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Abstract. In this work we address the rate adaptation problem of a
cognitive radio (CR) link in time-variant fading channels. Every time
the primary users (PU) liberate the channel, the secondary user (SU)
selects a transmission rate (from a finite number of available rates) and
begins the transmission of fixed sized packets until a licensed user re-
claims the channel back. After each transmission episode the number of
successfully transmitted packets is used by the SU to update its optimal
rate selection ahead of the next episode. The problem is formulated as
an n-armed bandit problem and it is solved by means of a Monte Carlo
control algorithm.

Keywords: Cognitive radio (CR), rate control, n-armed bandit
problem, reinforcement learning (RL).

1 Introduction

In this work we focus on opportunistic spectrum access (OSA) in hierarchical
cognitive radio (CR) networks where the secondary users (SU’s) only use the li-
censed spectrum when primary users (PU) are not transmitting (in the following
we use “primary user” or PU to refer to the aggregate of primary users). Every
time the PU liberates the channel, the SU begins transmitting until, without
prior notice, the PU reclaims the channel again at any given time.

We consider noncooperative spectrum sharing where each SU makes its own
decision on the spectrum access strategy, based on its error free channel sensing
and the number of data packets successfully transmitted over time. In this work
we focus on a single SU link and we do not take into consideration the compe-
tition between the different SU’s. Nonetheless, the proposed scheme would still
work in an scenario with multiple SU’s competing to access the channel.

In this work we assume that the SU’s support automatic repeat request (ARQ)
protocol, so when a frame is decoded with error, its data is retransmitted in a fur-
ther frame. Rate adaptation of SU links in CR has been widely addressed in the
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technical literature, [1], [2], [3]. However, none of the above works consider frames
retransmission. In [4] frames retransmission was taken into account, but assuming
a time independent channel occupancy model. In [5] the authors present a similar
problem, however they do not consider time variables scenarios or time dependent
occupancymodels. In [6] and [7] we considered frames retransmission andwemade
use of the acknowledgments (ACK’s) for rate control, however, in these cases we as-
sumed perfect knowledge of the channel fading and occupancy statistical models.
To the best of our knowledge, optimal rate adaptation while considering retrans-
missions of failed frames, time-dependent channel occupancy and fading models
have not been addressed so far in the context of OSA.

In this work we aim to go one step further, we introduce a rate adaptation al-
gorithm in which we do not require any additional information about the channel
state and occupancy. The ACK’s sent back by the SU receiver are the only infor-
mation exchangedwith the SU transmitter.We propose an energy efficient scheme
with a reduce computational cost and hardware complexity with relaxed require-
ments in terms of delay and transmission rate. This is the main novelty of this
work.

We formulate the adaptive rate selection as an n-armed bandit problem [8]
where the actions are the different available transmission rates, and the rewards
are based on the number of successfully transmitted packets over time and its
duration. We propose a Monte-Carlo based algorithm [8] capable of tracking
changes in the received signal to noise ratio (SNR), the channel occupancy pro-
cess and others variables over time to select the optimal rate.

The remaining of this paper is organized as follows; system model is presented
in section 2. In section 3 we formulate the problem and we introduce the solving
algorithm. In section 4 we present numerical results to evaluate the tracking capac-
ity, the robustness, the speed of convergence and the performance of the algorithm
under different scenarios. Finally, section 5 presents the conclusions of this work.

2 System Model

We consider an SU that periodically senses the channel ideally (with zero proba-
bility of miss detection and false alarm). Once it detects that the channel is idle,
it begins the transmission of a sequence of fixed size data packets until the PU
reclaims the channel. Each one of these packets is encoded into a single frame.
The SU has the capability of adapting its transmission rate, i.e. the duration of
each frame.

The aim of the SU is to maximize its own throughput during the sojourn
time of the PU. To achieve this goal, the SU selects a transmission rate from
a set A of K = |A| different types of available frames, each one with duration
Ta and frame error rate (FER) denoted by p(a, SNR), where a ∈ A and SNR
is the signal to noise ratio at the receiver during the frame transmission. We
assume a block fading channel model, namely, the SNR does not change during
the transmission of a frame, but it can change from frame to frame.

We consider a conventional and ideal ARQ mechanism to detect frame trans-
mission errors. When the receiver receives a frame, it sends back an ACK packet
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to the transmitter through an instantaneous error-free feedback channel to inform
whether the frame has been correctly decoded or not.Whenever a frame is decoded
with error, the corresponding packet must be retransmitted in a further frame.

The SU transmitter does not have access to any information regarding the
channel state, the receiver SNR or the PU channel occupancy patterns. The
information related to the channel state available to the SU transmitter is:

1. The ACK’s sent back by the receiver.
2. The availability of the channel by means of perfect sensing.

We assume that the transmit power constrains on the SU avoid significant
interference on the normal operation of the PU. Consistently, whenever the PU
occupies the channel, the SU frames are lost.

Primary User Channel Access Model
Figure 1 depicts the channel occupation process by the PU. The channel state
changes alternatively between idle and busy periods over time. The duration of
the idle/busy periods is given by two random variables denoted by di and db
respectively. Let Fi(di) and Fb(db) be the corresponding cumulative distribution
functions (CDF) that model the occupancy process.

busybusybusy idle idle

didi dbdb db

t

Fig. 1. Channel occupancy process

busy

0 t0 d+ t0

t

Fig. 2. Idle period

Regarding figure 2, let β(d|t0) denote the conditional probability that the
channel remains idle at time t0+d given that it was idle at time t0. Using Bayes’
theorem:

β(d|t0) =
⎧⎨
⎩

1− Fi (t0 + d)

1− Fi (t0)
, t0 > 0

1− Fi (d), t0 = 0

(1)

Generally, β(d|t0) depends on t0.

Sensing and Transmission Strategy
Figure 3 illustrates the adopted sensing strategy. The SU periodically senses the
channel every Ti seconds and every sensing instance takes Ts seconds. Once it
detects that the channel is idle, it begins its own transmission. After transmitting
each frame, the SU senses the channel again. As long as the presence of the PU
is not detected the SU continues transmitting. Whenever the channel is sensed
as busy the SU stops transmitting.

Notice that, when the channel is idle, the time interval between two consecutive
sensings depends on the frame duration and itmaydiffer from the interval when the
channel is busy. If the PU reclaims the channel during the transmission of a frame,
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the SU transmitter has no way to detect the collision during the transmission of
the current frame. This last frame is usually lost. Figure 3 illustrate this situation,
transmission of frame 3 is completed even thought the channel is busy during the
last half of the transmission and the frame is therefore lost.

In the following, we will re-
busybusy idle

Tx1 Tx2 Tx3

TsTi Ta Teps

t

Fig. 3. Sensing and transmission strategy

fer to time windows in which
the SU transmits, as episodes
and we will use Teps to denote
their duration. Notice that the
actual time interval in which
the channel is idle, will in gen-
eral differ from the observed
episode.

3 Problem Formulation

We formulate this rate adaptation problem as a n-armed bandit problem [8] with
ε-greedy policy, where the set of actions,A, is formed by the set of available rates.

The SU maintains and updates an action-value function, Q(a), which can be
understood as an estimated measure of performance for each action (rate). In
particular the entries of Q(a) are an estimation of the expected throughput when
transmitting each type frame during an episode. After a rate is selected at the
beginning of the episode, it will be maintained throughout the entire episode.
This approach guarantees that the transmission rate only needs to be changed
once per episode (at most). In [6] we showed that for non fading channels, this is
optimal or close to optimal. However, it is easy to see that under fading channels
and, unless the coherence time of the channel is higher than the average episode
duration, this scheme is not optimal, or close to optimal, anymore [7].

Two possibilities arise, exploration and exploitation. Usually, we are inter-
ested in exploitation, selecting the action that we expect to yield the best per-
formance, namely the one with the highest Q. However, it is also important to
try, or explore, the other actions occasionally in order to keep their estimated
values updated. This is of critical importance in a dynamic environment since
the expected performance of each action will vary over time. To handle the
trade-off between exploration and exploitation we propose to use an ε-greedy
policy [8]. With probability 1 − ε the SU selects exploitation, the action with
highest current value, a∗ = argmaxa Q(a), is selected. With probability ε the
SU explores and the action is randomly picked from A. An ε-greedy policy is
usually expressed as

π(a) =

{
1− ε+ ε/K, a = a∗

ε/K, a �= a∗,
(2)

for a ∈ A and where π(a) is the probability of selecting action a. The greedier a
policy is, the higher the probability of choosing the optimal action.
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After each episode concludes, a reward is granted to the decision maker in
order to update its value-function. These rewards are a measure of how good
performed the selected action (rate). In particular, they are an estimation of the
throughput during the episode

r =
PTx

Teps
, (3)

where PTx is the number of data packets that have been successfully transmitted
during the episode (number of received ACK’s).

Given the reward, the value of the selected action, a, is updated with the
following Monte-Carlo [8] rule:

Q(a) = Q(a) + μ(a) [r −Q(a)] , (4)

where 0 < μ(a) ≤ 1 is the so called adaptation step. Notice that when μ(a) = 1,
the updated value of Q(a) is simply the reward r, the algorithm has no memory
of the past episodes.

Large adaptation steps provide a faster convergence in the action-value es-
timations at the price of smaller precision. On the other hand, smaller values
provide slower convergence but can achieve higher precision. Noisy or inaccurate
action-value estimations can lead to a noisy ε-greedy policy. If the noise level is
high, it can affect the optimal rate selection causing the ε-greedy policy to be
unstable continually changing its choice of a∗ even in stationary environments.
On the other hand, actions that are not currently optimal, are selected less fre-
quently, meaning that their values are most likely outdated. For these actions
it makes sense to use a large adaptation step to be sure that a few, or even a
single adaptation step, is enough to get a reasonable update of the value.

We propose to use two different step sizes. Optimal action-value estimation is
refined with a smaller adaptation step, μopt, while the other values are kept up-
dated only with less precise estimations by using a larger step size μexp. Therefore
we define μ(a)as

μ(a) =

{
μopt, a = a∗

μexp, a �= a∗,
(5)

with μopt ≤ μexp. Table 1 illustrates the complete adaptive rate selection
algorithm.

4 Numerical Results

In this section we first present the general simulation framework and then, the
specific simulations to evaluate the performance of the rate selection algorithm
under different realistic scenarios.
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Table 1. Adaptive Rate Selection Algorithm

Q ← Initialize arbitrarily

π ← Initialize ε-greedy policy from Q
Repeat forever

ChannelState ← Channel Sensing Output

If ChannelState = busy
wait Ti

Else

Select rate a using policy π
PTx = 0, Teps = 0
Repeat until ChannelState = busy

Transmit a type a frame

If an ACK is received → PTx = PTx + 1
Teps = Teps + Ta

ChannelState ← Channel Sensing Output

Teps = Teps + Ts

End

r = PTx/Teps

Q(a) = Q(a) + [r −Q(a)] ·
{
μopt, a = a∗

μexp, a �= a∗

π ← ε-greedy policy from Q
End

End

4.1 Simulation Framework

Frame Types. Throughout section 4 we assume that there are four different
rates available to the SU transmitter, all carrying a payload of 1024 bits. Table
2 shows the frame duration, Ta, for each rate. We also associate each rate with
one of the FER curves shown in figure 4. The FER curves of many practical
system can be approximated by the exponential function, for this reason we
choose to work with the following generic exponential expression to resemble
realistic systems

FER(a) = A · e−B·[SNR+C(a)],

where A = 103 and B = 0.6 are constants, SNR is given in dBs and C(a)
represents a SNR shift in dBs and it is also given in table 2 for each rate. All
frames encode a single packet of 1024 bits.

In the following we will use operational SNR range to refer to the range of
SNR values in which a particular rate is optimal. For example, operational SNR
range of rate 2 is approximately between 7 and 12 dBs.

Sensing Strategy. We assume that the sensing period Ti = 0.1 ms, and negli-
gible sensing time, Ts = 0 ms.
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Fig. 4. Frame Error Rate for the four types of frames
available

Table 2. Parameters for the
four types of frames

rate Ta [ms] C(a) [dBs]

1 1.6 10

2 0.8 5

3 0.4 0

4 0.2 -5

PU Channel Access Model. Without loss of generality, and only for simu-
lation purposes, in the following we model di and db as generalized exponential
(GE) random variables with CDF

GEx(x) =
[
1− e−λ(x−μ)

]α
, x ≥ μ (6)

where x ≥ μ > 0, λ > 0 and α > 0. Notice that for α = 1 and μ = 0 the GE
distribution becomes the exponential distribution with parameter λ

β(d|t0) =
1− (

1− e−λ(t0+d)
)

1− (
1− e−λ(t0)

) = e−λd, (7)

which does not depend on t0. This memoryless exponential model has been
extensively used in the literature, however, in many practical cases it is not a
realistic one [9].

Specifically, throughout the simulations section we make use of the four dif-
ferent GE distributions described in table 3.

We propose three different distributions, GEi1, GEi2 and GEi3, for di. In
these cases, given μ = 0, di can take any value greater than zero. Parameter λ is
chosen so that the three distributions share the same mean value. Since α = 1,
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Fig. 5. β (d = 1.6 ms|t0) for the GEi distributions
described in table 3

Table 3. Parameters of the se-
lected CDFs, μ and the mean
value in ms

λ μ α Mean

GEb 200 2 1 7

GEi1 50 0 1 20

GEi2 30.69 0 0.5 20

GEi3 14.41 0 0.2 20
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both GEi1 and GEb are memoryless distributions. Figure 5 illustrates β(d|t0)
for d = 1.6 ms (the duration of the longest frame), as a function of t0, for the
three GEi distributions.

The distribution of db has an important influence on the performance of
the adaptation scheme. In time varying environments, the probability that the
learned value-function resembles the real channel state decreases with the dura-
tion of the busy intervals.

Channel Fading. We consider both, simple additive white Gaussian noise chan-
nels (AWGN) and fading channels. For the fading channels we use a Rayleigh
block fading model so the channel gain remains constant at least during the
transmission of the longest frame. For our experiments we consider three values
for the Doppler frequency for these fading channels: fD = {0.1, 0.5, 1} Hz.

The AWGN channel has a constant unitary channel gain (0 dB), in turn we
assume an average channel gain of 0 dB for the fading channels. In all cases the
average received SNR is assumed to be 15 dB.

Adaptive Algorithm. Unless otherwise indicated, we also assume that:

– The exploration adaptation step is always μexp = 1.
– The exploration parameter is fixed as ε = 0.1.
– The action-value function, Q, is initialized to zero.

Performance Metrics and Upper Bonds. As a measure of performance, we
use the averaged throughput per episode,

Theps = E [r] · payload,
assuming that the four types of frames carry the same payload of 1024 bits.
Unless it is otherwise indicated, all the numerical results have been obtained
averaging ten thousand independent simulations.

Upper bounds are computed as the throughput achieved by selecting the op-
timal rate on each episode but taking the exploration parameter into account.
The optimal actions are selected a priori based on the channel occupancy sta-
tistical models, the variable FER of each type of frame and its duration. The
upper bound on AWGN channels and fading channels might not be the same,
even if the average SNR is the same, simply because the channel gain is not
a random variable but a constant in the AWGN channels. In fading channels
the upper bound is expected to be above the throughput yield by any of the
stationary policies (selecting the same type of frame on every episode). In turn,
for the AWGN channel the upper bound will match the throughput achieved by
one of the stationary policies.

4.2 Adaptation Step and Tracking Capability

In this section we aim to show how the choice of the adaptation step can affect
the tracking capability of the algorithm and hence its performance. We consider
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a fading channel, with fD = 0.1 Hz, a channel occupancy model described by
GEi2 and GEb, three adaptation steps, μopt = {0.1, 0.5, 1}, and we average
ten thousand independent runs of the algorithm. Figure 6 show the throughput
and the corresponding averaged policy. We can see how there is little difference
between μopt = 0.1 and 0.5, however, for μopt = 1 the throughput sinks. In the
latter case the algorithm relays solely on the last reward obtain with each rate,
therefore, and on the face of incomplete information, the algorithm tends to select
the safest rate, the one which can work with a lower SNR. Our experiments show
than in general a fading channel will lead to a less greedy policy simply because
different rates become optimal at different times. The fact that the adaptation
step depends on the selected rate is what gives the algorithm its robustness
against the selection of μopt, in general the performance of the algorithm is not
strongly dependent on μopt as long as we choose a small value.

A key feature of our algorithm is its tracking capability at a reduced computa-
tional cost and complexity. To illustrate how the algorithm is capable of tracking
the changes in the SNR, we generate an independent sampled sequence of the
channel fading process with fD = 0.5 Hz, then we run ten thousand independent
simulations over the same fading sequence and, considering a channel occupancy
process with the memoryless distributions GEi1 and GEb.
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Fig. 6. Throughput per episode (top) and its corresponding policy (bottom) for several
values of μ. Fading channel with fD = 0.1 Hz and occupancy model given by GEi2 and
GEb.
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Figure 7 illustrates the SNR evolution, the achieved throughput and the cor-
responding policy and action value function. We can see how the throughput
varies overtime following the changes in the SNR. By looking at the policy fig-
ure we can see how rates 2 and 3 share most of the probability throughout the
whole simulation, this is because the SNR remains approximately within the
operational SNR ranges of rates 2 and 3. A closer look to the action value figure
reveals that rate 3 is optimal most of the time, however when the SNR falls
below approximately 10 dB rate 2 becomes optimal. On the other hand rates
1 and 4 are deactivated most of the time because the SNR is above and below
their operational SNR ranges respectively. We can see how only rate 4 gains
some value and probability of selection precisely when the SNR is maximum.
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Fig. 7. From top to bottom, Signal to noise ratio evolution, Throughput per episode
in Mbit/s, policy and Q value

4.3 Performance over Fading Channels

In this subsection we measure the performance degradation due to the limited
tracking capability and we show that the algorithm is still capable of exploiting
the transmission opportunities. To do so we consider distributions GEi1 and GEb

for the channel occupancy model and we run the simulations for the AWGN chan-
nel and for three different values of Doppler frequency, fD = {0.1, 0.5, 1} Hz.

Figure 8 depicts the throughput evolution along with the corresponding achiev-
able rates and the averaged policy. As we increase fD, the SNR variation within
an episode increases reducing the probability that the selected rate remains op-
timal. Even more important is the fact that, as we increase fD the correlation
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between two consecutive episodes decreases, for this reason it is harder for the
algorithm to forecast which rate is optimal for the next episode. The gap be-
tween the achievable throughput when transmitting over the AWGN channel
and when transmitting over a fading channel is due to the random nature of the
channel gain in the latter case.

As for the averaged policy evolution we notice that for the AWGN we obtain a
greedy policy after convergence. For the other three cases, the policy is roughly
the same and it is less greedy because the probability is spread more evenly
among the rates. In this particular case π(2) and π(3) stand out meaning that
the SNR oscillates within the SNR operational range of rates 2 and 3 most of
the time.
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Fig. 8. Throughput per episode and achievable rate (top) and the corresponding policy
(bottom) for several values of fD

4.4 Channel Occupancy Model

Next, we explore the effect of different degrees of memory on the channel occu-
pancy model. To do so, we repeat the same simulation but this time only for the
AWGN channel and for the three distributions GEi1, GEi2 and GEi3. Figure 9
depicts the throughput evolution along with the corresponding achievable rates
and the averaged policy. In this case the achievable rate is strongly influenced
by the occupancy model, however, the algorithm is still capable of converging
towards the upper bounds.
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As the memory effect is more noticeable, episodes much shorter and much
longer than the average are more likely to occur. Hence, suboptimal rates might
gain value and be selected more often eventually leading to a less greedy pol-
icy and a degraded performance. We can see how for the distribution with the
largest memory (GEi3), the gap between the achieved rate and the upper bond
is larger than for the other distributions. Correspondingly, by looking at the
policy evolution we can also see how π(3) decreases and π(2) increases resulting
in a less greedy policy. Notice that this effect is different from the one observed
for the fading channels, there is no possibility of tracking here, only the fact that
as the episode duration is more variable, some rates may randomly gain value
introducing noise in the Q(a) estimation and therefore interfering with the rate
selection.
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Fig. 9. Throughput per episode and achievable rates (top) and the corresponding policy
(bottom) for the three distributions in table 3

4.5 Exploration Parameter, ε

Theory suggests that as we increase the value of ε we explore more and therefore
we exploit less, in other words, it takes less time to learn the ε-policy but it
learns a less greedy policy which might lead to a lower achievable throughput.
This is exactly what we found when we run simulations on static environments,
with no fading channels or other variables varying over time. However, when
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the environment varies over time, for example due to a fading channel, a larger
ε does not necessarily lead to a lower throughput. Experiments reveled that
in this cases it is critical to explore sufficiently often in order to maintain an
estimation of Q that resembles the true value of each rate over time. On the
other hand, exploring too often means that we spend less time exploiting what
we learned. The optimal ε depends on how fast the environment changes, slow
changes require less exploration and fast changes require higher values of ε.

5 Conclusions

In this work we have presented a novel adaptive rate selection scheme for cogni-
tive radio links. We introduce a model free adaptive rate selection with a reduce
computational cost and hardware complexity; these are the main novelties of
this work. We consider a SU that opportunistically accesses the channel with
the goal of transmitting an infinite number of data packets. Every time the SU
begins transmitting it has to select the transmission rate following an ε-greedy
policy. After the PU reclaims the channel the decision maker in the SU receives
a reward and updates its value function. These updates are done with different
adaptation steps depending on the nature of the episode, exploration or exploita-
tion. This trick allows the algorithm to maintain an updated and yet accurate
estimation of the action-value function improving the tracking capability.

Experiments illustrate the tracking capabilities of the algorithm under vari-
able SNR channels. We also study the performance and converging properties
for different degrees of fading and different channel occupancy models.
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