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ABSTRACT Unfortunately, the computational cost of these optimum
Chaotic signals and systems are potentially attractivesinyn ~ €stimators grows exponentially with the length of the ctiaot
signal processing and communications applications. Maxséquence, and cannot be reduced in general (in some partic-
imum likelihood (ML) and Bayesian estimators have beertllar cases, such as the tent-map, an efficient recursive im-
developed for piecewise-linear (PWL) maps, but their comPlementation of the ML estimator is possible [8]). Conse-
putational cost is excessive for practical applicatiorexe®al ~ quently, there is still a need to obtain cost-effectiveraators
computationally efficient techniques have been proposed fdor their use in practical applications. Many suboptimgbal
this class of signals, but their performance is usuallyrfamf ~ fithms have been proposed (see for example [9, 10, 11, 12]),
the optimum methods. In this paper, we present an asymput their performance is usually far away from that of the ML
totically optimal estimator based on the Viterbi algoritton ~ and Bayesian estimators, specially in the low/medium SNR
estimating chaotic signals observed in additive white Gaugange. . -
sian noise. Computer simulations demonstrate that the per- In this paper we consider the use of the Viterbi algo-
formance of this estimator is similar to that of optimum meth fithm, which in this case is an approximate method, for the

ods with On|y a fraction of their Computationa| cost. estimation of the itinerary of the chaotic sequence. Once
the itinerary is known, the ML estimator can be obtained in
1. INTRODUCTION closed form for a PWL map, or through a simple local gradi-

o . ) ) ent descent or grid search method for non-PWL maps.
Chaotic signals (i.e. signals generated by a suitable non- Note that the Viterbi algorithm has already been consid-
linear dynamical system in a chaotic state) have receivegred for the estimation of the itinerary of chaotic sequsiite
much attention over the last decade. Although chaotic 8gna[13]. However, the work in [13] relies on a linear filter repre
are generated by deterministic systems, they displayfesitu sentation of the chaotic system which is not always possible
typical of purely random signals [1]: sensitivity to initia requires delay and truncation (thus generating pseudtichao
conditions, quickly decaying autocorrelation functiofgth  signals, which may lose some of the interesting features of
bandwidth with an approximately flat spectral density, andhe actual chaotic signals), and a trellis with a large numbe
practical unpredictability in the medium/long term. _ of states. Unlike [13], our approach is able to generatg trul

These characteristics make them attractive in a widghaotic signals (since it is based on backward iteratioh®f t
range of signal processing and communications applicationchaotic system) is valid for any chaotic map, and provides a
In this paper we consider unidimensional chaotic maps. Alyood performance with a reduced number of states.
though this is the simplest class of chaotic systems, theey ar
useful in several different areas: random number genera2. CHAOTIC MAPSAND SYMBOLIC DYNAMICS
tion [2], spread spectrum chaotic communications [3], wa- . .
termarking [4], cryptography [5], etc. In any case, regardJn this work we consider sequences generated by unidimen-
less of the application, it is necessary to develop computaional chaotic maps. Theth sample of the sequence is ob-
tionally efficient detection and estimation algorithms erhi  tained iterating a known initial condition[0], according to
take into account the dual (deterministic/random) natiire o _ o _ £2 o1y _¢n
chaotic signals and which show a robust behaviour under re- X[ =f(xn—1)) = f*(x[n—=2]) = ... = F1(x0]), (1)
alistic conditions (e.g. in the presence of additive noise)  wheref(X) is a suitable nonlinear and noninvertible function,

Estimation of chaotic signals has been addressed in se¥¥(x) denotes the functional composition Bfx) with itself
eral papers. The maximum likelihood (ML) estimator of thek times, and 1< n < N. Although the estimation technique
initial condition of a chaotic sequence has been developediased on the Viterbi algorithm is valid for any chaotic map, i
in [6] for piecewise linear (PWL) maps. Bayesian estima-the sequel we concentrate on PWL maps defined on a phase
tors have been proposed as well for any PWL map in [7]spacd = [ey, eu], Which can be described as
These estimators show a good performance and attain the M
Cramer-Rao lower bound (CRLB) asymptotically as the sig- _ :
nal to noise ratio (SNR) goes to infinity. f) = i; fi () XE (). )



where fi(x) = ax+bj, E = [g_1,8) for0<i <M -1, 3. MAXIMUM LIKELIHOOD ESTIMATION
Em = [em—1,ewv], andxg (X) is an indicator ocharacteristic

function which denotes whetharbelongs to a given region: '€ data model that we consider in this paper is

(x)‘{l’ i (3) T ;
X 0, x¢E. wherey = [y[0], ..., Y|N]]T is the observations vector,
x = [x[0], ..., x[N]]" is the chaotic sequence, and =
As an example, we focus on tikew tent-mafSK-TM), W[0], ..., WIN]]T is the noise vector whose samplegn]
(0 <n<N), correspond to zero-mean, white Gaussian noise
X 0<x<p; with varianceo? (i.e. w ~ N(0, 6°I), beingl the (N + 1) x
f(x) =<0, <x<1 (4) (N4 1) identity matrix).
Tp PsXsL The ML estimator obtains the chaotic sequence which

maximizes the likelihood functiom(y; x), which is equiva-

Where 0< p < 1 is a parameter of the map. In this caselent to minimizing the cost function,
M=2,E; =10, p)witha; =1/pandb; =0, andE, = [p, 1]
witha, = —1/(1— p)andb, =1/(1— p). Jx)=(y—x)"(y —x), (10)

A very useful tool for analysing chaotic signalssgm-
bolic dynamics For any map we can define a partition of sincep(y;x) is a multivariate Gaussian PDF. However, it is
its phase space into a set of nonoverlapping intervals whe@pparent from (1) that the whole chaotic sequence can be
the map is continuous and monotonous in such a way thaxpressed as a function of a single sample. Choogas
they cover the whole phase space. This partition is nevea reference, we obtain an alternative cost function:
unique, but we can always find the simplest possible parti-

tion, which is called the natural agenerating partitionof N Tk 2
the map. For PWL maps, this partition is clearly given by the ~ J(X[N],s) = % (V[N —k| - fSka:Nfl(x[N])) ;o (1)
Ei (i=1, ..., M) and containgvl elements. Thus, for the k=0
SK-TM itis simply E; = [0, p) andE, = [p, 1. _ .
Now, we caﬁ):jeﬁne[thep)zmbolic seEqpuerloer itinerary ~ Wheres =[s[0], ..., SN — 1]" is the symbolic vector (note
of the map as the sequence of regions of its natural partitiof{'at SIN] i not used to generate the chaotic sequence), and
SN_kN_1=[SIN—K], ..., SSN—1]]". Then, the ML estima-

that the chaotic signal visits during its time evolution: iy
tor of x[N] is given by
sin] =i < x[n| € E;, n=0,...,N—1 (5) %t [N] = argmind(X|NJ, 3w ), (12)

N

For PWL maps it can be easily shown that each pointin their N

phase space has a unique symbolic sequence of IBhgth  \yheres),, is the ML estimate o§.

sociated. Moreover, a symbolic sequence of infinite length  \we need to solve two problems to obtain the ML esti-
defines a single initial condition/0], and an itinerary of fi-  mator ofx[N]. First, the ML itinerary cannot be obtained
nite length defines a closed region of possible initial Va'“?taking derivatives of (11), becaudé(N],s) is a discontinu-
which becomes narrower as the length of the sequence igy;s function of the symbolic sequence. Nevertheless, since
creases [14]. _ _ the number of valid sequences is finite (at middt in gen-

_ Additionally, the_symbollc sequence provides an altern_aera|, N for the SK-TM), a “brute force” approach is possi-
tive way of generating the chaotic signal. Instead of obtainp|e: test all the sequences, obtain their ML estimaf\q,[,[N]

ing then-th sample of the sequencen], iterating forward ;1 MN), and select the one which minimizes (11).
from a known initial conditionx[0], we can obtain it iterat- A second problem comes from the fact that, even if we

ing backwards from a known final conditioxN], as know the itinerary, we need a closed expression forrthe
th iteration (backward in this case) of the chaotic sequence

x[n] = fsﬁ(x[mr )=...= fs{n(]’,\l.i..r,])s[N—l] (xN]).  (8) to be able to obtaimy [N] in closed form. For PWL maps

closed-form expressions have been developed in [6] and [15]
: for the forward and backward iteration respectively. These
—1 N—K

Wheref™" denotes the inverse map afd ™~ denotes the  oquations turn outto be linear 0] andx[N]. Hence (11) is
functional composition of ~~ with itself N —k times. Note . 5qratic inx|N] for a given itinerarys;, and has a unique
that (6) reqwr:esda P“%” I;]novyledge of the itinerary in arde pinimum, %, [N], which can be obtained easily taking its
to generate the desired chaotic sequence. For a generic PWbivative with respect taN] and equating it to zero [15].

map the inverse function is However,x; [N] is the ML estimator of[N] only pro-
vided that the symbolic sequencesis and thatxg [N] can
ffl(x) _ X — by @) generate a chaotic sequence with the specified itineraxy (i.
<0 )] that fT(ka) (X[N]) exists and belongs to the phase space of
SN—kN-1
and for the SK-TM we have the map| = [ep,ev], for 0 < k < N). Otherwise it is neces-

sary to apply a threshold to obtain the ML estimatox®{]

for that symbolic sequence (see [6, 7] for a complete discus-
(8) sioninx|Q]). Fortunately many chaotic maps, such as the SK-

TM, areonto[14]: f;(x) mapskE; into the whole phase space
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of the map for every. Hence all the symbolic sequences are
valid, and we only need to guarantee thafN] belongs td:

_ &, %[Nl <ep
)?:}IL[N] = %[N, %X[N]€l; (13)
em,  %5[N]>ew.
Finally, the ML estimator ok[N] is
fmL [N] = argminJ(Xy, ,si)- (14)
|

Figure 1. Basic butterfly of the trellis for the SK-TM using

Once we obtain the ML estimator of the final condition Ofonly two states per iteratioh = 2, = 1).

the sequenceqi [N], and of the itinerarysw., the rest of
the sequence can be obtained iterating backwards using (6):
- _k - Finally, X|N] is estimated using the ML estimator given by
[N =K = fé“N"Ek:Nfl(XML IND), k=1,...,N. (15 (14) with[th]e itinerary obtained with the VA, and the rest of
the sequence is generated applying (15).
4. ASYMPTOTIC MAXIMUM LIKELIHOOD
ESTIMATION USING THE VITERBI ALGORITHM 5. SIMULATION RESULTS

The Viterbi decoding algorithm (VDA or VA) was devel- In this section we analyze the performance of the ML esti-
oped originally by Andrew Viterbi in 1967 as an asymp- mator based on the Viterbi algorithm. We first study short
totically optimum decoding method for convolutional codes sequences, namely with = 4. For the first example we
and was later extended by Omura and Forney to the detecensider an SK-TM with parametgr= 0.2, and an initial
tion of received signals distorted by intersymbol integfeze  conditionx[0] = 0.1934. Fig. 2 shows the mean square error
(ISI). First, a trellis diagram is constructed represemtice  (MSE) of the sequence obtained averaging 1000 simulations
valid transitions between states of the system at each iterfor all the estimators considered: the exact ML estimalr, t
tion and their cost. Then, the VA searches for the shortesfA based estimator, and the hard-censoring ML (HC-ML)
path through the trellis efficiently by merging paths and dis estimator, which constructs an itinerary by hard-cengpoin
carding unlikely sequences. the noisy data and then applies the ML estimator [12]. The

In this case, it is clear that a trellis diagram can be conVA estimator attains the CRLB at the same SNR than the ex-
structed for the chaotic sequence iterating backwards froract ML estimator, and provides a similar performance. Both
X[N], using the symbolic sequencg to represent the states, the ML and the VA estimators provide a highly superior per-
andg[n] for the transitions. However, it is also apparent thatformance than the HC-ML estimator.

this trellis requireMN states in general {2for the SK-TM) The exact SNR at which the CRLB is attained depends

since the initial conditionx[0], depends on the whole sym- greatly on the chaotic map and the initial condition. As a

bolic sequence (i.e. the system has a memory depti). second example we consider the alternative map given by
In order to reduce the computational cost, we propose to

use a trellis with a reduced set of statBsz M", and apply X 0<x<p;

the VA. Although this is a suboptimal method, it provides a f(x) = {h p<x<1: (19)

guasi-optimal performance, since far away symbols become 1=p’ - '

less and less important in the estimatiorsjof andx[n].
The basic butterfly of the trellis diagram for= 1 is
shown in Fig. 1. The branch metrics are given by

for which 0< p < 1. Forp = 0.5 this map is usually known
as the Bernouilli obinary shift map(BSM), and is much

cij[n] = yin+1] - fjfl(f(i )|, (16) SK-TM with N = 4, x[0] = 0.1934, andp = 0.2
100 T T T T T
whereg;; [n] is the cost of taking th¢-th branch starting from ool | oML
thei-th node (1< i, j < R) at then-th time instant (1< n < BN
N), andX[n],i € {1, ..., R}, is the sample obtained iterating .l
backwardsN — n times fromx|N] using the best sequence 70r
which ends in the-th node (state) at time. The cost of the g ol *
i-th node at th&n+ 1)-th instant can be obtained as usual 8 ol )
from that of all the nodes at timreas = %
404 ra
. N
Gin+1]= lgwjlgR{Cj [n] +cji[n]}. (17) sof s
20t [ W
Sincex|N] is not known, as the starting sample of each state ¥ * ‘ ‘ ‘ ‘
we use the closest point i to y[N]: 10 2 iy © % %

SNR (dB)

e-1, YN <e_i;
%[N = {yIN], y[N]€E; (18) Figure 2: MSE for the SK-TM of the considered estimators:
&, y[N] > &. ML, VA, and HC-ML.
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