is capable

of successfully identifying the unknown trajectories. Fig. 2(c) illustrates the

uncertainty about the estimated labels. Specifically, it shows a decrease in

the posterior probability of the correct labels whenever the two sources come

close.

4.1.2. Missile-to-air multi-target tracking

Next, we consider a missile-to-air tracking scenario as described in [7].

The motion dynamics of this scenario are defined by the following state-

space equations:

st+1 =



 I3 T I3

O3 I3



 st +




T 2

2
I3

T I3



 vt; rt = h(st) =






√
X2

t + Y 2
t + Z2

t

arctan( Yt

Xt
)

arctan( −Zt√
X2

t +Y 2
t

)





+ et.

In this model, the state vector st = [Xt, Yt, Zt, Vx,t, Vy,t, Vz,t] contains the

source position and velocity components, rt contains the observed measure-

ments, T is the sampling interval, and I3 and O3 represent the 3 × 3 unity
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Figure 2: (a) Observations for two sources that move in opposite circles. (b) The data

association solution obtained by OMGP. (c) Posterior probability of the correct label for

observations coming from source 1 (top) and 2 (bottom).

matrix and null matrix, respectively. The process noise vt and measurement

noise et are assumed Gaussian, vt ∈ N (0,Q) and et ∈ N (0,R). For more

details refer to [7]. The problem posed in [7] consists in tracking two sources

and estimating their unknown state vector, given their correct initial states

s10 = [6500,−1000, 2000,−50, 100, 0] and s20 = [5050,−450, 2000, 100, 50, 0].

We consider a more complex scenario by adding a third source, with initial

state s30 = [8000, 500, 2000,−100, 0, 0], which passes close to one of the other

sources at a certain instant.

We apply the SIR/MCJPDA filter from [7] and OMGP to perform data
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association on the observations. The SIR/MCJPDA filter consists of a set of

joint particle filters that perform tracking of multiple sources, combined with

a joint probability data association (JPDA) technique which provides instan-

taneous data association. The number of particles used in this experiment is

25000. In order to operate correctly, the SIR/MCJPDA filter requires com-

plete knowledge of the used state-space model and the initial state vectors xi
0.

Note that OMGP is completely blind in this regard. The OMGP algorithm

is operated first in its incremental online setting. For illustration purposes,

we also include results of the batch version of the OMGP algorithm.

The trajectories obtained by each method can be found in Fig. 3, along

with the predicted measurements. Although the SIR/MCJPDA filter initially

performs correctly, it encounters difficulties at the point where the sources

come close. After this point it shows erroneous assignments for at least one

trajectory. Its mistakes are mainly due to its state vector depending only

on 1 previous state, which proves insufficient if the sources are close during

multiple consecutive measurements. The online version of OMGP does not

show this problem. The smoothest solution is obtained by batch OMGP,

which performs a global evaluation of the entire trajectories.

To evaluate the performance of the algorithms, we measure the RMSE

of each trajectory. These values can be found in Table 1, along with the

number of observations that are assigned to the wrong trajectories, nerr, out

of a total of 90 observations. As can be observed, both versions of the OMGP

algorithm obtain superior results compared to SIR/MCJPA. Furthermore,

while SIR/MCJPDA requires complete knowledge of the state-space model

and the initial state vectors, OMGP does not require any knowledge of the
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(a) Trajectories identified by

SIR/MCJPDA.
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(b) Trajectories identified by OMGP, in-

cremental online version.
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(c) Trajectories identified by OMGP,

batch solution.

Figure 3: Missile-to-air data association problem with three sources. The starting point

of each source is marked with a black dot.

underlying model.

4.1.3. Interference alignment in OFDM wireless networks

Interestingly, the data association problem can be found in contexts that

go beyond standard multi-target tracking scenarios, such as digital commu-

nications [24]. In the third experiment we apply OMGP to a data association

problem that occurs in wireless communication networks.
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Table 1: RMSE comparison on the missile-to-air data association problem.

Algorithm RMSE #1 RMSE #2 RMSE #3 nerr

SIR/MCJPDA 292.46 150.07 258.14 17

OMGP (online) 182.31 151.46 163.92 6

OMGP (batch) 133.30 80.23 118.94 1

Interference alignment (IA) is a concept that has recently emerged as

a solution to raise the capacity of wireless multiple-input multiple-output

(MIMO) networks [25]. The underlying idea of IA along the spatial dimen-

sions is that the interference from other transmitters must be aligned at each

receiver in a subspace orthogonal to the signal space. In order to implement

interference alignment in scenarios with multiple subcarriers, a digital filter

must be applied at each transmit antenna. Here we will consider a 3-user

interference channel with two antennas per node and OFDM modulation

using Nc subcarriers [26], which allows for two possible filter responses per

subcarrier. Since only smooth frequency responses can be implemented, the

smoothest solution of the 2Nc possible choices should be selected.

This combinatorial problem corresponds to a data association problem

in which only the smoothest curve is of interest. (see Fig. 4(a)). The data

used for this experiment consists of two simulated data sets and one data set

obtained with a MIMO test bed setup7, each using 52 subcarriers. In Fig. 4

we illustrate the solutions obtained by OMGP on these data sets. While

7See [27] for a full description of the used test bed.
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Figure 4: Data association results obtained by OMGP on different interference alignment

problems. (a) shows the IA solutions (imaginary part only) for the first simulated data

set. (b) and (c) show the solutions for the first and second simulated data sets (real and

imaginary part versus subcarrier number). (d) shows the IA solution for a real-world data

set. Note that complex values are simply simply treated as two-dimensional real data in

this experiment.

the simulated data sets from Fig. 4(b) and Fig. 4(c) represent reasonably

simple data association problems, the performance of OMGP on the real-

world data set of Fig. 4(d) shows that it is capable of correctly distinguishing

the smoothly-varying solution from the surrounding noisy data. As a matter

of fact, we have been able to successfully implement OMGP in the IA setting
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for a parallel ungoing research project.

4.2. Regression tasks

We now consider application of the model in more standard regression

tasks. In particular, we consider tasks where the target density is multimodal,

which is the case when the data comes from multiple sources.
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(b) Inferred labels and predictive log-

probs.

Figure 5: Posterior log-probability of the OMGP model and label inference.

4.2.1. Multilevel regression

Consider the data set from Fig. 5(a), which corresponds to observations

from three independent functions. A normal GP would fail to produce valid

multimodal outputs and previously proposed mixtures of GPs would restrict

the component GPs to local parts of the space. OMGP can properly label

each observation according to the generating function and provide multi-

modal predictive distributions, as depicted in Fig. 5(b).
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Fig. 5 can also be interpreted as measurements of the position of three

particles moving along one dimension, of which snapshots are taken at irreg-

ular time intervals (horizontal axis). Each snapshot introduces noise in the

position measurement and does not necessarily capture the position of all the

particles. In this case OMGP could be used to predict the position of any

particle at any given point in time, as well as to properly label the samples

in each snapshot.

4.2.2. Robust regression

Since each GP in the mixture can use a different covariance function,

it is possible to use a GP to capture unrelated outliers and another one to

interpolate the main function. This is easily achieved by a mixture of two

GPs, one with the ARD-SE covariance function and another with k(x, x′) =

b2δ(x, x′), i.e., white noise. We consider the problem of regression in a noisy

sinc in which some outliers have been introduced in Fig. 6 (top row). Observe

how OMGP both identifies the outliers and ignores them, resulting in much

better predictive means and variances.

4.2.3. Heteroscedastic behavior

Finally, Fig. 6 (bottom row) shows the results of running a GP and OMGP

on the motorcycle data set from [28]. Two components have been identified,

which might or might not correspond to two actual physical mechanisms al-

ternatively producing observations. The predictive variances show improved

behavior with respect to the standard GP.
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Figure 6: Predictive means and variances for two different data sets. The shaded area

denotes ±2 standard deviations around the mean. Top row: Noisy sinc with outliers. (a)

Standard GP and (b) OMGP with a noise-only component. (Only the predictive mean

and variance of the signal component is depicted, which includes noise σ2). Bottom row:

Silverman’s motorcycle data set.

5. Discussion and future work

In this work we have introduced a novel GP mixture model inspired by

multi-target tracking problems. The new model has the important difference

with respect to previous approaches of using global mixture components and

assigning samples to components by relying on their value in output space,
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instead of input space (as it is done when gating functions are used).

A simple and efficient algorithm for inference relying on the variational

Bayesian framework has been provided. The model can be applied in prac-

tice due to the use of an improved, KL-corrected variational bound to learn

the hyperparameters. Direct optimization of this bound both to obtain an

approximate posterior and to learn the hyperparameters will be considered

in a further work.

The OMGP model offers promising results when tracking moving targets,

as has been illustrated experimentally in Section 4 and compares favorably

with established methods in the field. Also, through imaginative application

of the model using different covariance functions we were able to adapt the

approach to robust regression and heteroscedastic noise.

Naive implementation of GPs limits their applicability to only a few thou-

sand data samples. However, recent advances in sparse approximations (e.g.

[22, 23]) greatly should enable our approach to be applied to much larger

data sets.
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