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Abstract—In this paper, we study how many different solutions
exist for a feasible interference alignment (IA) problem. We focus
on linear IA schemes without symbol extensions for the K -user
multiple-input multiple-output (MIMO) interference channel.
When the IA problem is feasible and the number of variables
matches the number of equations in the polynomial system, the
number of solutions is known to be finite. Unfortunately, the exact
number of solutions is only known for a few particular cases,
mainly single-beam MIMO networks. In this paper, we prove that
the number of IA solutions is given by an integral formula that
can be numerically approximated using Monte Carlo integration
methods. More precisely, the number of solutions is the scaled
average over a subset of the solution variety (formed by all
triplets of channels, precoders and decoders satisfying the IA
polynomial equations) of the determinant of certain Hermitian
matrix related to the geometry of the problem. Our results can
be applied to arbitrary interference MIMO networks, with any
number of users, antennas and streams per user.

I. INTRODUCTION

Interference alignment (IA) has received a lot of attention
in recent years as a key technique to achieve the maximum
degrees of freedom (DoF) of wireless networks in the presence
of interference. The basic idea of IA consists of designing the
transmitted signals in such a way that the interference at each
receiver falls within a lower-dimensional subspace, therefore
leaving a subspace free of interference for the desired signal.
Since its inception in [1], [2], IA schemes have been applied
in different forms and adapted to various wireless networks
[3]-[6].

In this paper we consider the linear IA problem (i.e., signal
space alignment by means of beamforming) for the K -user
multiple-input multiple-output (MIMO) interference channel
(IC) with constant channel coefficients and without symbol
extensions. The feasibility of linear IA in this scenario, which
is closely related to the problem treated in this work, has been
an active research topic during the last years [7]-[12]. Here,
we study the problem of how many different IA solutions
exist for a feasible system, which is relevant as a diversity
metric. Some IA solutions lead to highly collinear signal and
interference subspaces causing a substantial desired signal loss
after decoding. In this sense, the number of solutions serve as
a measure of the number of independently faded IA designs.
Additionally, the number of solutions is also related to the
algebraic complexity required to compute a single solution.
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We specifically consider the case in which the number
of variables matches the number of equations of the IA
polynomial system, because in this situation the number of
solutions is finite and constant, as proved in [12]. Following
the nomenclature recently introduced in [13] we refer to these
systems as tightly feasible, stressing the fact that removing
a single antenna from the network turns the IA problem
infeasible.

For tightly feasible single-beam (i.e., when all users wish
to transmit d = 1 stream of data) MIMO networks, it was
shown in [7] that the number of alignment solutions coincides
with the mixed volume of the Newton polytopes that support
each equation of the polynomial system. In practice, however,
the computation of the mixed volume of a set of IA equations
using the available software tools [14] can be very demanding,
therefore only a few cases have been solved so far. For
single-beam networks, some upper bounds on the number of
solutions using Bezout’s Theorem have also been proposed in
[7], [15]. For multi-beam scenarios, however, the genericity of
the system of polynomial equations is lost and it is not possible
to resort to mixed volume calculations to find the number of
solutions.

The main contribution of this paper is an integral formula
for the number of IA solutions for arbitrary, tightly feasible,
interference networks. Although the integral, in general, is
hard to compute analytically, it can be easily estimated using
Monte Carlo integration. To speed up the convergence of the
Monte Carlo integration method, we specialize the general
integral formula for square symmetric cases, i.e., equal number
of transmit and receive antennas and equal number of streams
per user.

II. SYSTEM MODEL AND BACKGROUND MATERIAL

A. System model and notation

In this paper, we consider the K -user MIMO IC where each
user wishes to send di > 0 streams, each transmitter has
M), > 1 antennas, and each receiver is equipped with N > 1
antennas. We denote the set of users as K = {1,..., K} and
the set of interfering links as ® = {(k,l) : k,l € K,k # 1}.
Also, #(®) denotes the cardinality of ®, that is the number of
elements in the finite set P.
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We adhere to the notation used in [7] and denote
this (fully connected) asymmetric interference channel as
HkGIC (Mk X N}C, dk) = (M1 X Nl, dl) ce (MK X NK, dK)
The symmetric case in which all users transmit d streams
and are equipped with M transmit and N receive antennas
is denoted as (M x N, d)K. In the square symmetric case all
users have the same number of antennas M = N.

The MIMO channel from transmitter [ to receiver k is
denoted as Hy; and assumed to be flat-fading and constant
over time. Each Hy; is an Ny X M; complex matrix with
independent entries drawn from a continuous distribution. The
interference alignment (IA) problem is to find the decoders and
precoders, V; and Uy, in such a way that the interfering signals
at each receiver fall into a reduced-dimensional subspace. The
receivers can then extract the projection of the desired signal
that lies in the interference-free subspace. To this end, it is
required that the polynomial equations

UL Hy Vi =0, (k1) € @, (1)

are satisfied (the superscript T denoting transpose), while the
signal subspace for each user must be linearly independent of
the interference subspace and must have dimension dj, that is

rank(UkTHkak) = dy, Vkelk. 2)

B. Feasibility of IA: A brief review

The IA feasibility problem, which has been deeply investi-
gated in [7]-[10], amounts to study the relationship between
dj, My, Ny, K such that the linear alignment problem is
feasible. In the following, we make a short review of the
main feasibility result presented in [11], [12], which forms
the starting point of this work. Let us first describe the three
main algebraic sets involved in the feasibility problem.

o Input space formed by the MIMO matrices, which is

formally defined as

H = H CNkXMl
(k,1)e®

where [ holds for Cartesian product, and CV+*M: is the
set of N x M; complex matrices.

e Output space of precoders and decoders (i.e., the set
where possible outputs exist)

S= (H Gdk,Nk> X (H Gd,,Ml>7

kex lex

where G, is the Grassmannian formed by the linear
subspaces of (complex) dimension a in CP.
o The solution variety, which is given by

V={(HUV)eHxS: (1) holds}

where H is the collection of all Hy; and, similarly, U and
V' denote the collection of Uy and V, respectively. The
set V) is given by the polynomial equations in (1), linear
in each of the Hy;, U, V; and therefore is an algebraic
subvariety of the product space H X S.

Once the main algebraic sets have been defined, it is
interesting to consider the following diagram

V

™ N T2 3)
H S

where the sets and the main projections involved in the
feasibility problem are depicted. Note that, given H € H, the
set wfl(H) is a copy of the set of U,V such that (1) holds,
that is the solution set of the linear interference alignment
problem.

The feasibility question can then be posed as, is 7, " (H) #
() for a generic H? The question was solved in [12], basically
stating that for the problem to be feasible two conditions have
to be fulfilled:

1) The algebraic dimension of ¥V must be larger than or
equal to the dimension of H, i.e.,

s = (Z dk(Nk-l-Mk—Qdk))— Z did; | > 0.
(

ke k,l)ed
“)

In other words this condition means that, for the problem
of polynomial equations to have a solution, the number
of variables must be larger than or equal to the number
of equations. This condition was already established in
[7], hereby classifying interference channels as proper
(s > 0) or improper (s < 0). In [8], [9] it was rigorously
proved that improper systems are always infeasible.
2) For some element (H,U,V) € V, the linear mapping 6
given by
,Vic) {UkTHle + UkTszVz}
)
must be surjective, i.e., it must have maximal rank
equal to Z(k,l)ecp drd;. Here, (Ul, LUk VA, VK)
denotes a set of complex matrices of dimensions Ny X dy,
or M; x d; depending on whether Uy, or V; is considered,
which are affine representations of the components of a
vector in the tangent space of V. This condition amounts
to saying that the projection from the tangent plane at
an arbitrary point of the solution variety to the tangent
plane of the input space must be surjective. Moreover, in
this case, the mapping (5) is surjective for almost every
(H,U,V)eV.

(Ula"'aUKa‘./la"'

III. THE NUMBER OF IA SOLUTIONS
A. Preliminaries

In this paper we start by taking structured matrices given
by
Apl
cm> : (6)

with precoders and decoders given by

1 1
O(at,—dy)xdy 0Ny, —die) x .

Hy = <0d§:[dl
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which trivially satisfy Ul Hy,V; = 0 and therefore belong to
the solution variety. We claim that essentially all the useful
information about V can be obtained from the subset of V
consisting on triples (Hy;, Uy, V;) of the form (6) and (7).
The reason is that given any other element (H,,,,U},V/) € V,
one can easily find sets of orthogonal matrices P, and Q)
satisfying

Uy =PRU;,, Vi=QV/,

and

T HLV = UL ()" H,Qivi =0,

where the superscript * denotes Hermitian. That is, the trans-
formed channels Hy;, = (P;)" H},Q; have the form (6), and
the transformed precoders V; and decoders U, have the form
(7). Thus, we have just described an isometry which sends
(H;,,U;,V/) to (Hy, Ug, V;). The situation is thus similar to
that of a torus: every point can be sent to some predefined
vertical circle through a rotation, thus the torus is essentially
understood by “moving” a circle and keeping track of the
visited places. The same way, V can be thought of as moving
the set of triples of the form (6) and (7), and keeping track
of the visited places. Technically, V' is the orbit of the set of
triples of the form (6) and (7) under the isometric action of a
product of unitary groups.

In summary, the main idea is that, for the purpose of
checking feasibility or counting solutions, we can replace the
set of arbitrary complex matrices H by the set of structured

matrices A
04, x4 Kl
Hr=]] ( L ) :
oy By, Cy

Similarly, we can replace the mapping 6 in (5) by a new
mapping ¥ of the form

U1,...,Uk,V1,..., Vi) = (UkTBkl +Alel) . ®
We will be interested in the function det(¥W¥*), which de-
pends on the channel realization H only through the blocks
Ay and Byg;. The vectorization of the mapping (8) reveals that
V¥ is composed of two main kinds of blocks, \I!,(j) and \I!,(f),

ie.
VeC(UgBkl =+ Akl‘./l) =

(Art ® Ia,) K (N, —dp).a, vee(Ur) + (1o, ® BJ) vec(V}),
———

vy )

©)
where ® denotes Kronecker product and K, ,, is the mn X
mn commutation matrix which is defined as the matrix that
transforms the vectorized form of an m X n matrix into the
vectorized form of its transpose. Block \Ilff) has dimensions
dydy x d;(M; —d;), whereas block U\ is dydj x di (Nj, —dy).
For a given tuple (k,1), \I!(B and \IJ<ZA) are placed in the row
partition that corresyonds to the mterfermg link indicated by
the tuple (k,1). \Ilgl is placed in the [+ K -th column partition,
whereas \I!,(J1 occupies the k-th column partition. The rest

of blocks are occupied by null matrices. The dimensions of
U are therefore >, dd; x Zle(Mj + N;j — 2d;)d;. In
the particular case of s = 0, ¥ is a square matrix of size
2t i

Notice that ¥ has the same structure as the incidence matrix
of the network connectivity graph. Taking the 3-user system
as an example, V¥ is constructed as follows

v 0o o o ¥ o
v 0o o o o ©P
o v o WP o o
0wy 0, o0 vy
B

L 32 32 ]

where the blocks \I/( ) and \I/( ) are given by (9).

B. Main results

Given a Riemannian manifold X with total finite volume

denoted as Vol(X) let
reel IRLCL
VoI(X) fuex "

be the average value of a integrable (or measurable and
nonnegative) function f : X —R. The main results of the paper
are Theorems 1 and 2 below, which give integral expressions
for the number of IA solutions when the system is tightly
feasible (s = 0): this number is denoted as #(7; ' (Hp)) and is
the same for all channel realizations out of some zero-measure
set. Detailed proofs of the theorems can be found in [16].

Theorem I: For a tightly feasible (s = 0) fully connected
interference channel, and for every Hy € H out of some zero—
measure set, we have:

(nr L (Ho)) = c]{q

where U is defined by (8) and

det(¥¥™*) dH,
EH | Hllp=1

(10)

B T(N, M)
©= (k’ll_)[@ (F(Nk.Ml - dkdl))
P(2) - T(d) - T(2) - T(Ne — d)
1 ( L@ T(Vy) ) g
P(2) -+ T(d) - T(2)- T(M; — dy)
Mo )
and I'(a) = (a — 1)! denotes the Gamma function.

Remark 1: As proved in [11], [12], if the system is infeasible
then det(¥¥*) = 0 for every choice of H,U,V and hence
Theorem 1 still holds. Moreover, if the system is feasible and
5 > 0 then there is a continuous of solutions for almost every
Hy; and hence it is meaningless to count them.
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Theorem 1 can be used to approximate the number of
solutions of a given MIMO system using Monte Carlo integra-
tion (see Section IV below). The convergence of the integral
however is quite slow in general. In the square symmetric case,
when N = M > 2d or equivalently N = M and K > 3, we
can write another integral which has faster convergence in
practice.

Theorem 2: Let us consider a tightly feasible (s = 0)
fully connected square interference channel such that all users
have the same number of transmit and receive antennas,
N = M;, = N, and send the same number of streams d;, = d.
Assuming additionally that K > 3, then for every Hy € H
out of some zero—-measure set, we have:

8(my N (Ho)) = C

(AfBe) €Uy 4y a

det(VT*) dH,

where W is again defined by (8) and the input space of MIMO
channels where we have to integrate are now

Hy = (ded A )
By ON—ayx(N—-a))

whose blocks, Aj; and By, are matrices in the complex
Stiefel manifold, denoted as U(n_q)xq, and formed by all
orthonormal d-dimensional vectors in C¥ =% The constant
preceding the integral in this case is
cu=( T(N—d+1)---T(N) )K“*“( r(2)--I(d) )M
(N —-2d+1)---T(N —d) I(N—d+1)---T(N) :
In the next section we discuss how the results in Theorems
1 and 2 can be used to get approximations to the number of
IA solutions for a given interference network.

IV. ESTIMATING THE NUMBER OF SOLUTIONS

The integrals in Theorems 1 and 2 are too difficult to be
computed analytically, but one can certainly try to compute
it approximately using Monte Carlo integration. Our main
reference here is [17, Sec. 5]. The Crude Monte Carlo method
for computing the average

of a function f defined on a finite-volume manifold X consists
just in choosing many points at random, say x1,...,x, for
n >> 1, uniformly distributed in X, and approximating

1 n
de ~ E, = — T;).
f f@iz~E PN

The most reasonable way to implement this in a com-
puter program is to write down an iteration that computes
E,y, Es, Es, . ... The unique point to be decided is how many
such x; we must choose to get a reasonable approximation of
the integral. A usual tool for measuring that is the standard
deviation, that can be approximated by

(1)

1/2
> () - B

En:
n—1

(12)

Algorithm 1: Computing the number of IA solutions for
symmetric square scenarios (N x N, d)¥.

Input: Relative error, €; N; d; and K.

Output: Approximate number of IA solutions, F,,.
n=1

repeat

Generate a set of i.i.d. (N — d) x d matrices {A};}
and {By,} in the Stiefel manifold.

Build matrix ¥ according to (9).

Compute D,, = C’ det(¥T*).

Calculate F,, and 3, according to (11) and (12),
respectively, where f(x;) is now D;.

n=n++1.
until%<5

n

If we stop the iteration when ?‘ < ¢, then, with a probability

of 0.95 on the set of random se&uences of n terms, the relative
error satisfies

|-7CI€X f(.]?) dx — E”|
| En|

< 2e.

For example, if we stop the iteration when E—: < 0.05, then,
we can expect a maximum error of about 10 percent in our
calculation of f, _ f(x)dz.

The whole procedure for the case of square symmetric
systems is illustrated in Algorithm 1 which follows Theorem
2. The extension to general networks according to Theorem 1

is straightforward.

V. NUMERICAL EXPERIMENTS

Table I shows the estimated number of alignment solutions
for some feasible MIMO networks with d = 2, indicating
in parentheses the approximation error in percentage. These
results have been obtained using the integral formula in
Theorem 1, except the square cases (M = N), for which
we used the expression in Theorem 2. For instance, we can
mention that the system (5 x 5,2)% has, with a high confidence
level, 3700 different solutions. This result was not known so
far. As it can be observed, the estimate of the integral formula
in Theorem 2 converges much faster than that of Theorem 1,
thus allowing us to get smaller relative errors. More examples
can be found in [16].

Although these results have mainly a theoretical interest,
they might also have some important practical implications.
For instance, knowing the rate of increase of f(7; ' (H)) with
K could have interest to analyze the asymptotic performance
of linear IA, as discussed in [15]. Also, for moderate-size
networks for which the total number of solutions is not very
high, the results of this paper also open the possibility to
provide a systematic way to compute all (or practically all)
interference alignment solutions for a channel realization.
Although all TA solutions are asymptotically equivalent, their
sum-rate performance in low or moderate SNRs behavior may
differ significantly [15], [18]. The main idea here is that if
we are able to obtain all or almost all TA solutions for a
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M=3 M=4 M=5 M=6
(3x (2K —1),2)K (4 x (2K —2),2)K (5 x (2K —3),2)K (6 x (2K —4),2)K
K=2 0 1 - -
K=3 1 6 1 1
K=4 ~ 9 (5.8 %) ~ 973 (1.0 %) ~ 3700 (0.1 %) ~ 973 (1.0 %)
K=5 ~ 223 (14.8 %) ~ 530725 (11.3 %) ~ 72581239 (17.8 %) ~ 387682648 (0.7 %)

TABLE 1
APPROXIMATE NUMBER OF IA SOLUTIONS FOR SEVERAL SYMMETRIC 2-BEAM SCENARIOS, (M x (2K — M + 2),2)K.

particular channel realization, we can get all or almost all
IA solutions for any other channel realization by using a
homotopy-continuation based method such as that described
in [19]. This idea is reflected in Figure 1, which shows in grey
the sum-rate curves of 973 different solutions for the (4x 6, 2)*
network. The maximum sum-rate solution is plotted in a
thicker solid line, while the average sum-rate of all solutions
is represented with a dashed line. The relative performance
improvement provided by the maximum sum-rate solution over
the average is always above 10 % for SNR values below 40
dB, and is more than 20 % for SNR=20 dB.

120 T T T
All solutions
100 | | ==== Average sum-rate
—— Maximum sum-rate solution o2
N
E 80 Z
wn
a,
2,
o 60 =
g
5 40 B
n
20 B
0 L | | | | | | |
0 5 10 15 20 25 30 35 40
SNR [dB]

Fig. 1. Comparison of the sum rate achieved by different solutions for the
system (4 x 6,2)%.

VI. CONCLUSION

In this paper we have provided two integral formulae to
compute the finite number of IA solutions in tightly feasible
problems, including multi-beam (dj > 1) networks. The first
one can be applied to arbitrary K-user channels, whereas the
second one solves the symmetric square case. Both integrals
can be estimated by means of Monte Carlo methods. Using
our results, we found, for instance, that the system (5 x 5, 2)4
has, with a high confidence level, 3700 different solutions.
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